→ Baccalauréat C Antilles–Guyane septembre 1966 ∾ Mathématiques élémentaires

EXERCICE 1

1. Trois points, A, B et C, étant donnés dans l'espace, construire le point G tel que

$$\overrightarrow{GA} - \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$$
.

On distinguera le cas où A, B, C sont alignés et celui où ils ne sont pas alignés.

2. En utilisant le point G précédent, rechercher l'ensemble des points *M* de l'espace tels que

$$MA^2 - MB^2 + MC^2 = k.$$

(k : constante réelle donnée).

EXERCICE 1

1. Dans le repère Ox, Oy orthonormé, on envisage les graphiques (C) et (C'), des fonctions

$$x \mapsto 2\sqrt{x+1}$$
. et $x \mapsto -2\sqrt{x+1}$

Montrer que $(C) \cup (C')$ est une parabole, (P), dont on précisera le foyer, la directrice, le paramètre et l'axe de symétrie.

2. M est un point de (P), d'abscisse m. Soit (D_1) et (D_2) les droites d'équations respectives y = x + 2 et x = -1; soit M_1 et M_2 les intersections de la tangente en M à (P) avec (D_1) et (D_2) .

On introduit les points $A_1(-1; +1)$ et $A_2(-1; 0)$.

Calculer, en fonction de m, les composantes, sur les axes, des vecteurs $\overrightarrow{A_1M_1}$ et $\overrightarrow{A_2M_2}$.

On considérera successivement le cas où M est sur (C) et le cas où M est sur (C').

- 3. Montrer qu'on passe de $\overrightarrow{A_1M_1}$ à $\overrightarrow{A_2M_2}$ par une similitude, dont on précisera le centre, l'angle et le rapport.
- **4.** Vérifier que la médiatrice de OM_1 coïncide avec la médiane, issue de M_2 du triangle OM_1M_2 . En déduire l'enveloppe de cette médiane, quand m varie. On distinguera les cas suivants : M sur (C) et M sur (C').