

CORRIGE DE L'EPREUVE
THEORIQUE DE LA
MATIERE INFORMATIQUE
POUR LES SECTIONS
SCIENTIFIQUES
Session 2018

RESUME

Ceci est une proposition d'un corrigé avec des commentaires de l'épreuve d'informatique de la session 2018 concernant les sections scientifiques : Sciences expérimentales, Maths et Sciences techniques.

Corrigé

RÉPUBLIQUE TUNISIENNE MINISTÈRE DE L'ÉDUCATION *****

EXAMEN DU BACCALAURÉAT

Épreuve : **INFORMATIQUE**

Sections : Mathématiques, Sciences Expérimentales et Sciences Techniques

Durée : 1 H 30 Coefficient : 0.5

Corrigé

Exercice 1 (4 points= 1*4)

Instruction à exécuter	Valeur finale de la variable
Ch← Concat(Ch1, " ", Ch2)	Ch contient "Bac 2017/2018"
Q ← Tronc (P)	Q contient 19
Valeur (sous-chaine(Ch2,1,4),R,e)	R contient 2017
Effacer (Ch,5,5)	Ch contient "Bac 2018"

NB:

- On acceptera toute autre solution correcte.
- -0.25 par erreur (de syntaxe, ordre de paramètres, confusion Pascal/Algorithmique, etc.)

Exercice 2 (4 points = (0.2*5)*4)

Pour cet exercice, seules les réponses V, F, Vrai, Faux ont été acceptées.

Valider chacune des propositions suivantes en mettant dans la case correspondante la lettre V si elle est correcte ou la lettre F si elle est fausse.

a.	Pour calculer	le produit	de a par b ,	on peut f	aire appel	à la (aux)	fonction(s):
----	---------------	-------------------	----------------------------	-----------	------------	------------	--------------

b. Pour calculer a^b , on peut faire appel à la (aux) fonction(s):

c. Pour calculer le **PGCD** des deux entiers a et b, on peut faire appel à la (aux) fonction(s) :

d. Pour calculer la somme des entiers de l'intervalle [a..**b**], on peut faire appel à la (aux) fonction(s) :

Problème:

1. Analyse du programme principal :

Nom: Groupe

Resultat = PROC Recherche(M,A, na,nm)

PROC Inactifs (Occ, A, na)

M, nm, Occ= PROC RemplirM (M,Occ,na,nm)

A,na=PROC RemplirA(A,na)

Fin Groupe

TDNT

Tab1= Tableau [1..100] de chaine de caractères Tab2 = Tableau [1..100] d'entiers

TDOG

Objet	Type/Nature	Rôle
M	Tab1	Contenant les messages
A	Tab1	Contenant les noms des adhérents
Occ	Tab2	Contenant le nombre de messages par adhérent
nm	Entier	Le nombre de messages
na	Entier	Le nombre d'adhérents du groupe
Inactifs	Procédure	Permet d'afficher les membres inactifs
Recherche	Procédure	Permet d'afficher l'adhérent qui a envoyé un message
		donné
RemplirM	Procédure	remplir les messages et déterminer le nombre de
		messages par adhérent.
RemplirA	Procédure	Permet de saisir les noms des membres

2) Les algorithmes

- a. Algorithme de la procédure RemplirA
- 0) DEF PROC RemplirA (var A:Tab1; var na: entier)
- 1) Répéter

Ecrire ("donner le nombre d'adhérents du groupe :")

Lire(na)

Jusqu'à (na dans [5..50])

2) Pour i de 1 à na faire

Répéter

Ecrire("Donner le nom de l'adhérant numéro", i, ": ")

Lire(A[i])

Jusqu'a $((A[i][1] dans ["A"..."Z"]) ET (long(A[i]) \ge 3) ET((i>1) ET NON(FN Existe(A[i],A,i-1))$

FinPour

4) Fin RemplirA

TDOL

1202			
Objet	Type/Nature Rôle		
i	entier	compteur	
Existe	fonction	Vérifier l'existence d'un adhérant dans A	

```
0)DEF FN Existe(ch: chaine; t:Tab1; indice: entier):boolean
```

