☞ Baccalauréat Tahiti juin 1966 ∾

Mathématiques élémentaires

EXERCICE 1

Un plan est rapporté à un repère orthonormé Ox,Oy.

(p;q) étant un couple de nombres réels, à chaque point C(p;q) du plan on fait correspondre le barycentre, G, du système des trois points A(q;0), B(0;p), C(p;q) affectés de coefficients égaux à 1.

1. Calculer les coordonnées de G, en fonction de p et q.

Quel est l'ensemble (D) des points G lorsque le couple (p; q) varie?

Soit G_0 un point de (D) d'abscisse λ . Trouver l'ensemble (Δ) des points C qui ont pour correspondant le point G_0 ?

En déduire que l'application qui transforme C en G est la composée (ou produit) de deux transformations simples.

2. Étant donné un couple (p; q) fixe, montrer que l'ensemble des points M du plan tels que

$$MA^2 + MB^2 + MC^2 = 2(p^2 + q^2)$$

est un cercle (Γ) passant par O.

Quel est l'ensemble des cercles (Γ) lorsque le couple (p; q) varie?

EXERCICE 2

On donne, dans un repère orthonormé Ox, Oy, un cercle (C) de centre O, de rayon $a\sqrt{2}$. On désigne, par A et B les points dont les coordonnées sont A(x=-a, y=a), B(x=-a, y=-a) a>0.

Soit P un point variable du cercle (C) distinct de A et B et défini par $(\overrightarrow{Ox}, \overrightarrow{OP}) = \theta$. Les droites PA et PB coupent respectivement Oy en M et N. On pose $\overrightarrow{PM} = \lambda \overrightarrow{PA}$.

1. Montrer que

$$\lambda = \frac{\sqrt{2}\cos\theta}{1 + \sqrt{2}\cos\theta}.$$

2. Calculer, en fonction de a et de θ , la mesure algébrique, u, sur Oy, du vecteur $\overrightarrow{\text{MN}}$.

Étudier la variation de *u* lorsque θ varie dans l'intervalle $(-\pi; +\pi)$.

Construire le graphe de cette fonction.

En utilisant ce graphe, indiquer le nombre des points P du cercle (C) pour lesquels la distance MN est égale à la distance AB.

Donner une construction géométrique de ces points.

Calculer les valeurs de θ correspondantes, en degrés, minutes et secondes, à l'aide dune table de logarithmes. (Donner seulement les valeurs comprises entre $-180\,^{\circ}$ et $+180\,^{\circ}$.)

3. Calculer, en fonction de θ , le rapport, z, des aires des triangles PMN et PAB. Étudier la variation de z lorsque θ varie dans l'intervalle (0 ; π). (Le graphe n'est pas demandé, mais on dressera le tableau de variation.)

4. Soit ω le centre du cercle (Γ) circonscrit au triangle PMN. Établir que $\overrightarrow{Oω} = (1 - λ)\overrightarrow{OP}$, λ étant le nombre réel déterminé au 1.

Calculer les coordonnées de ω en fonction de θ .

Prouver que le cercle (Γ) a pour équation

$$\left(1+\sqrt{2}\cos\theta\right)\left(x^2+y^2\right)-2a\sqrt{2}(x\cos\theta+y\sin\theta)+2a^2\left(1-\sqrt{2}\cos\theta\right)=0.$$

Pour quelles valeurs de $\cos\theta$ le cercle (Γ) est-il tangent à l'axe Oz? Pour chacune de ces valeurs, on calculera l'abscisse du point de contact de (Γ) avec Ox.

- **5.** Démontrer qu'il existe un point I de Ox ayant la même puissance pour tous les cercles (Γ). En déduire :
 - **a.** qu'il existe un cercle (I) centré en I et orthogonal à tous les cercles (Γ) ;
 - **b.** que les cercles (Γ) , déjà tangents à (C), sont tangents à un second cercle, (C'); préciser le rayon de (C') et l'abscisse de son centre.
- **6.** Soit H la projection orthogonale de ω sur la droite (Δ) d'équation x=a. Calculer la longueur ω H en fonction de θ .

Que peut-on dire du rapport $\frac{\omega O}{\omega H}$?

Quelle est la nature de la courbe (L) sur laquelle se déplace ω ?

Préciser les points d'intersection de (L) avec l'axe Oy; montrer qu'en ces points, (L) est tangente au cercle (I).