Terminale S novembre 2011

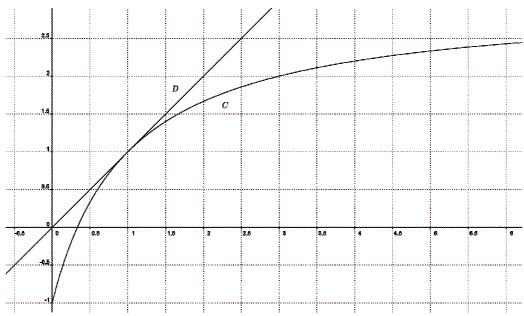
Amérique du Sud

1. Exercice 1, 4 points

Soit f la fonction définie sur l'intervalle]-1; + ∞ [par : $f(x) = 3 - \frac{4}{x+1}$.

On considère la suite définie pour tout $n \in \square$ par : .

1. On a tracé ci-dessous la courbe C représentative de la fonction f sur J'intervalle $[0; +\infty[$ et la droite D d'équation y=x.



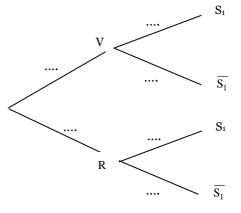
- a. Sur le graphique, placer sur l'axe des abscisses, u_0 , u_1 , u_2 et u_3 . Faire apparaître les traits de construction.
- b. Que peut-on conjecturer sur le sens de variation et la convergence de la suite (u_n) ?
- 2. Dans cette question, nous allons démontrer les conjectures formulées à la question 1. b.
- a. Démontrer par un raisonnement par récurrence que $u_n \ge 1$ pour tout $n \in \square$.
- b. Montrer que la fonction f est croissante sur $[0; +\infty[$. En déduire que pour tout entier naturel n, on a : $u_{n+1} \le u_n$.
- c. Déduire des questions précédentes que la suite (u_n) est convergente et calculer sa limite.

2. Exercice 2, 4 points

Une urne contient trois dés équilibrés. Deux d'entre eux sont verts et possèdent six faces numérotées de 1 à 6. Le troisième est rouge et possède deux faces numérotées 1 et quatre faces numérotées 6.

On prend un dé au hasard dans l'urne et on le lance. On note :

- * V l'évènement : « le dé tiré est vert »
- * R l'évènement : « le dé tiré est rouge »
- * S1 l'évènement : « on obtient 6 au lancer du dé ».
- 1. On tire au hasard un dé et on effectue un lancer de celui-ci.
- a. Recopier et compléter l'arbre de probabilités ci-contre.
- b. Calculer la probabilité $p(S_1)$.
- 2. On tire au hasard un dé de l'urne. On lance ensuite ce dé \boldsymbol{n} fois



Terminale S 1 http://matheleve.net/
Amérique du Sud novembre 2011

de suite. On note S_n l'événement : « on obtient 6 à chacun des n lancers ».

a. Démontrer que :
$$p(S_n) = \frac{2}{3} \left(\frac{1}{6}\right)^n + \frac{1}{3} \left(\frac{2}{3}\right)^n$$
.

b. Pour tout entier naturel n non nul, on note p_n la probabilité d'avoir tiré le dé rouge, sachant qu'on a obtenu le numéro 6 à chacun des n lancers.

Démontrer que :
$$p_n = \frac{1}{2 \times \left(\frac{1}{4}\right)^n + 1}$$
.

c. Déterminer le plus petit entier n_0 tel que $p_n > 0,999$ pour tout $n > n_0$.

3. Exercice 3, 4 points

On considère la fonction g définie sur l'intervalle $]0;+\infty[$ par $g(x)=x^2(1-\ln x)$.

Partie A : Étude de la fonction g

- 1. Déterminer la limite de g en $+\infty$.
- 2. Déterminer la limite de g en 0.
- 3. Étudier les variations de la fonction g sur l'intervalle $]0; +\infty[$.
- 4. En utilisant les résultats précédents, étudier le signe de la fonction g sur l'intervalle]0; $+\infty[$.

Partie B: Représentation graphique et aire sous la courbe

Soit C la courbe représentative de la fonction g.

