

EXERCICE 1

- 1. Déterminer suivant les valeurs de l'entier naturel m, les restes dans la division euclidienne par 16 des entiers : 5^m , 6^m .
- **2.** Soit (u_n) la suite arithmétique de raison 16 et de premier terme $u_0 = 9$, et (v_p) la suite géométrique de raison 5 et de premier terme $v_0 = 1$. Démontrer que ces deux suites ont une infinité de termes égaux dont on calculera les deux premiers,
- 3. Soit (u'_n) la suite arithmétique de raison 16 et de premier terme $u'_0 = 8$, et (v'_p) la suite géométrique de raison 6 et de premier terme $v'_{o0} = 9$. Démontrer que ces deux suites n'ont qu'un seul terme commun que l'on déterminera,

EXERCICE 2

Le plan vectoriel \overrightarrow{P} étant rapporté à la base $(\overrightarrow{\iota}, \overrightarrow{J})$, on considère les endomorphismes p et q de \overrightarrow{P} ayant respectivement pour matrices A et B dans la base $(\overrightarrow{\iota}, \overrightarrow{J})$.

$$A = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \qquad B = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

- 1. Démontrer que p et q sont des projections vectorielles et déterminer les sousespaces vectoriels de P qui les caractérisent.
- **2.** On considère l'ensemble F des endomorphismes $f_{(a,b)}$ de \overrightarrow{P} tels que :

$$f_{(a,b)} = ap + bq, \quad (a; b) \in \mathbb{R}^2$$

- **a.** Donner une condition sur a et b pour que $f_{(a,b)}$ soit une bijection, et démontrer que le sous-ensemble des bijections de F muni de la composition des applications est un groupe abélien.
- **b.** Démontrer que $f_{(1,-1)}$ et f(-1,1) sont des symétries vectorielles et déterminer les sous-espaces vectoriels de \overrightarrow{P} qui les caractérisent.

PROBLÈME

Partie A

Calculer les trois intégrales :

$$\int_0^1 e^x dx$$
, $\int_0^1 x e^x dx$, $\int_0^1 x^2 e^x dx$

En déduire que si g(x) = x(x+2-e), alors $\int_0^1 g(x) dx = 0$.

Partie B

Le baccalauréat de 1977 A. P. M. E. P.

Si t est un nombre réel fixé, on considère la fonction de la variable réelle x

$$f_t(x) = (x - t)e^{\frac{x}{2}}$$

Soit E l'ensemble des couples $(t_1 \; ; \; t_2)$ de \mathbb{R}^2 tels que $\int_0^1 f_{t_1}(x) f_{t_2}(x) \, \mathrm{d}x = 0$.

- 1. Montrer en utilisant la fonction g de la partie A que E n'est pas vide.
- **2.** Démontrer qu'un élément $(t_1; t_2)$ de \mathbb{R}^2 appartient à E si et seulement si

$$(e-1) t_1 t_2 - (t_1 + t_2) + e - 2 = 0.$$

Écrire cette condition sous la forme :

$$(t_1 - \alpha) \left(t_2 - \alpha \right) = -k^2 \tag{1}$$

où α et k sont des réels que l'on calculera (pour établir l'existence de k^2 , on pourra vérifier l'inégalité $(e-1)^2 > e$ en utilisant l'encadrement 2,7 < e < 2,8).

3. En étudiant le signe de $f_{t_1}(x)f_{t_2}(x)$ sur [0; 1], démontrer que si $(t_1; t_2)$ appartient à E, l'un au moins des deux réels t_1 ou t_2 appartient à [0; 1].

Partie C

Dans un plan affine euclidien P rapporté à un repère orthonormé $(0, \vec{i}, \vec{j})$, on désigne par A_t le point de coordonnées (t; 0).

1. Démontrer en utilisant (1) qu'il existe deux points du plan, I et J , tels que $(t_1; t_2)$ appartient à E si et seulement si

$$\overrightarrow{\mathrm{I}A_{t_1}}\cdot\overrightarrow{\mathrm{I}A_{t_2}}=\overrightarrow{\mathrm{J}A_{t_1}}\cdot\overrightarrow{\mathrm{J}A_{t_2}}=0.$$

- **2.** Établir que $(t_1; t_2)$ appartient à E si et seulement si le cercle de diamètre $[A_{t_1}, A_{t_2}]$ passe par I et J.
- **3.** Calculer à l'aide d'une remarque géométrique simple le minimum de $|t_2 t_1|$ quand $(t_1; t_2)$ décrit E.
- **4.** Déduire du 2. par une interprétation géométrique du B 1. ou B 3. que I et J appartiennent au disque de diamètre $[A_0, A_1]$.

N.B. - Il est conseillé de faire des figures dans cette partie.