☞ Baccalauréat Étranger groupe I¹ juin 1966 ∾

Mathématiques élémentaires et mathématiques et technique

EXERCICE 1

Soit le nombre complexe $\alpha = \sqrt{3} + i$.

- 1. Calculer le module et l'argument de α .
- 2. Calculer le module et l'argument du nombre

$$\beta = 2i - \alpha$$
.

3. Calculer le module et l'argument du nombre

$$\gamma = 2i + \alpha$$
.

4. Calculer le module et l'argument du nombre

$$\delta = \frac{\gamma}{\beta}.$$

EXERCICE 2

Oxyz est un repère orthonormé. Le point A a pour coordonnées, par rapport à ce repère,

$$x = -1$$
, $y = 0$, $z = 0$.

1. Soit (P) la parabole qui a pour foyer O et pour directrice la droite du plan xOy qui y a pour équation x + 2 = 0.

Former l'équation cartésienne de la parabole (P) dans le plan xOy.

Soit (Q) la parabole qui a pour foyer A et pour directrice 1a droite du plan xOz qui y a pour équation x-1=0.

Former l'équation cartésienne de la parabole (Q) dans le plan xOz.

2. Soit M un point de (P); on désigne par *a* son abscisse; soit S un point de (Q); on désigne par *b* son abscisse.

Évaluer :

- la longueur du, segment OM en fonction de *a*,
- la longueur du segment AS en fonction de b,
- la longueur du segment SM en fonction de a et de b.

Vérifier la relation

$$SM + OA = OM + AS$$
.

3. On suppose $b \neq 0$; soit U le point de coordonnées

$$x = -b$$
, $y = 0$, $z = 0$.

Démontrer que la droite \overrightarrow{SU} est tangente à (Q). Évaluer en fonction de a et de b le produit scalaire $\overrightarrow{SM} \cdot \overrightarrow{SU}$ et en déduire que l'angle USM est aigu.

^{1.} Le Groupe 1 comprend les centres d'examen suivants : Tunisie, Cameroun, Gabon, Tchad, Congo, République centrafricaine, Mali, Côte d'Ivoire, Haute-Volta, Niger, Mauritanie, Athènes, Rome, Espagne, Portugal, Tel-Aviv, Beyrouth, Syrie, Le Caire, Addis-Abbéba, Djibouti.

Le baccalauréat de 1966 A. P. M. E. P.

4. On suppose que b reste fixe (avec $b \neq 0$). Calculer cos USM et en déduire que l'angle USM ne dépend pas de a.

On désigne par (Π) le plan qui passe par A et qui est perpendiculaire à SU; la droite SM le coupe en un point m. Démontrer que, lorsque a varie (b étant fixe), m reste sur un cercle fixe, (Γ) , dont on calculera le rayon en fonction de b.

5. La tangente en m à (Γ) coupe le plan xOy en un point T. Quel est le lieu de T lorsque, b restant fixe, a varie?

Quel est le lieu du centre, ω , de (Γ) quand S varie sur (Q) ?