Durée: 4 heures

∽ Baccalauréat C Strasbourg juin 1972 ∾

EXERCICE 1

Soit (E) un espace vectoriel sur \mathbb{R} , de dimension 2 rapporté à une base $(\overrightarrow{i}, \overrightarrow{j})$, et f l'application linéaire, dont la matrice dans la base $(\overrightarrow{i}, \overrightarrow{j})$ est

$$M = \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix}$$

Pour tout réel, λ , on note (E_{λ}) l'ensemble des vecteurs \overrightarrow{u} de (E) tels que $f(\overrightarrow{u}) = \lambda \overrightarrow{u}$.

- 1. Démontrer que f est un automorphisme involutif de (E).
- **2.** Démontrer que, si λ est un réel distinct de -1 et de 1, (*E*) se réduit au vecteur nul.
- **3.** Déterminer (E_1) et (E_{-1}) en donnant une base pour chacun d'eux. Démontrer que ce sont deux sous-espaces vectoriels supplémentaires. En déduire une nouvelle base de (E) et donner la matrice de f dans cette base.

EXERCICE 2

On note $\dot{0}, \dot{1}, \dot{2}, \dot{3}, \dot{4}$ et $\dot{5}$ les éléments de l'anneau ($\mathbb{Z}/6\mathbb{Z}, +, \times$).

- 1. Dresser la table de multiplication de l'anneau.
- **2.** Résoudre, dans $\mathbb{Z}/6\mathbb{Z}$, l'équation $\dot{2}x = \dot{0}$.
- 3. Résoudre, dans Z/6Z, le système

$$\begin{cases} \dot{2}x + \dot{2}y &= \dot{4}, \\ \dot{5}x + \dot{3}y &= \dot{3}. \end{cases}$$

PROBLÈME

On désigne par $\mathbb R$ l'ensemble des nombres réels et par $\mathbb R_+$ le sous-ensemble des nombres réels positifs ou nul.

1. Étudier la fonction de \mathbb{R}_+ dans \mathbb{R} définie par

$$\begin{cases} f(0) = 0, \\ f(x) = x \operatorname{Log} x \text{ pour } x > 0. \end{cases}$$

On étudiera, en particulier, la continuité et la dérivabilité au point 0.

Tracer la courbe représentative de la fonction f, le plan étant rapporté à un repère $\left(0, \overrightarrow{i}, \overrightarrow{j}\right)$ orthonormé. (On prendra une unité graphique de 4 cm sur chaque axe.)

On précisera les tangentes aux points d'intersection avec l'axe Ox.

2. Étudier la fonction de \mathbb{R}_+ dans \mathbb{R} définie par

$$\begin{cases} g(0) &= 0, \\ g(x) &= \frac{x^2}{2} \text{Log } x - \frac{x^2}{4} \text{ pour } x > 0. \end{cases}$$

Baccalauréat C A. P. M. E. P.

On étudiera, en particulier, la continuité et la dérivabilité au point 0.

Tracer la courbe représentative de la fonction g sur le même graphique que la courbe représentative de f.

Préciser les tangentes aux points d'intersection avec l'axe Ox.

- **3.** Recherche des solutions non nulles de l'équation f(x) = g(x).
 - **a.** Démontrer que les solutions non nulles de l'équation f(x) = g(x) sont les abscisses des points d'intersection des courbes représentatives de la fonction logarithme népérien et de la fonction homographique, h, définie, pour x réel et distinct de 2, par $h(x) = \frac{x}{2(x-2)}$. (Le tracé des courbes n'est pas demandé.)
 - **b.** Comparer les signes de h(3) Log 3 et de h(4) Log 4. En déduire l'existence d'une solution de l'équation f(x) = g(x), comprise entre 3 et 4. Démontrer qu'elle est unique dans cet intervalle.
 - c. Démontrer, de même, l'existence et l'unicité d'une solution, notée α , comprise entre $\frac{1}{2}$ et 1; déterminer la valeur décimale approchée, à 10^{-1} près par défaut, du nombre réel α .
- **4.** Soit t un nombre de l'intervalle ouvert]0; $\alpha[$, où α est le réel défini à la question 3. c.
 - **a.** Calculer, en fonction de t et de α , l'intégrale

$$I(t,a) = \int_t^a [g(x) - f(x)] dx.$$

b. Démontrer que I(t, a) a une limite quand t tend vers 0 et que cette limite est la valeur en a d'une fraction rationnelle.