Baccalauréat C Cameroun juin 1971

EXERCICE 1

Soit (G,T) un groupe, T désignant la loi de composition interne sur l'ensemble G. Soit a un élément quelconque de G; on considère l'application de G dans G

$$f_a: x \longmapsto a \mathrm{T} x.$$

- 1. Montrer que f_a est une application bijective.
- **2.** Soit F l'ensemble de toutes les applications f_a , où a parcourt G. On munit F de la loi de composition des applications, notée \circ .

On considère l'application $\varphi: a \mapsto f_a$ de G dans F. Montrer que φ est un isomorphisme de (G, T) dans (F, \circ) .

EXERCICE 2

1. Étudier la fonction réelle de variable réelle, f, définie par

$$f(x) = \frac{\operatorname{Log}(x+1)}{(x+1)^2}.$$

Construire la courbe représentative (Γ) de f.

2. Chercher la dérivée de la fonction *F* réelle de variable réelle, définie par

$$F(x) = -\frac{\text{Log}(x+1)}{x+1} - \frac{1}{x+1}.$$

En déduire l'aire limitée par (Γ) , l'axe des abscisses, les droites d'équations respectives x = 0 et x = X (avec X > 0).

Cette aire a-t-elle une limite quand *X* tend vers plus l'infini?

PROBLÈME

Dans le repère orthonormé $(0, \vec{i}, \vec{j})$, on considère les points F(c; 0) et F'(-c; 0), c étant un nombre réel donné, non nul.

On considère le point M tel que

$$(\overrightarrow{\iota}, \overrightarrow{FM}) \equiv \varphi[2\pi]$$
 et $(\overrightarrow{\iota'}, \overrightarrow{F'M}) \equiv \varphi'[2\pi],$

 φ et φ' étant deux nombres réels tels que $\varphi - \varphi'$ ne soit pas un multiple entier de π .

1. On pose FM = r et F'M = r'.

Exprimer les coordonnées x et y de M

- **a.** en fonction de c, r et φ .
- **b.** en fonction de c, r' et φ' .
- c. En déduire que

$$x = c \cdot \frac{\sin(\varphi + \varphi')}{\sin(\varphi - \varphi')}$$
 et $y = c \cdot \frac{\sin\varphi\sin\varphi'}{\sin(\varphi - \varphi')}$

Le baccalauréat de 1971 A. P. M. E. P.

2. On suppose 1 que, k étant un nombre réel positif, distinct de 1, on a r' = kr. Quelle est l'équation cartésienne de la courbe (C_1) à laquelle appartient alors le point M? Reconnaître cette courbe. Interpréter géométriquement ce résultat.

- 3. Soit α un nombre réel donné, qui n'est pas un multiple entier de $\frac{\pi}{2}$. On suppose $\varphi \varphi' = \alpha \, [2\pi]$.
 - Exprimer $rr'\sin(\varphi-\varphi')$ et $rr'\cos(\varphi-\varphi')$ en fonction de x,c et y.
 - En déduire que le point M appartient à un cercle (C_2) , dont on donnera l'équation.
- **4.** On suppose maintenant que $\varphi + \varphi' \equiv \beta [2\pi]$, β étant un nombre réel différent de tout multiple entier de $\frac{\pi}{2}$.
 - **a.** Exprimer $rr' \sin(\varphi + \varphi')$ et $rr' \cos(\varphi + \varphi')$ en fonction de x, c et y. En déduire l'équation cartésienne de la courbe (C_3) à laquelle appartient alors M.
 - **b.** On prend pour nouveau repère le repère $\left(0, \overrightarrow{u}, \overrightarrow{v}\right)$ déduit du précédent par une rotation $\mathcal{R}\left(0, \frac{\beta}{2}\right)$.
 - En déduire l'équation de (C_3) dans ce nouveau repère et reconnaître la courbe (C_3) . Préciser ses éléments.