∽ Baccalauréat C Aix-Marseille juin 1976 ∾

EXERCICE 1 points

- **1.** Déterminer suivant les valeurs de $n (n \in \mathbb{N})$, le reste de la division de 4^n par 7.
- **2.** Déterminer suivant les valeurs de $n (n \in \mathbb{N})$, le reste de la division de

$$A = 851^{3n} + 851^{2n} + 851^n + 2$$
 par 7.

3. On considère le nombre B qui dans le système à base quatre s'écrit :

$$B = 2103211$$

Déterminer dans le système décimal, le reste de la division du nombre B par 7.

EXERCICE 2 points

Soit f la fonction de \mathbb{R} dans \mathbb{R} telle que

$$f(x) = \frac{e^x}{e^x - 1}$$

Étudier les variations de f et construire sa représentation graphique (\mathscr{C}) dans un repère orthonormé. Montrer que (\mathscr{C}) admet un centre de symétrie. x étant un réel strictement négatif, déterminer

$$\int_{-1}^{x} \frac{\mathrm{e}^{t}}{\mathrm{e}^{t} - 1} \, \mathrm{d}t$$

et étudier sa limite pour x tendant vers $-\infty$.

PROBLÈME points

Le plan affine euclidien (P) est rapporté à un repère orthonormé $(O, \overrightarrow{\iota}, \overrightarrow{J})$.

Partie A

- 1. On considère la courbe (H) d'équation : $x^2 2y^2 = 1$ (1). Quelle est la nature de cette courbe ? Déterminer ses sommets, ses asymptotes et la dessiner.
- **2.** On considère dans le plan (P) le mouvement du point M(x; y) tel que

$$\begin{cases} x = \frac{1}{\cos(2t)} \\ y = \frac{1}{2\sqrt{2}} \operatorname{tg}(2t) \end{cases} \text{ où } t \in \left[0; \frac{\pi}{4}\right[$$

- a. Montrer que la trajectoire (T) est une partie de (H) que l'on précisera.
- **b.** Déterminer les composantes du vecteur vitesse \overrightarrow{textV} et du vecteur accélération $\overrightarrow{\Gamma}$ dans la base $(\overrightarrow{\iota}, \overrightarrow{J})$. Vérifier que le mouvement est accéléré, c'est-à-dire que la fonction $t \longmapsto \|\overrightarrow{V(t)}\|$ est croissante.

Partie B

Baccalauréat C A. P. M. E. P.

On appelle E l'ensemble des applications affines F de (P) dans (P) telles que F(O) = O et F(H) = H cette dernière condition exprimant que la courbe (H) est globalement invariante par F.

On appelle f l'application linéaire associée à F de matrice $\begin{pmatrix} a & c \\ b & d \end{pmatrix}$ dans. la base $\begin{pmatrix} \overrightarrow{\iota}, \overrightarrow{J} \end{pmatrix}$.

- **1. a.** Quelle peut-être, par une application affine non bijective, l'image du plan (P) ? En déduire que tout élément de E est une bijection.
 - **b.** Montrer que (E, ∘) est un groupe.
- **2.** Soit M(x; y) et M'(x'; y') tels que M' = F(M). On aura

$$\begin{cases} x' = ax + cy \\ y' = bx + dy \end{cases}$$

Sachant que $F \in E$ si et seulement si $F^{-1} \in E$, écrire l'équation de $F^{-1}(H)$ en fonction de (a, b, c, d).

En déduire que

$$F^{-1}(H) = H \iff \begin{cases} a^2 - 2b^2 &= 1\\ c^2 - 2d^2 &= -2\\ ac - 2bd &= 0 \end{cases}$$

On pourra utiliser pour cela les points A(1; 0), B($\sqrt{3}$; 1), C($-\sqrt{3}$; 1), points qui appartiennent à la courbe (H).

3. En déduire que F est élément de E si et seulement si la matrice de f est de la forme $\begin{pmatrix} a & 2\epsilon b \\ b & \epsilon a \end{pmatrix}$ avec $\epsilon \in \{-1; +1\}$ et $a^2 - 2b^2 = 1$.

Partie C

Soit E' le sous-ensemble des applications F de E telles que $\epsilon = +1$.

- **1.** Montrer que E' est stable pour \circ .
- **2.** Soit (*L*) l'ensemble des points M(x; y) tels que

$$x^2 - 2y^2 = 1$$
 avec $(x; y) \in \mathbb{N}^2$

Vérifier que $M_0(1; 0)$ et $M_1(3; 2)$ appartiennent à (L).

Soit F_1 l'application affine de E' telle que a = 3 et b = 2.

On considère la suite des points $M_n(x_n; y_n)$, $n \in \mathbb{N}$, telle que :

$$x_0 = 1$$
 ; $y_0 = 0$; $M_{n+1} = F_1(M_n)$

Montrer que $M_n = F_1^n(M_0)$ où $F_1^2 = F_1 \circ F_1$ et $F_1^n = F_1^{n-1} \circ F_1$. Vérifier que M_n est un élément de (L).

3. Établir par récurrence que

$$(3+2\sqrt{2})^n = x_n + y_n\sqrt{2}$$

 $(3-2\sqrt{2})^n = x_n - y_n\sqrt{2}$

quel que soit n élément de \mathbb{N} .

En déduire x_n et y_n en fonction de n.

Baccalauréat C A. P. M. E. P.

4. On appelle (T) l'ensemble des points M(x ; y) de (H) pour lesquels x et y appartiennent à \mathbb{R}_+ et, pour tout $n \in \mathbb{N}$, on appelle A_n l'ensemble défini par :

$$A_n = \{M/M \in (T), x_n \leqslant x < x_{n+1}\}$$

Montrer que A_{n+1} est l'image par F_1 de A_n . En déduire que

$$M \in A_n \Rightarrow \left[F_1^{-1}\right]^n (M) \in A_0$$

Montrer que $M \in (L) \cap A_{n+1} \Rightarrow F_1^{-1}(M) \in (L)$. En déduire que tout point de (L) est un élément de la suite (M_n) .

Aix-Marseille 3 juin 1976