∘ Baccalauréat C Lille septembre 1980 ∾

EXERCICE 1

On considère l'anneau ($\mathbb{Z}/20\mathbb{Z}$; +; ×) dont on notera les éléments :

$$\dot{0}$$
; $\dot{1}$; ...; \dot{p} ; ...; $\dot{19}$; $p \in [1; 19]$.

1. Démontrer que p est inversible dans $(\mathbb{Z}/20\mathbb{Z})$ si, et seulement si, p et 20 sont premiers entre eux.

En déduire les éléments inversibles de $(\mathbb{Z}/20\mathbb{Z})$.

2. Résoudre dans $(\mathbb{Z}/20\mathbb{Z} \times \mathbb{Z}/20\mathbb{Z})$ le système

$$\begin{cases} \dot{4}x + \dot{3}y = 10\\ \dot{5}x + \dot{6}y = 17. \end{cases}$$

EXERCICE 2

On considère la fonction numérique f d'une variable réelle définie par

$$f(x) = (x-1)\text{Log}\,|x-1| - x\text{Log}\,x$$

(Log représente la fonction logarithmique népérien).

- 1. Déterminer l'ensemble de définition de f et les variations de f
- 2. Soit la fonction g définie par

$$\left\{ \begin{array}{lll} g(0) & = & 0, \\ g(1) & = & 0, \\ g(x) & = & f(x) & \forall x \in]0 \; ; \; 1[\; \cup \;]1 \; ; \; +\infty[. \end{array} \right.$$

Démontrer que g est continue en 1 et à droite en 0. g est-elle dérivable en 1 ? à droite en 0 ?

3. Démontrer que f(x) admet pour limite $-\infty$ lorsque x tend vers $+\infty$. On pourra remarquer que

$$\forall x \in]1; +\infty[, \quad f(x) = x \operatorname{Log}\left(1 - \frac{1}{x}\right) - \operatorname{Log}(x - 1).$$

- **4.** Terminer l'étude de la fonction g et représenter graphiquement g dans un repère orthonormé $(0, \overrightarrow{i}, \overrightarrow{j})$. (On choisira pour unité : 2 cm.)
- 5. Soit $\lambda \in \left[\frac{1}{2} \right]$; 1 Calculer en cm² l'aire de l'ensemble des points M de coordonnées x, y dans le repère $\left(O, \overrightarrow{\iota}, \overrightarrow{J} \right)$, tels que

$$\frac{1}{2} \leqslant x \leqslant \lambda, \quad 0 \leqslant y \leqslant g(x).$$

PROBLÈME

Le baccalauréat de 1981 A. P. M. E. P.

 $\mathscr E$ étant un espace vectoriel euclidien muni d'une base orthonormée $\mathscr B=\left(\overrightarrow{\iota}\ ,\ \overrightarrow{\jmath}\ ,\ \overrightarrow{k}\ \right)$, on désigne par $\mathscr E$ l'ensemble des automorphismes φ de $\mathscr E$ qui conservent l'orthogonalité », c'est-à-dire

$$\forall \varphi \in \mathscr{S}, \quad \left(\overrightarrow{V}, \overrightarrow{W}\right) \in \mathscr{E} \times \mathscr{E}, \quad \left(\overrightarrow{V} \overrightarrow{W} = 0 \Rightarrow \varphi\left(\overrightarrow{V}\right) \cdot \varphi\left(\overrightarrow{W}\right) = 0\right).$$

- 1. Vérifier que les homothéties vectorielles et les isométries vectorielles de $\mathscr E$ appartiennent à $\mathscr S$.
- **2. a.** Démontrer que l'image par φ de la base \mathscr{B} est une base \mathscr{B}' de \mathscr{E} orthogonale et dont les vecteurs ont même norme.

On pourra utiliser des vecteurs tels que $(\overrightarrow{i} - \overrightarrow{j})$ et $(\overrightarrow{i} + \overrightarrow{j})$.

On posera alors $\|\varphi(\vec{i})\| = \alpha$.

