EXERCICE 1 4 POINTS

- 1. Déterminer le plus grand diviseur commun des nombres 21 590 et 9 525.
- 2. Déterminer l'ensemble des entiers relatifs x pour lesquels on a

$$34x \equiv 2$$
 (15).

3. Résoudre dans $\mathbb{Z} \times \mathbb{Z}$ l'équation :

$$21590x + 9525y = 1270$$
.

EXERCICE 2 4 POINTS

Soit \mathscr{P} un plan affine rapporté à un repère orthonormé $(0, \overrightarrow{\iota}, \overrightarrow{\jmath})$.

1. Soit M' le transformé d'un point M de \mathcal{P} dans la symétrie orthogonale par rapport à la droite \mathcal{D} d'équation y = x.

Soit M'' l'image de M' dans la symétrie orthogonale par rapport à la droite d'équation y = 0.

Exprimer en fonction des coordonnées (x et y) de M, les coordonnées x'' et y''deM".

En déduire la nature et les éléments caractéristiques de la transformation, t_1 , de $\mathcal P$ qui à M associe M''.

Retrouver géométriquement ce résultat.

2. Soit t_2 la transformation de \mathcal{P} qui à M(x; y) associe N(X; Y) tel que

$$\left\{ \begin{array}{lcl} X & = & 1+y \\ Y & = & 1-x \end{array} \right.$$

Caractériser la transformation t_2 , puis la transformation $t_2 \circ t_1$.

PROBLÈME 4 POINTS

Soit E un espace vectoriel euclidien de dimension 2. On désigne par \mathscr{F} l'ensemble des endomorphismes φ de E qui possèdent les propriétés suivantes :

$$\forall \overrightarrow{u} \in \mathsf{E}, \quad \forall \overrightarrow{v} \in \mathsf{E}, \quad \varphi \left(\overrightarrow{u} \right) \cdot \overrightarrow{v} = \varphi \left(\overrightarrow{v} \right) \cdot \overrightarrow{u} \, .$$

 $\left(\varphi\left(\overrightarrow{u}\right)\cdot\overrightarrow{v}$ désigne le produit scalaire du vecteur $\varphi\left(\overrightarrow{u}\right)$ et du vecteur \overrightarrow{v}).

Partie A

On suppose que (\vec{i}, \vec{j}) est une base orthonormée de E.

1. Montrer qu'un endomorphisme φ de E appartient à ${\mathscr F}$ si et seulement si on a

$$\varphi(\overrightarrow{i}) \cdot \overrightarrow{j} = \varphi(\overrightarrow{j}) \cdot \overrightarrow{i}$$
.

2. Montrer qu'un endomorphisme φ de E de matrice $\begin{pmatrix} a & c \\ b & d \end{pmatrix}$ relativement à la base $(\overrightarrow{i}, \overrightarrow{j})$, est un élément de \mathscr{F} si et seulement si b = c.

Le baccalauréat de 1978 A. P. M. E. P.

3. a. Soit φ un élément de \mathscr{F} de matrice $\begin{pmatrix} a & b \\ b & d \end{pmatrix}$ relativement à la base $(\overrightarrow{\iota}, \overrightarrow{J})$.

Montrer que si φ est involutive alors φ est une isométrie vectorielle.

Dans le cas b = 0 on caractérisera chacune des applications ainsi obtenues.

Dans le cas $b \neq 0$ on précisera la nature de l'application φ .

b. Déterminer l'endomorphisme involutif φ_0 de \mathscr{F} tel que

$$\varphi_0\left(2\overrightarrow{i}-\overrightarrow{j}\right)=\frac{2}{5}\overrightarrow{i}+\frac{11}{5}\overrightarrow{j}.$$

(On donnera la matrice de φ_0 , puis les éléments caractéristiques de φ_0).

Partie B

1. Soit g la fonction numérique de la variable réelle x définie par

$$g(x) = \frac{5}{2}x + 3\sqrt{x^2 - 4}.$$

Étudier les variations de cette fonction. Construire sa représentation graphique (C), dans un plan affine \mathscr{E} , associé au plan vectoriel euclidien E, et rapporté à un repère orthonormé $\left(0, \overrightarrow{i}, \overrightarrow{j}\right)$.

On montrera que (C) admet deux asymptotes.

2. Soit h l'homothétie de centre O et de rapport -1.

Déterminer, relativement au repère $(O, \overrightarrow{\iota}, \overrightarrow{J})$, l'équation de la courbe (C'), image de la courbe (C) par h, et montrer qu'un point M de coordonnées (x; y) dans ce repère appartient à $(C) \cup (C')$ si et seulement si

$$y^2 - \frac{11}{4}x^2 - 5xy + 36 = 0.$$

3. On désigne par f_0 l'application affine dont l'endomorphisme associé est φ_0 et qui laisse invariant le point O. Montrer que la courbe (C) \cup (C') est globalement invariante par f_0 .

4. Soient
$$\begin{cases} \vec{I} = \frac{2}{\sqrt{5}} \vec{i} + \frac{1}{\sqrt{5}} \vec{j} \\ \vec{J} = -\frac{1}{\sqrt{5}} \vec{i} + \frac{2}{\sqrt{5}} \vec{j} \end{cases}$$

Déterminer l'équation de (C) \cup (C') dans le repère $\left(0,\overrightarrow{I},\overrightarrow{J}\right)$ et en déduire la nature de cette courbe.

Retrouver ainsi le résultat de la question 3. précédente.

5. Montrer qu'une primitive de la fonction $x \mapsto \sqrt{x^2 - 4} + x$ est la fonction

$$x \longmapsto \frac{x^2}{2} + \frac{x\sqrt{x^2 - 4}}{2} - 2\text{Log}\left[x + \sqrt{x^2 - 4}\right].$$

Déterminer l'aire $\mathcal{A}(\alpha)$ de la partie du plan limitée par la courbe (C), la droite d'équation $y=-\frac{1}{2}x$, et les droites d'équations respectives $x=\alpha$ et x=-2 relativement au repère $\left(0,\overrightarrow{\iota},\overrightarrow{J}\right)$, α étant un réel strictement inférieur à -2.