∽ Baccalauréat C La Réunion juin 1979 ∾

EXERCICE 1 4 POINTS

1. Déterminer les entiers relatifs x congrus à -1 modulo 5 et à 0 modulo 3:

$$x = -1$$
 [5] et $x = 0$ [3].

2. Déterminer les entiers relatifs *x* tels que :

$$x \equiv 2$$
 [5] et $x \equiv -1$ [3]

3. Résoudre dans l'anneau $\mathbb{Z}/15\mathbb{Z}$ l'équation :

$$x^2 + 4x + 3 = 0$$

EXERCICE 2 4 POINTS

Etudier la fonction f définie sur $[0; +\infty[$ par :

$$\left\{ \begin{array}{lcl} f(x) & = & x - |x \log x| & \sin x > 0 \\ f(0) & = & 0. \end{array} \right.$$

- 1. La fonction f est-elle continue sur $[0; +\infty[?]$ Est-elle dérivable sur $[0; +\infty[?]$
- **2.** Construire la courbe représentative de *f* dans un plan rapporté à un repère orthonormé. Préciser en particulier les tangentes à la courbe aux points d'intersection avec l'axe des abscisses.

PROBLÈME 12 POINTS

Rappels:

L'ensemble $\mathbb C$ des nombres complexes est un espace vectoriel sur $\mathbb R$. \overline{z} désigne le conjugué de z. L'application $p:\mathbb C^2\to\mathbb R$ qui au couple (z,z'), associe la partie réelle de $z\overline{z'}$ est un produit scalaire; une base orthonormée de $\mathbb C$ munie de ce produit scalaire est (1,i).

1. On donne un nombre complexe u et l'on considère l'ensemble D des complexes z tels que

$$z + u\overline{z} = 0$$
.

- a. Démontrer que D est un sous-espace vectoriel de C.
- **b.** Démontrer que si $|u| \neq 1$, D est de dimension O.
- **c.** Démontrer que si |u| = 1 et $u \ne 1$, D est la droite vectorielle de base (1-u). Etudier le cas u = 1.
- **2.** a est un réel non nul, b est un élément de $\mathbb{C} \mathbb{R}$. On considère l'application φ de \mathbb{C} dans \mathbb{C} définie par :

$$\varphi(z) = az + b\overline{z}$$
.

- **a.** Montrer que φ est linéaire.
- **b.** Étudier le noyau de φ . En déduire que φ est bijective si et seulement si $|a| \neq |b|$.

Le baccalauréat de 1979 A. P. M. E. P.

- **3.** Dans cette question on suppose que φ est bijective.
 - Étudier suivant les valeurs du réel λ l'ensemble E_{λ} des nombres z tels que $\varphi(z) = \lambda z$.

Montrer qu'il existe dans \mathbb{C} deux droites vectorielles globalement invariantes par φ et que ces deux droites sont orthogonales.

- **4.** On suppose dans cette question que a = |b|.
 - **a.** Déterminer l'image de φ .
 - **b.** Montrer que suivant les valeurs de a, φ est soit une projection vectorielle, soit la composée d'une projection vectorielle et d'une homothétie vectorielle.
- **5.** On considère le plan affine euclidien P, muni d'un repère orthonormé $(O, \overrightarrow{e_1}, \overrightarrow{e_1})$. À tout point m de coordonnées (x; y) on associe son affixe z = x + iy.
 - **a.** Définir avec précision l'application f de P dans P dans laquelle m d'affixe z a pour image m' d'affixe

$$z' = \left(\cos\frac{2\pi}{3} - i\sin\frac{2\pi}{3}\right)\overline{z}.$$

m étant donné, construire m' puis M tel que $\overrightarrow{OM} = \frac{1}{2} \left(\overrightarrow{Om} + \overrightarrow{Om'} \right)$. Quelle est la nature de l'application g de P dans P telle que M = g(m)? Quelle application de $\mathbb C$ dans $\mathbb C$ peut-on lui associer?

b. Utiliser les résultats de la troisième question pour étudier l'application h de P dans P qui, à tout point m d'affixe z, associe le point M d'affixe $Z = -z + 2i\overline{z}$.

Dessiner l'image du cercle de centre 0 et de rayon 1 dans cette transformation.