∘ Baccalauréat Mexico novembre 1967 ∾

SÉRIE MATHÉMATIQUES ÉLÉMENTAIRES

Exercice 1

Calculer les primitives de $\sin^2 x$ et $\cos^2 x$ (on pourra exprimer ces fonctions au moyen de $\cos 2x$).

Exercice 2

Quels sont les entiers positifs n pour lesquels $15 \times 3^n - 3$ est divisible par 7?

Exercice 3

1. Dans un plan muni d'un repère orthonormé on considère la rotation R ayant pour centre l'origine, O, et pour angle θ $(0 < \theta < 2\pi)$.

Au point M(x; y) correspond le point $M_1(x_1; y_1)$; établir les formules

(1)
$$\begin{cases} x_1 = x\cos\theta - y\sin\theta, \\ y_1 = x\sin\theta + y\cos\theta. \end{cases}$$

On pourra utiliser les angles $(\overrightarrow{Ox}, \overrightarrow{OM})$ et $(\overrightarrow{Ox}, \overrightarrow{OM_1})$.

2. On considère une nouvelle transformation, S, définie par les formules

(2)
$$\begin{cases} x' = -x\cos\theta - y\sin\theta + 2p\cos\frac{\theta}{2}, \\ y' = -x\sin\theta + y\cos\theta + 2p\sin\cos\frac{\theta}{2}, \end{cases}$$

où p est un nombre réel donné. Montrer que le vecteur $MM^{'}$ reste parallèle à une droite fixe et que le milieu de MM' décrit une droite fixe . Quelle est la nature géométrique de S?

3. Établir les formules donnant la transformation produit définie par T(M) = S[R(M)].

Démontrer de deux façons (à l'aide des formules précédentes et géométriquement) que T est le produit commutatif d'une translation et d'une symétrie par rapport à une droite parallèle à la direction de la translation.

4. Tout point du plan, dans ce repère orthonormé, est l'image d'un nombre complexe.

Calculer l'affixe du transformé par T d'un point M, en fonction de l'affixe de M.