1) i **←**0

2) Répéter

 $i \leftarrow i+1$

Jusqu'à ((t[i]=ch) ou(i=indice)

- 3) Existe \leftarrow (t[i]=ch)
- 4) Fin Existe

Objet	Type/Nature	Rôle
i	entier	compteur

b. Algorithme de la procédure RemplirM

0) DEF PROC RemplirM (A: Tab1; var M:Tab1; var Occ:Tab2; na:entier; var nm:entier)

1) Répéter

Ecrire ("donner le nombre de commentaires : ")

Lire (nm)

Jusqu'à (nm dans [3..100])

2) Pour i de 1 à na faire

 $Occ[i] \leftarrow 0$

Fin pour

3) Pour i de 1 à Nm faire

Ecrire ("donner le commentaire")

Lire (message)

Répéter

Ecrire ("donner le numéro de l'émetteur")

Lire (NumE)

Jusqu'à (NumE dans [1..Na])

Convch(NumE,ch)

 $M[i] \leftarrow Concat (ch, "#", message)$

 $Occ[NumE] \leftarrow Occ[NumE] + 1$

Fin pour

4) Fin RemplirM

TDOL

Objet	Type/Nature	Rôle
NumE	entier	Numéro de l'émetteur
i	entier	compteur
message	Chaine de caractères	Message à envoyer

c. Algorithme de la procédure Inactifs

0) DEF PROC Inactifs (Occ:Tab2; A:tab1; na:entier)

1) Ecrire ("la liste des adhérents inactifs est : ")

2) Pour i de 1 à na faire

Si(Occ[i] = 0) Alors

Ecrire(A[i])

FinS

Fin Pour

Objet	Type/Nature	Rôle
i	entier	compteur

TDOL

3) Fin Inactifs

d. Algorithme de la procédure Recherche

- 0) DEF PROC Recherche (M,A:Tab1; na,nm :entier)
- 1) Ecrire ("Donner le commentaire à chercher :"), lire(msg)
- 2) Pour i de 1 à nm faire

```
Si\ (Sous\text{-}chaine(M[i], pos("\#", M[i])+1, long(M[i])-pos("\#", M[i]))= msg) \quad alors \ Valeur(Sous\text{-}chaine(M[i], 1, pos("\#", M[i])-1), Nume, e) \ Ecrire(A[Nume])
```

Fin si

Fin pour

3) Fin PROC Recherche

TDOL

Objet	Type/Nature	Rôle
i	entier	compteur
Nume	entier	Numéro émetteur
e	entier	Position de l'erreur
msg	chaine	Message à chercher

NB:

- Il est à noter que ceci n'est qu'une proposition de solution.
- Il existe d'autres solutions possibles pour résoudre ce problème et qui ont été acceptées.

Barème détaillé du problème :

P. P: - Modularité - Cohérence (appels + conformité des paramètres))	1.5 points = 0.5 1=(0.5 appels +0.5 conformité)
Le remplissage du tableau A avec respect des contraintes : - La saisie du nombre d'adhérents avec respect de la contrainte - Parcours du tableau	1.75 points = 0.5= 0.25 saisie+ 0.25 contrainte 0.25
 Lecture de A[i] + Respect des contraintes (1^{er} caractère, longueur, unicité) 	I = 0.25 + 0.25*3
Traitement de l'unicité	1.25 point (-0.25 par erreur)
Le remplissage du tableau M avec respect des contraintes : - La saisie du nombre de commentaires avec respect des contraintes - Parcours du tableau - Lecture de M[i] : Test du numéro de l'émetteur+# +lecture du commentaire+ affectation	2 points = 0.5 = 0.25 + 0.25 0.25 1.25 = 0.5 +0.25 + 0.25 +0.25
Affichage: Détermination des adhérents inactifs (2 parcours+ test+ affichage) Saisie du commentaire Recherche des adhérents qui ont envoyé le commentaire donné (parcours+ test + extraction de l'indice + affichage)	4 points = 1.75 = 0.5*2+0.5+0.25 0.25 2=0.25+1+0.5+0.25
TDNT + TDOG TDOL	0.75 points = 0.25 + 0.5 0.75 points

NB: -0.25 par type erreur.