Durée: 4 heures

∽ Baccalauréat C Rennes juin 1972 ∾

EXERCICE 1

1. Résoudre l'équation

$$x \in \mathbb{R}$$
, $e^{\frac{1}{x}} - 2 = 0$

2. x_0 étant la solution de l'équation précédente, on désigne par \mathbb{R}_1 l'ensemble des nombres réels positifs, dont on a exclu le nombre x_0 . On considère alors la fonction f définie sur \mathbb{R}_1 de la façon suivante :

$$\begin{cases} f(0) &= 0 \text{ et} \\ f(x) &= \frac{2}{e^{\frac{1}{x}} - 2}, \text{ pour tout } x \text{ non nul de } \mathbb{R}_1, \end{cases}$$

 $e^{\frac{1}{x}}$ désignant l'exponentielle de $\frac{1}{x}$.

Étudier les variations de la foncLion f. La fonction f est-elle continue à droite du point O?

Construire la courbe représentative (*C*) de la fonction f dans un plan rapporté à un repère orthonormé $\left(0, \overrightarrow{i}, \overrightarrow{j}\right)$. On précisera la demi-tangente à la courbe (*C*) pour x = 0.

EXERCICE 2

En utilisant la théorie des congruences ou l'anneau $\mathbb{Z}/7\mathbb{Z}$, calculer les restes des divisions euclidiennes par 7 des puissances successives de 5 :

$$5^0$$
, 5^1 , 5^2 , ..., 5^n , ...

avec $n \in \mathbb{N}$.

Quel est le reste de la division euclidienne de l'entier naturel 1972^{57} par 7. Déterminer l'ensemble des naturels n tels que 1972^n soit congru à 4 modulo 7?

PROBLÈME

On donne un plan affine euclidien orienté rapporté à un repère orthonormé $\left(O, \overrightarrow{u}, \overrightarrow{v}\right)$ de sens direct d'axes $\overrightarrow{x'Ox}$, $\overrightarrow{y'Oy}$.

À tout point M de ce plan, de coordonnées x, y, on associe le nombre complexe z = x + iy appelé affixe de ce point.

Dans tout le problème, Q désigne un point variable de l'axe x'x, de coordonnées (q; 0), P un point variable de l'axe y'y, de coordonnées (0; p) et M un point variable, de coordonnées (x; y).

1. Dans cette première partie le triplet des points P,Q et M vérifie la propriété \mathcal{P}_1 :

le triangle (PMQ) est équilatéral avec $(\overrightarrow{MP}, \overrightarrow{MQ}) = +\frac{\pi}{3} \pmod{2\pi}$; autrement dit, Q est le transformé de P dans une rotation de centre M d'angle $+\frac{\pi}{3}$.

Baccalauréat C A. P. M. E. P.

a. Quelle relation nécessaire et suffisante doivent vérifier les affixes des points M,P et Q pour que la propriété \mathcal{P}_1 soit satisfaite? Montrer que cette relation est équivalente à

$$p = x\sqrt{3} - y$$
 et $q = -x + y\sqrt{3}$.

b. On suppose, en outre, que le segment [PQ] a pour longueur $\sqrt{2}$ (on a donc $\|\overrightarrow{PQ}\| = \sqrt{2}$).

Quel est alors l'ensemble, (E), des positions de M? Préciser les éléments de symétrie de (E).

Pour déterminer l'équation réduite de (E), on remplace le repère $\left(O, \overrightarrow{u}, \overrightarrow{v}\right)$ par le repère $\left(O, \overrightarrow{u'}, \overrightarrow{v'}\right)$ défini de la façon suivante :

$$\overrightarrow{u'} = \frac{\sqrt{2}}{2} (\overrightarrow{u} + \overrightarrow{v})$$
 et $\overrightarrow{v'} = \frac{\sqrt{2}}{2} (\overrightarrow{u} - \overrightarrow{v})$.

un point M ayant comme coordonnées x et y dans le repère $\left(O, \overrightarrow{u}, \overrightarrow{v}\right)$, x' et y' dans le repère $\left(O, \overrightarrow{u'}, \overrightarrow{v'}\right)$, établir les formules qui expriment x et y en fonction de x' et de y'. En déduire l'équation de (E) dans le deuxième repère. Préciser la nature de la courbe (E); la construire.

2. Dans cette deuxième partie, le triplet de points (P, Q, M) vérifie la propriété \mathscr{P}_2 :

il existe une rotation de centre M dans laquelle le point P a pour image le point Q.

On pose

$$(\overrightarrow{MP}, \overrightarrow{MQ}) = \theta \pmod{2\pi},$$

avec
$$\theta \in]-\pi ; \pi] - \left\{-\frac{\pi}{2} ; +\frac{\pi}{2}\right\}.$$

a. On suppose que θ est fixé. Montrer par un raisonnement géométrique que, à tout point M du plan, est associé un, et un seul, couple (P, Q) donc un, et un seul, point Q, tel que la propriété \mathcal{P}_2 soit satisfaite.

On définit ainsi une application f_{θ} de l'ensemble des points M du plan dans l'ensemble des points Q de la droite x'x. Définir analytiquement cette application en exprimant q au moyen de x et de y. Montrer que f_{θ} est une application affine, surjective si $\theta \neq 0$.

Quel est le noyau de l'application linéaire φ_θ associée à f_θ ? Retrouver ce noyau par un raisonnement géométrique.

b. On suppose maintenant que l'on fixe les coordonnées x_0 et y_0 du point M, θ étant variable. Quelle relation nécessaire et suffisante les normes des vecteurs \overrightarrow{MP} et \overrightarrow{MQ} doivent-elles vérifier pour que la propriété \mathscr{P}_2 soit satisfaite ?

Traduire analytiquement cette relation. En déduire l'ensemble, (F), des milieux du segment [PQ]. Préciser la nature de cet ensemble (F) suivant la position du point donné M dans le plan.