Terminale S juin 2007

Liban

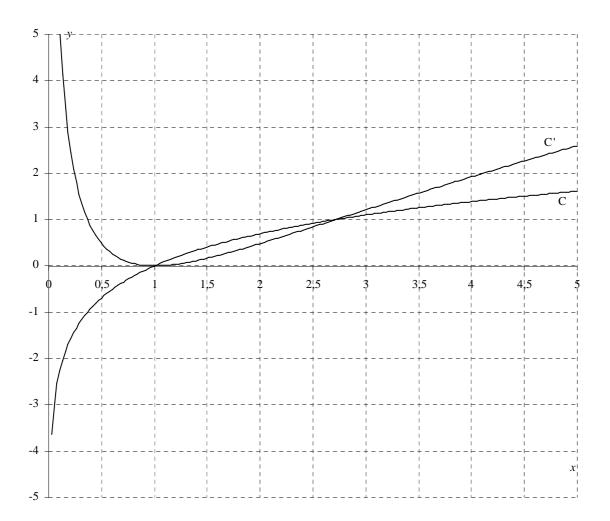
1. Exercice 1

6 points

Soient f et g les fonctions définies sur l'intervalle $]0; +\infty[$ par : $f(x) = \ln x$ et $g(x) = (\ln x)^2$.

On note C et C' les courbes représentatives respectives de f et g dans un repère orthogonal. Les courbes C et C' sont données ci-dessous.

- 1. a. Étudier le signe de $\ln x(1-\ln x)$ sur $]0;+\infty[$.
- b. En déduire la position relative des deux courbes C et C' sur]0; $+\infty[$.
- 2. Pour x appartenant à]0; $+\infty[$, M est le point de C d'abscisse x et N est le point de C' demême abscisse.
- a. Soit h la fonction définie sur]0; $+\infty[$ par h(x) = f(x) g(x). Étudier les variations de la fonction h sur]0; $+\infty[$.
- b. En déduire que sur l'intervalle [1 ; e], la valeur maximale de la distance MN est obtenue pour $x = \sqrt{e}$.
- c. Résoudre dans $]0 ; +\infty[$ l'équation $(\ln x)^2 \ln x = 1$.
- d. En déduire que, sur $]0;1[\,\cup\,]1;+\infty[$, il existe deux réels a et b (a < b) pour lesquels la distance MN est égale à 1.
- 3. a. À l'aide d'une intégration par parties, calculer $\int_{1}^{e} \ln x dx$.
- b. Vérifier que la fonction G définie sur $]0; +\infty[$ par $G(x) = x[(\ln x)^2 2\ln x + 2]$ est une primitive de la fonction g sur $]0; +\infty[$.
- c. On considère la partie du plan délimitée par les courbes C, C' et les droites d'équations x=1 et x=e. Déterminer l'aire A en unités d'aire de cette partie du plan.



2. Exercice 2 (non spécialistes)

5 points : Pour chacune des 5 propositions suivantes, indiquer si elle est vraie ou fausse et donner une démonstration de la réponse choisie. Une réponse non démontrée ne rapporte aucun point.

L'espace est muni d'un repère orthonormal $(O; \vec{i}, \vec{j}, \vec{k})$.

On considère la droite (d) dont un système d'équations paramétriques est : $\begin{cases} x = 2 - \frac{t}{2} \\ y = 1 \end{cases}, t \in \square$ $z = 5 - \frac{3t}{2}$

On note A le point de coordonnées (2; -1; 1), B le point de coordonnées (4; -2; 2) et C le point de (d) d'abscisse 1.

- 1. Proposition 1 : « La droite (*d*) est parallèle à l'axe $(O; \vec{j})$ ».
- 2. Proposition 2 : « Le plan P d'équation x + 3z 5 = 0 est le plan passant par A et orthogonal à (d) ».
- 3. Proposition 3 : « Lamesure de l'angle géométrique $\overline{B}AC$ est $\frac{\pi}{3}$ radians ».
- 4. Soit G le barycentre des points pondérés (A; -1), (B; 1) et (C; 1).

Proposition 4: « Les segments [AG] et [BC] ont le même milieu ».

5. Proposition 5 : « La sphère de centre C et passant par B coupe le plan (P) d'équation x + 3z - 5 = 0 ».

Terminale S 2 <u>www.matheleve.net</u>
Liban juin 2007

3. Exercice 2 (spécialistes)

5 points

Pour chacune des 5 propositions suivantes, indiquer si elle est vraie ou fausse et donner une démonstration de la réponse choisie. Une réponse non démontrée ne rapporte aucun point.

