EXERCICE 1 4 points

Soit $\mathbb C$ l'ensemble des nombres complexes et f l'application de $\mathbb C$ – $\{-i\}$ dans $\mathbb C$ telle que

 $f(z) = \frac{z - i}{z + i}$.

- **1.** Démontrer que f applique bijectivement $\mathbb{C} \{-i\}$ sur $\mathbb{C} \{1\}$.
- **2.** Quelle est l'image par f de l'ensemble P des nombres complexes dont la partie imaginaire est strictement positive?

EXERCICE 2 4 points

Soit \mathscr{C} la courbe représentative de la fonction logarithme népérien dans le plan rapporté à un repère orthonormé $(0, \overrightarrow{\iota}, \overrightarrow{\jmath})$.

 x étant un réel strictement positif on considère le point M de & qui a pour abscisse x et l'on désigne par m le coefficient directeur de la droite (OM).
Construire la tableau de variations de la fonction continue

$$\mu: \mathbb{R}_+^{\star} \longrightarrow \mathbb{R}$$
$$x \longmapsto m.$$

- **2.** Soient A et B deux points de \mathscr{C} d'abscisses respectives a et b telles que a < b. Démontrer que, si $a^b = b^a$, A et B sont alignés avec O et que a < e.
- **3.** Trouver tous les couples d'entiers naturels (*a*, *b*) tels que

$$a < b$$
 et $a^b = b^a$.

PROBLÈME 12 points

Soit E un plan vectoriel euclidien orienté, $(\overrightarrow{t}, \overrightarrow{J})$ une base de E orthonormé directe, I_E l'application identité de E et r la rotation vectorielle de E qui transforme \overrightarrow{t} en \overrightarrow{J} . Dans le plan affine euclidien $\mathscr E$ associé à E, muni d'un repère $(O, \overrightarrow{t}, \overrightarrow{J})$, on donne les points A(1; 0) et B(-1; 0) et les cercles a et b passant par O de centres respectifs A et B.

Dans tout le problème on associe à chaque point P du cercle a le point Q du cercle b tel que les angles $(\overrightarrow{l}, \overrightarrow{AP})$ et $(\overrightarrow{l}, \overrightarrow{BQ})$ soient égaux. On notera M le milieu du segment [PQ].

Partie I

- 1. Montrer que : $\overrightarrow{OM} = \frac{1}{2} \left(\overrightarrow{AP} + \overrightarrow{BQ} \right)$ et que le vecteur \overrightarrow{OM} se déduit du vecteur \overrightarrow{AP} par l'application linéaire : $\sigma = \frac{1}{2} \left(I_E + r \right)$.
 - Former la matrice de σ dans la base (\vec{i}, \vec{j}) et reconnaître que σ est la composée d'une homothétie vectorielle et d'une rotation vectorielle.
- **2.** Démontrer que, quel que soit le point P sur le cercle *a*, le point *M* s'en déduit par une similitude directe fixe dont on donnera le centre, le rapport et l'angle. Étudier l'ensemble des points *M* associés aux points P du cercle a.

Terminale C A. P. M. E. P.

Partie II

Soit θ une détermination de la mesure de l'angle $(\overrightarrow{i}, \overrightarrow{AP})$.

Calculer en fonction de θ les coordonnées (x; y), (x'; y'), (X; Y) des points P, Q, M.

Puis calculer *X* et *Y* en fonction de *x* et *y*. Retrouver les résultats de la question I 2.

Partie III

Étudier l'ensemble S des distances PQ associées aux points P de cercle a. Démontrer que S est un intervalle fermé dont on donnera les bornes.

Partie IV

Étudier l'ensemble T des coefficients directeurs des droites (PQ) associées aux points P du cercle a.

Démontrer que T est un intervalle fermé dont on donnera les bornes.

Partie V

Soit K un point fixe de $\mathscr E$ et k le nombre de droites (PQ) passant par K.

- 1. Quel est l'ensemble des nombres k ainsi associés aux points K de E?
- **2.** Déterminer l'ensemble des points K de E pour lesquels k = 1.

N.B. Les parties III, IV et V sont indépendantes les unes des autres. Les parties III et IV peuvent être étudiées géométriquement ou par le calcul.