Septembre 1978 Septembre 1978 Sept

EXERCICE 1 4 POINTS

1. Étudier les variations de la fonction

$$f: [-\pi; +\pi] \longrightarrow \mathbb{R}$$

$$x \longmapsto \cos^4 x + 2\cos^3 X + 1$$

Tracer la courbe représentative F de f dans un plan affine euclidien rapporté à un repère cartésien orthonormé $\left(0, \overrightarrow{i}, \overrightarrow{j}\right)$.

On prendra le centimètre comme unité de longueur.

2. Calculer $\cos^3 x$ en fonction de $\cos 3x$ et de $\cos x$.

Calculer $\cos^4 x$ en fonction de $\cos 4x$ et de $\cos 2x$.

En déduire l'aire de la partie du plan P limitée par F et par l'axe des abscisses, l'unité étant le centimètre carré.

EXERCICE 2 4 POINTS

Dans un plan affine euclidien P, on donne un rectangle ABCD dont les diagonales sont les segments [AC] et [BD].

- **1.** Quel est le barycentre des points A, B, C affectés respectivement des coefficients +1, -1 et +1?
- **2.** Quel est l'ensemble des points M du plan P tels que $MA^2 MB^2 + MC^2 = \ell$, ℓ étant un réel donné? Discuter.

PROBLÈME 12 POINTS

1. Les fonctions réelles f et g sont définies par :

Etudier les ensembles de définition des fonctions dérivées premières de f et de g, puis calculer la dérivée première, pour la valeur t de la variable, de chacune des fonctions f et g.

Calculer
$$\sqrt{f'^2(t) + g'^2(t)}$$
.

2. Calculer, *n* désignant un entier naturel,

$$S(n) = \int_{n\pi}^{(n+1)\pi} \sqrt{f'^2(t) + g'^2(t)} \, \mathrm{d}t.$$

Étudier la limite de S(n) lorsque n tend vers $+\infty$?

Étudier, lorsque l'entier naturel p tend vers $+\infty$, la limite de

$$\sum (p) = S(0) + S(1) + \dots + S(p).$$

^{1.} Grenoble

3. Dans un plan affine euclidien orienté Q, rapporté à un repère orthonormé direct $(0, \overrightarrow{u}, \overrightarrow{v})$, un point mobile L(t) a pour coordonnées, lorsque le réel t désigne le temps,

$$x(t) = e^{-t} \cos t$$
, $y(t) = e^{-t} \sin t$.

Déterminer les coordonnées $V_x(t)$ et $V_y(t)$ du vecteur vitesse V(t) et les coordonnées $\Gamma_x(t)$ et $\Gamma_y(t)$ du vecteur accélération $\Gamma(t)$ du point L(t) à l'instant t.

Calculer le produit scalaire $OL(t) \cdot \Gamma(t)$.

Calculer une détermination de la mesure de l'angle $(\overrightarrow{V(t)}, \overrightarrow{\Gamma(t)})$.

4. On propose de calculer

$$F = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} V_x(t) \Gamma_x(t) \, \mathrm{d}t$$

et pour cela on pose:

$$H = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{-2t} \sin^2 t \, dt, I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{-2t} \cos^2 t \, dt, J = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{-2t} \sin t \cos t \, dt$$

Calculer I + H.

En effectuant, dans chacun des deux cas suivants, une intégration par parties, que l'on justifiera, calculer :

- **a.** I en fonction de J,
- **b.** I en fonction de I et de H.

En déduire les valeurs de I, J, H et F.

5. Les hypothèses et les notations étant celles de la question 3., on désigne par T l'ensemble des points L(t) lorsque t décrit \mathbb{R} .

Trouver, dans le repère $(0, \overrightarrow{u}, \overrightarrow{v})$,

- **a.** l'équation de la tangente en L(t) à T;
- **b.** les coordonnées du point S(t) qui appartient à la tangente précédente et qui est tel que le produit scalaire $\overrightarrow{OS(t)} \cdot \overrightarrow{OL(t)}$ soit nul;
- **c.** les coordonnées du point N(t) qui est commun à la droite (OS(t)) et à la droite du plan Q qui est orthogonale en L(t) à la droite (L(t)Set)).
- **6.** Le plan Q étant rapporté au repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$, on associe au point K, quelconque de Q, et dont les coordonnées sont x_k et y_k le nombre complexe

$$z_k = x_k + \mathrm{i} y_k \quad \left(\mathrm{i}^2 = -1\right).$$

Quelles sont les applications φ_1 et φ_2 de \mathbb{C} sur \mathbb{C} , qui sont telles que, quel que soit le réel t,

- **a.** $\varphi_1(Z_{L(t)}) = Z_{S(t)}$
- **b.** $\varphi_2(Z_{N(t)}) = Z_{L(t)}$?

Caractériser les applications de Q sur Q qui sont représentées par φ_1 et φ_2