EXERCICE 1 3 POINTS

1. Soit U et V deux applications, de \mathbb{N} dans \mathbb{C} , qui, à tout entier naturel n, associent respectivement U_n et V_n définis par

$$U_0 = 1$$
 et $\forall n \in \mathbb{N}$ $\left\{ \begin{array}{lcl} U_{n+1} & = & \left(1 + i\sqrt{3}\right)U_n + 3 \\ V_n & = & U_n - i\sqrt{3}. \end{array} \right.$

Calculer V_0 . Déterminer une relation entre V_{n+1} et V_n . En déduire en fonction de n l'expression de V_n , puis celle de U_n pour tout entier naturel n.

2. Le plan affine euclidien orienté \mathscr{P} est rapporté à un repère orthonormé direct $\left(0, \overrightarrow{\iota}, \overrightarrow{J}\right)$. On considère l'application f de \mathscr{P} dans \mathscr{P} qui à tout point M, d'affixe z, associe le point M_1 d'affixe z_1 telle que

$$z_1 = \left(1 + i\sqrt{3}\right)z + 3.$$

On pose $f^1 = f$ et $\forall n \in \mathbb{N}^*$, $f^{n+1} = f \circ f^n$.

Quelle est la nature géométrique de f, ainsi que celle de f^n ?

Soit $M_n = f^n(M)$; déterminer l'affixe z_n de M_n .

3. Soit A_0 le point de \mathcal{P} d'affixe 1, déterminer l'affixe de A_n . Comparer le résultat obtenu à la valeur de U_n . Expliquer.

EXERCICE 2 4 POINTS

Un vendeur de journaux a, chaque semaine, entre zéro et cinq clients pour une revue hebdomadaire.

Soit $E = \{A_0, A_1 A_2 A_3 A_4 A_5\}$, où A_n désigne l'évènement « il y a eu n clients pour la revue ».

 $(E, \mathscr{P}(E))$ est muni de la probabilité P définie par

$$P(A_0) = P(A_5) = \frac{1}{32}, \quad P(A_1) = P(A_4) = \frac{5}{32}, \quad P(A_2) = P(A_3) = \frac{10}{32}.$$

Le vendeur gagne trois francs par exemplaire vendu et perd un franc en frais divers par exemplaire invendu.

Dans le cas où il a commandé p exemplaires $(1 \le p \le 5)$, on définit sur $(E, \mathscr{P}(E))$ la variable aléatoire réelle G_P par : $G_P(A_n)$ est son gain (positif ou négatif) lorsque n clients se sont présentés dans la semaine $(0 \le n \le 5)$.

- 1. Calculer $G_P(A_n)$, pour tout $p \in \{1,2,3,4,5\}$ et $n \in \{0,1,2,3,4,5\}$. (On peut disposer les résultats sous forme de tableau.)
- 2. Calculer les espérances mathématiques suivantes :

$$E(A_1), E(A_2), E(A_3), E(A_4), E(A_5).$$

Que peut-on faire à la place du vendeur?

PROBLÈME 12 POINTS

On désigne par $(E, +, \cdot)$ l'espace vectoriel réel des applications de \mathbb{R} dans \mathbb{R} et par f_1 , f_2 et f_3 trois éléments de E tels que

Le baccalauréat de 1978 A. P. M. E. P.

$$\begin{cases} f_1(0) &= f_2(0) = f_3(0) = 0 \\ f_1(x) &= x^2 \text{Log} |x|, \\ f_2(x) &= (x^2 + 1) \text{Log} |x|, \quad \forall x \in \mathbb{R}^* \\ f_3(x) &= x \text{Log} |x|, \end{cases}$$

Soit $L = \{ f \in E/\exists (a, b, c) : (a, b, c) \in \mathbb{R}^3, \text{ et } f = af_1 + bf_2 + cf_3 \}.$

Partie A

- **1.** Montrer que $(L, +, \cdot)$ est un sous-espace vectoriel de $(E, +, \cdot)$ de base $\mathcal{B} = (f_1, f_2, f_3)$.
- **2.** Soit P l'ensemble des applications paires de L et I l'ensemble des applications impaires de L.

Montrer que P est le plan de base (f_1, f_2) et I est la droite de base (f_3) .

3. Soit φ l'application de L^2 dans \mathbb{R} telle que, si f et g ont respectivement pour coordonnées (a; b; c) et (a'; b'; c') par rapport à \mathcal{B} ,

$$\varphi(f; g) = aa' + 2bb' + cc' + (ab' + ba').$$

Montrer que φ est un produit scalaire défini sur L.

Montrer que P et I sont deux sous-espaces supplémentaires orthogonaux.

Déterminer f_4 de façon que (f_1, f_4, f_3) soit une base orthonormée de L.

Partie B

1. Soit h l'application de $\mathbb{R}^* - \left\{-\frac{1}{2}\right\}$ dans \mathbb{R} telle que

$$h(x) = \frac{x+1}{2x+1} + \text{Log}\,|x|.$$

- **a.** Étudier les variations de h. Soit (\mathscr{C}) la courbe représentative de h dans un plan affine euclidien rapporté à un repère orthonormé $\mathscr{R} = \left(0, \overrightarrow{t}, \overrightarrow{J} \right)$. (On ne demande pas de construire (\mathscr{C})).
- **b.** Montrer que ($\mathscr C$) coupe l'axe $\left(O,\overrightarrow{\iota}\right)$ en trois points d'abscisses α , β et γ telles que $\alpha < \beta < \gamma$.

Vérifier que :

$$-1 \le \alpha < -\frac{1}{2}, \quad -\frac{1}{4} < \beta < -\frac{1}{8} \quad \text{et} \quad \frac{3}{8} < \gamma < \frac{1}{2}.$$

- **c.** En déduire le signe de h(x) pour tout élément x de $\mathbb{R}^* \left\{-\frac{1}{2}\right\}$.
- **2.** Soit $f_5 = f_1 + f_3$. Étudier f_5 (continuité, dérivabilité, sens de variation, limites). Construire sa courbe représentative (Γ) dans le repère \mathcal{R} .

[On pourra utiliser le signe de h(x) pour déterminer celui de $f_5'(x)$.

3. Soit F l'application de \mathbb{R} dans \mathbb{R} telle que

$$F(x) = \int_1^x f_5(t) \, \mathrm{d}t.$$

Justifier l'existence et la continuité de F. Calculer F(x) pour tout x élément de Rt. En déduire la valeur de F(0).

Partie C

Le baccalauréat de 1978 A. P. M. E. P.

Soit g l'application de $\mathbb R$ dans $\mathbb R$ telle que

$$g(0) = 0 \text{ et } \forall x \in \mathbb{R}^*, \ g(x) = -2(x^2 - x) \text{Log}|x|.$$

On considère l'espace vectoriel euclidien L, muni de la base orthonormée (f_1, f_4, f_3) .

- 1. Montrer que g est élément de L.
- **2.** Soit S la symétrie vectorielle orthogonale par rapport à P. Montrer que S(g) appartient à la droite vectorielle engendrée par f_5 . En déduire le sens de variation de S(g).
- **3.** Construire la courbe (Γ') représentative de S(g).
- **4.** Calculer l'aire, \mathcal{A} , de la portion de plan comprise entre (Γ) , (Γ') et les droites d'équations respectives x=0 et x=1.