- **b.** Démontrer que $\forall \overrightarrow{V} \in \mathcal{E}$, $\left\| \varphi \left(\overrightarrow{V} \right) \right\| = \alpha \left\| \overrightarrow{V} \right\|$. Le réel α sera appelé rapport de φ .
- **c.** Démontrer que φ est la composée commutative d'une isométrie vectorielle unique et de l'homothétie vectorielle de rapport α .
- **3.** Soit un endomorphisme u non nul de \mathscr{E} vérifiant

$$u(\overrightarrow{i}) \cdot u(\overrightarrow{j}) = u(\overrightarrow{j}) \cdot u(\overrightarrow{k}) = u(\overrightarrow{k}) \cdot u(\overrightarrow{i}) = 0$$

et

$$||u(\overrightarrow{i})|| = ||u(\overrightarrow{j})|| = ||u(\overrightarrow{i})||;$$

montrer que u est un élément de \mathcal{S} .

Application. - Soit u l'endomorphisme de $\mathscr E$ défini par

$$u(\overrightarrow{i}) = \overrightarrow{i} - 2\overrightarrow{j} - 2\overrightarrow{k}; u(\overrightarrow{j}) = -2\overrightarrow{i} + \overrightarrow{j} - 2\overrightarrow{k}; u(\overrightarrow{k}) = -2\overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{k}.$$

Montrer que u est élément de \mathcal{S} . Déterminer son rapport.

Écrire u comme composé d'une homothétie vectorielle et d'une isométrie vectorielle que l'on précisera.

4. Montrer que ${\mathscr S}$ muni de la loi \circ de composition des applications est un groupe non commutatif.

Partie A

Soit f_1 , f_2 , f_3 les fonctions numériques de la variable réelle x définies par

$$f_1(x) = \cos 4x$$
, $f_2(x) = \sin 4x$, $f_3(x) = \frac{\sqrt{2}}{2}$

et \mathcal{F} l'espace vectoriel réel engendré par f_1 , f_2 , f_3 .

1. a. Démontrer que, pour tous g et h éléments de \mathscr{F} , $g \times h$ est intégrable sur $\left[0; \frac{\pi}{2}\right]$. Calculer, pour tous p et q, éléments de $\{1, 2, 3\}$,

$$\int_0^{\frac{\pi}{2}} f_p(x) f_q(x) \, \mathrm{d}x.$$

Le baccalauréat de 1981 A. P. M. E. P.

b. Soit θ l'application de $\mathscr{F} \times \mathscr{F}$ vers \mathbb{R} définie par

$$\theta(g,h) = \frac{4}{\pi} \int_0^{\frac{\pi}{2}} g(x)h(x) \,\mathrm{d}x.$$

On pose

$$g = af_1 + bf_2 + cf_3$$
 et $h = a'f_1 + b'f_2 + c'f_3$.

Calculer $\theta(g, h)$ en fonction des réels a, b, c, a', b', c'. En déduire que θ est un produit scalaire sur \mathcal{F} et que (f_1, f_2, f_3) est une base orthonormée de \mathcal{F} .

- **2. a.** Pour tout n élément de \mathbb{N}^* calculer les dérivées d'ordre n des fonctions f_1, f_2, f_3 que l'on notera respectivement $f_1^{(n)}, f_2^{(n)}, f_3^{(n)}$. En déduire que, pour tout g élément de $\mathscr{F}, g^{(n)}$ existe.
 - **b.** Pour tout n élément de \mathbb{N}^* , on considère l'application φ_n de \mathscr{F} vers \mathscr{F} qui à

$$g = af_1 + bf_2 + cf_3$$
 associe $\varphi_n(g) = g^{(n)} + 4^n cf_3$.

Quelle est l'image par φ_1 de la base (f_1, f_2, f_3) ?

Montrer que φ_1 est la composée d'une homothétie vectorielle et d'une isométrie vectorielle que l'on précisera. Mêmes questions pour φ_2 , pour φ_3 .

Quels sont les entiers naturels n tels que φ_n soit une homothétie vectorielle?