- 1. Tracer C dans un repère orthonormal ayant pour unité graphique 5 cm.
- 2. Déterminer une équation de la tangente à la courbe C au point d'abscisse 1. La tracer sur le graphique.
- 3. Calculer l'aire en unités d'aire du domaine délimité par la courbe C , l'axe des abscisses et les droites d'équations respectives x=1 et x=e.

4. Exercice 4, 3 points

- 1. Résoudre dans X l'équation $z^2 2z + 5 = 0$.
- 2. Le plan complexe est rapporté à un repère orthonormal direct $(O; \vec{u}, \vec{v})$ d'unité graphique 2 cm.

On considère les points A, B, C et D d'affixes respectives z_A , z_B , z_C et z_D où : $z_A = 1 + 2i$, $z_B = \overline{z_A}$, $z_C = 1 + \sqrt{3} + i$, $z_D = \overline{z_C}$.

- a. Placer les points A et B dans le repère $(O; \vec{u}, \vec{v})$.
- b. Calculer $\frac{z_{\rm B}-z_{\rm C}}{z_{\rm A}-z_{\rm C}}$ et donner le résultat sous forme algébrique.
- c. En déduire la nature du triangle ABC.
- 3. Démontrer que les points A, B, C et D appartiennent à un même cercle Γ dont on précisera le centre et le rayon.
- 4. Construire les points C et D dans le repère $(O; \vec{u}, \vec{v})$. Expliquer la construction proposée.

5. Exercice 5 (non spécialistes), 5 points

Pour chacune des propositions suivantes, indiquer si elle est vraie ou fausse et donner une justification de la réponse choisie. Une réponse non justifiée ne rapporte aucun point. Toutefois, toute trace de recherche, même incomplète, ou d'initiative, même non fructueuse, sera prise en compte dans l'évaluation.

L'espace est rapporté à un repère orthonormal $(O; \vec{i}, \vec{j}, \vec{k})$. On considère le point A de coordonnées (-1; -1; 1) et les droites D et D' de représentations paramétriques :

D:
$$\begin{cases} x = 2t - 1 \\ y = -3t + 2, t \in \Box \\ z = t \end{cases}$$
, D':
$$\begin{cases} x = 3t' \\ y = t' + 2, t' \in \Box \\ z = 3t' - 2 \end{cases}$$

Proposition 1 : « Le point A appartient à la droite D ».

Proposition 2: « Le plan perpendiculaire à la droite D passant par le point O a pour équation 2x - 3y + z = 0.

Proposition 3: « Les droites D et D' sont orthogonales ».

Proposition 4: « Les droites D et D' sont coplanaires ».

Proposition 5: « La distance du point A au plan d'équation 2x - 3y + z = 0 est $\frac{\sqrt{14}}{7}$.

6. Exercice 5 (spécialistes), 5 points

Pour chacune des propositions suivantes, indiquer si elle est vraie ou fausse et donner une justification de la réponse choisie. Une réponse non justifiée ne rapporte aucun point. Toutefois, toute trace de recherche, même incomplète, ou d'initiative, même non fructueuse, sera prise en compte dans l'évaluation.

Proposition 1 : « Le reste de la division euclidienne de 2011²⁰¹¹ par 7 est 2 ».

Soit a et b deux nombres entiers relatifs non nuls.

Proposition 2: « S'il existe un couple de nombres entiers relatifs (u, v) tel que ua + vb = 3, alors PGCD(a, b) = 3».

Soit n un entier naturel supérieur ou égal à 5.

Proposition 3: « L'entier $n^2 - 3n - 10$ n'est jamais un nombre premier ».

L'espace est rapporté à un repère orthonormal $(O; \vec{i}, \vec{j}, \vec{k})$.

On considère le cône C d'équation $x^2 + y^2 = 5z^2$. Soit A le point de coordonnées $(-2; -1; \gamma)$.

Proposition 4 : « Il existe un unique réel γ tel que le point A appartient au cône C ».

On coupe le cône C d'équation $x^2 + y^2 = 5z^2$ par le plan P_a d'équation x = a où a est un réel.

Proposition 5 : « Cette intersection peut être la réunion de deux droites ».