1. Le plan complexe est rapporté à un repère orthonormal direct $(O; \vec{u}, \vec{v})$. On considère la transformation du plan qui à tout point d'affixe z associe le point d'affixe z' définie par : z' = 2iz + 1.

Proposition 1 : « Cette transformation est la similitude directe de centre A d'affixe $\frac{1}{5} + \frac{2}{5}i$, d'angle $\frac{\pi}{2}$ et de rapport 2 ».

2. Dans l'espace muni du repère orthonormal $(O; \vec{i}, \vec{j}, \vec{k})$, on note S la surface d'équation $z = x^2 + 2x + y^2 + 1$.

Proposition 2 : « La section de S avec le plan d'équation z = 5 est un cercle de centre A de coordonnées (-1; 0; 5) et de rayon 5 ».

- 3. Proposition 3 : « 5^{750} 1 est un multiple de 7 ».
- 4. Proposition 4: « Si un entier naturel n est congru à 1 modulo 7 alors le PGCD de 3n+4 et de 4n+3 est égal à 7 ».
- 5. Soient a et b deux entiers naturels.

Proposition 5 : « S'il existe deux entiers relatifs u et v tels que au+bv=2 alors le PGCD de a et b est égal à 2 ».

4. Exercice 3

4 points

On considère deux urnes U_1 et U_2 .

L'urne U₁ contient 17 boules blanches et 3 boules noires indiscernables au toucher.

L'urne U₂ contient 1 boule blanche et 19 boules noires indiscernables au toucher.

On réalise des tirages en procédant de la manière suivante :

Étape 1 : On tire au hasard une boule dans U₁, on note sa couleur et on la remet dans U₁.

Étape n (n > 2):

- * Si la boule tirée à l'étape (n-1) est blanche, on tire au hasard une boule dans U_1 , on note sa couleur et on la remet dans U_1 .
- * Si la boule tirée à l'étape (n-1) est noire, on tire au hasard une boule dans U₂, on note sa couleur et on la remet dans U₂.

On note A_n l'évènement « le tirage a lieu dans l'urne U_1 à l'étape n » et p_n sa probabilité. On a donc p_1 = 1.

- 1. Calculer p_2
- 2. Montrer que pour tout n entier naturel non nul, $p_{n+1}=0.8p_n+0.05$. On pourra s'aider d'un arbre pondéré.
- 3. Calculer p_3 .
- 4. a. Démontrer par récurrence que pour tout entier n entier naturel non nul, $p_n > 0.25$.
- b. Démontrer que la suite (p_n) est décroissante.
- c. En déduire que la suite (p_n) est convergente vers un réel noté l.
- d. Justifier que l vérifie l'équation : l = 0,8l + 0,05. En déduire la valeur de l.

5. Exercice 4

5 points

Le plan complexe est muni d'un repère orthonormal direct $(O; \vec{u}, \vec{v})$.

On considère l'application f qui à tout point M d'affixe z non nulle associe le point M' = f(M) d'affixe z' tel que : $z' = \frac{z}{|z|} (2 - |z|)$.

Le cercle C_1 , de centre O et de rayon 1, est représenté sur la figure, donnée en annexe, que l'on complétera au fur et à mesure des questions.

Pour z complexe non nul, on note $z = re^{i\alpha}$, r étant lemodule de z et α un argument de z.

- 1. Montrer que $z' = (2-r)e^{i\alpha}$.
- 2. Déterminer l'affixe a' du point A', image par f du point A d'affixe a = 3.
- 3. Soit *B* le point d'affixe $b = -\sqrt{3} + i$.
- a. Écrire *b* sous forme exponentielle.
- b. Déterminer l'affixe b' du point B', image du point B par f.
- 4. Placer A, B, A' et B' sur la figure.
- 5. a. Déterminer l'ensemble E des points M du plan privé du point O dont l'image par f est O.
- b. Représenter E sur la figure.
- 6. Montrer que le cercle C_1 est l'ensemble des points M du plan distincts de O tels que f(M) = M.
- 7. Pour cette question, M est un point du plan, distinct de O, n'appartenant pas au cercle C_1 .

On appelle I le milieu du segment [MM'] où M' est l'image de M par f.

- a. Montrer que I appartient à C₁.
- b. Montrer que I appartient à la demi-droite [OM).
- c. Sur la figure donnée en annexe est placé un point nommé M_1 . Construire le point M'_1 , image par f du point M_1 .

