∽ Baccalauréat C Amiens groupe 4 1 juin 1980 ∾

EXERCICE 1 5 POINTS

Si a et b sont deux entiers, le plus grand diviseur commun de a et de b est noté $\Delta(a, b)$.

Soit (*U*) la suite numérique définie par :

$$u_0 = 1$$
, $u_1 = 1$ et $\forall n \in \mathbb{N}$, $u_{n+2} = 3u_{n+1} - 2u_n$.

- 1. Calculer les termes u_2 , u_3 , u_4 , u_5 , u_6 de la suite U.
- **2.** Montrer que le suite U vérifie :

pour tout entier naturel n, $u_{n+1} = 2u_n + 1$.

En déduire le plus grand diviseur commun de deux termes consécutifs de cette suite U.

3. a. Montrer que la suite *U* vérifie :

pour tout entier naturel n, $u_n = 2^n$?1.

Les nombres $2^n - 1$ et $2^{n+1} - 1$ sont-ils premiers entre eux pour tout entier naturel n?

b. Vérifier que, pour tout couple d'entiers naturels (n, p)

$$u_{n+p} = u_n \left(u_p + 1 \right) + u_p.$$

En déduire que, pour tout couple d'entiers naturels $(n, p) \in \mathbb{N} \times \mathbb{N}$

$$\Delta(u_n, u_p) = \Delta(u_n, u_{n+p}). \tag{1}$$

c. Soit a et b deux entiers naturels non nuls, r est le reste de la division euclidienne de a par b; déduire de la propriété (1) que

$$\Delta(u_b,\ u_r) = \Delta(u_a,\ u_b)$$

et que

$$\Delta(u_a,\ u_b)=u_\Delta(a,b).$$

(on pourra utiliser l'algorithme d'Euclide, méthode des divisions successives).

d. Calculer alors $\Delta(u_{1982}, u_{312})$.

EXERCICE 2 3 POINTS

On considère dans le plan vectoriel V rapporté à une base $(\overrightarrow{t}, \overrightarrow{f})$ l'endomorphisme $g_{\alpha, \beta}$ qui à tout vecteur \overrightarrow{u} de coordonnées (x; y) dans la base $(\overrightarrow{t}, \overrightarrow{f})$ associe le vecteur \overrightarrow{u}' de coordonnées (x'; y') dans la même base définies par

$$\begin{cases} x' = \alpha x - 2\alpha y \\ y' = 2\beta x + \beta y \end{cases}$$

 α et β étant deux réels.

Le baccalauréat de 1980 A. P. M. E. P.

- **1.** Déterminer les réels α et β pour que $g_{\alpha, \beta}$ soit une projection vectorielle dont on précisera les éléments caractéristiques.
- 2. Déterminer les réels α et β pour que $g_{\alpha,\ \beta}$ soit une involution que l'on précisera

PROBLÈME 12 POINTS

On se propose d'étudier des fonctions de $\mathbb C$ dans $\mathbb C$ ($\mathbb C$ désigne l'ensemble des nombres complexes) définies par :

$$f(z) = \frac{az+b}{cz+d}$$
, $(a, b, c, d) \in \mathbb{C}^4$, $(c, d) \neq (0, 0)$.

Dans le plan affine euclidien P muni d'un repère orthonormé direct $(0, \overrightarrow{\iota}, \overrightarrow{\jmath})$ on désigne par M et M' les points d'affixes z et f(z) et par F la fonction de P dans P qui au point M associe le point M'.

F sera appelée fonction ponctuelle associée à f.

- **I.** Montrer que f est constante si et seulement si ad bc = 0.
 - **1.** On pose a = 1, c = 0, d = 1 et on note f_1 l'application de \mathbb{C} dans \mathbb{C} obtenue.
 - **a.** Préciser la nature et les éléments caractéristiques de F_1 .
 - **b.** Déterminer l'image par F_1 :
 - d'une droite D quelconque de P
 - d'un cercle $\mathscr C$ quelconque de P.
 - **2.** On pose b=0, c=0, d=1, $a\neq 0$ et on note f_2 l'application de $\mathbb C$ dans $\mathbb C$ obtenue.
 - **a.** Préciser la nature et les éléments caractéristiques de F_2 .
 - **b.** Déterminer l'image par F_2 :
 - d'une droite *D* quelconque de P
 - d'un cercle $\mathscr C$ quelconque de P.
 - **3.** On pose a = d = 0, b = c = 1 et on note f_3 l'application de \mathbb{C}^* dans \mathbb{C} obtenue.
 - **a.** Montrer que F_3 est une involution de $P_{\{O\}}$ dans $P_{\{O\}}$. Quels sont les points invariants de F_3 ?
 - **b.** Soit Σ la symétrie orthogonale par rapport à la droite $(O, \overrightarrow{\iota})$ et $K = \Sigma \circ F_3$. Déterminer l'affixe z'' de K(M) en fonction de l'affixe z de M. (On suppose $\neq 0$).

En déduire que les points M et M'' appartiennent à une même demidroite d'origine O et que $\|\overrightarrow{OM}\| \times \|\overrightarrow{OM''}\| = 1$.

- **c.** Déterminer l'image par F_3 :
 - d'une droite passant par O, privée de ce point
 - d'un cercle de centre O
 - de la droite d'équation x = 1.
- **4.** On considère la fonction f de \mathbb{C} dans \mathbb{C} définie par $f(z) = \frac{1}{z-1}$.
 - **a.** Soit A le point d'affixe 1. Montrer que F est une bijection de $P-\{A\}$ sur $P-\{O\}$.
 - **b.** Montrer qu'il existe des valeurs de *a* et *b* telles que *F* soit la composée de fonctions ponctuelles définies au 1, 2 et 3.
 - **c.** En déduire l'image par *F* :
 - de la droite d'équation x = 1, privée de A

Le baccalauréat de 1980 A. P. M. E. P.

- du cercle de centre A et rayon 1
- de la droite d'équation x = 2.
- **II.** On considère l'ensemble ${\mathcal F}$ des fonctions f définies par :

$$f(z) = \frac{az+b}{cz+d}$$
, $(a, b, c, d) \in \mathbb{R}^4$, tel que $ad-bc \neq 0$.

1. Montrer que ${\mathcal F}$ est aussi l'ensemble des fonctions f définies par :

$$f(z) = \frac{az+b}{cz+d}$$
, $(a, b, c, d) \in \mathbb{R}^4$, tel que $|ad-bc| = 1$.

(On montrera que si $k \in \mathbb{R}^*$, (a, b, c, b) et (ka, kb, kc, kd) définissent la même fonction f).

2. On désigne par \mathscr{A} l'ensemble des matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ $(a, b, c, d) \in \mathbb{R}^4$ tel que |ad-bc|=1.

Montrer que (\mathscr{A}, \times) est un groupe et que $u : \mathscr{A} \to \mathscr{F}mf$ si $m = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, u(m) = f : \mathbb{C} \to \mathbb{C}$

 $z \longmapsto \frac{az+b}{cz+d}$ est un homomorphisme surjectif de (\mathscr{A},\times) dans (\mathscr{F},\circ) . Définir alors la structure de (\mathscr{F},\circ) .

3. Déterminer tous les éléments de F tels que

eterrimier tous res cientents de s' tels que

$$a = 4$$
, $b = 3$, $(c, d) \in \mathbb{Z}^2$.

Les questions I. et II. sont indépendantes.