EXERCICE 1 4 POINTS

Une urne contient 3 boules blanches et 2 boules noires, chaque boule ayant même probabilité d'être tirée.

On tire successivement 3 boules en remettant la boule après tirage si celle-ci est noire et en ne remettant pas la boule après tirage si celle-ci est blanche.

On appelle X la variable aléatoire qui à chaque tirage de 3 boules associe le nombre de boules blanches obtenues.

Déterminer la loi de probabilité de X puis calculer l'espérance mathématique et l'écart-type de X.

EXERCICE 2 4 POINTS

Le plan complexe P est rapporté au repère orthonormé direct $(0, \overrightarrow{u}, \overrightarrow{v})$.

On considère l'application f de P dans P qui au point m d'affixe z associe le point M d'affixe Z où :

$$Z = \left(2 + \frac{3}{2}i\right)z - \frac{5}{2}i\overline{z},$$

 \overline{z} désignant le nombre complexe conjugué de z.

- 1. Calculer les coordonnées (X; Y) de M en fonction des coordonnées (x; y) de m.
 - Quel est l'ensemble des points M?
- **2.** Calculer le module de Z en fonction de x et y. Trouver et dessiner l'ensemble des points m tels que $|Z| = \sqrt{5}$.
- **3.** Trouver et dessiner l'ensemble des points *m* tels que O, *m* et *M* soient alignés.

PROBLÈME 12 POINTS

Soit le plan affine euclidien P rapporté à un repère orthononné $(O, \overrightarrow{\iota}, \overrightarrow{J})$ d'axes x'Ox, y'Oy.

Partie A

Soit la fonction numérique f_1 de la variable réelle x définie par

$$f_1(x) = \sqrt{\frac{1}{3}x(x-6)}$$
.

Étudier les variations de f_1 et construire sa courbe représentative (\mathscr{C}_1) dans le repère $\left(0, \overrightarrow{i}, \overrightarrow{j}\right)$.

On montrera que la courbe (\mathcal{C}_1) admet un axe de symétrie et on précisera les tangentes à (\mathcal{C}_1) aux points d'abscisses 0 et 6.

Partie B

On considère l'ensemble des fonctions numériques g_m de variable réelle x définies par

$$g_m(x) = \text{Log}\sqrt{\frac{1}{3}x(x - 6m)}$$

avec m réel strictement positif. On notera (Γ_m) la courbe représentative de g_m dans le repère $(0, \overrightarrow{i}, \overrightarrow{j})$.

Le baccalauréat de 1978 A. P. M. E. P.

1. a. Montrer que (Γ_1) courbe représentative de g_1 :

$$g_1(x) = \text{Log } \sqrt{\frac{1}{3}x(x-6)}.$$

admet un axe de symétrie.

Etudier les variations de g_1 et construire (Γ_1) dans le repère $(O, \overrightarrow{\iota}, \overrightarrow{\jmath})$ après avoir étudié les branches infinies.

b. Calculer $I \int_a^b g_1(x) dx$ (a et b étant deux réels strictement supérieurs à 6).

En déduire l'aire du domaine plan limité par l'axe x'Ox, (Γ_1) et les droites d'équation $x = x_0$ et x = 9. $(x_0$ étant l'abscisse positive de l'un des points d'intersection de (Γ_1) avec x'Ox).

- **2.** On considère dans P l'application T_m qui au point M de coordonnées (x; y) associe le point $T_m(M)$ de coordonnées (x' = mx; y' = y + Log m), (m étant le réel strictement positif choisi précédemment).
 - **a.** Montrer que T_m est une application affine. Est-elle bijective? Peut- m , elle être une isométrie?
 - **b.** Montrer que $T_m(\Gamma_1) = (\Gamma_m)$.
 - **c.** Déterminer la structure de l'ensemble F des applications T_m muni de la loi de composition des applications.
 - **d.** Montrer qu'il existe une application appartenant à l'ensemble F par laquelle deux courbes quelconques (Γ_{α}) et (Γ_{β}) se déduisent l'une de l'autre.

Partie C

1. Soit la fonction numérique f_2 de la variable réelle x définie par

$$f_2(x) = -f_1(x).$$

Construire la courbe représentative (\mathscr{C}_2) de f_2 dans le repère $\left(0, \overrightarrow{t}, \overrightarrow{j}\right)$ du A. Montrer que la courbe (H) définie par $(H) = (\mathscr{C}_1) \cup (\mathscr{C}_2)$ a pour équation

$$x^2 - 6x - 3y^2 = 0$$
.

En déduire la nature, le centre et les coordonnées des foyers de (*H*).

2. On considère dans P la transformation S qui à tout point M de coordonnées (x; y) associe le point S(M) = M' de coordonnées

$$x' = -\sqrt{3}x + y$$
 ; $y' = -x - \sqrt{3}y$.

À tout point M de P on fait correspondre le nombre complexe Z = x + iy affixe de M.

- **a.** Exprimer Z' affixe de M' en fonction de Z. Déterminer S et ses éléments caractéristiques.
- **b.** Déterminer l'équation cartésienne de la courbe (H') = S(H).
- **c.** On considère le point $M_0(1; 0)$ et la suite des points

$$M_1 = S(M_0), \ldots, M_n = S(M_{n-1}).$$

Montrer que $\forall n \in \mathbb{N} - \{0\}$, $M_n = (\mathcal{H}_n \circ R^n) (M_0)$.

 \mathcal{H} étant une homothétie de centre O dont on déterminera le rapport, R étant une rotation de centre O dont on déterminera l'angle.

En déduire que M_n est transformé de M_0 par une similitude que l'on caractérisera.

En déduire les coordonnées de M_n en fonction de n.