EXERCICE 1 3 POINTS

Si p et q sont deux éléments de \mathbb{Z}^* le plus grand commun diviseur de ces deux nombres sera noté $p \wedge q$.

1. a. Déterminer l'ensemble des éléments x de \mathbb{Z} qui vérifient :

$$3x \equiv 23$$
 [7].

b. En déduire l'ensemble des couples (x, y) de \mathbb{Z}^2 qui vérifient :

$$3x - 7y = 23$$
 (1)

2. a. Soit k un élément de \mathbb{Z} , $k \neq 7$. Démontrer l'égalité

$$(3+7k) \wedge (-2+3k) = (k+7) \wedge 23.$$

b. En déduire l'ensemble des couples (x, y) de $(\mathbb{Z}^*)^2$ vérifiant (1) et tels que

$$x \land y \neq 1$$
.

EXERCICE 2 5 POINTS

1. Soit g l'application de \mathbb{R}^* dans \mathbb{R} définie par

$$g(x) = 2 - x + \ln|x|.$$

- **a.** Étudier les variations de g et ses limites aux bornes de \mathbb{R}^* .
- **b.** Démontrer qu'il existe trois nombres réels α_1 , α_2 , α_3 , qu'on ne cherchera pas à calculer, tels que :

$$\alpha_1 < 0 < \alpha_2 < 1 < \alpha_3$$

$$g(\alpha_1) = g(\alpha_2) = g(\alpha_3) = 0.$$

2. Soit f l'application de $\mathbb{R} - \{0; 1\}$ dans \mathbb{R} définie par

$$f(x) = \frac{x(1 + \ln|x|)}{1 - x}.$$

Calculer la fonction dérivée f'. Déduire de la première question l'étude du signe de f'(x).

3. Soit F l'application de $\mathbb{R}-\{1\}$ dans \mathbb{R} définie par

$$\begin{cases} F(x) &= f(x) & \sin x \neq 0 \\ F(0) &= 0 \end{cases}$$

- **a.** F est-elle continue en x=0? Est-elle dérivable en ce point?
- **b.** Étudier les variations de F.
- **c.** On considère un plan affine rapporté à un repère orthonormé $(0, \vec{i}, \vec{j})$ (\vec{i}) dirigeant l'axe des abscisses, unité 3 centimètres). Donner l'allure de la courbe représentative $\mathscr C$ de F dans ce plan. Déterminer les points d'intersection, autres que O, de $\mathscr C$ avec la droite d'équation y = -x.

Le baccalauréat de 1980 A. P. M. E. P.

PROBLÈME 12 POINTS

Soient P un plan vectoriel euclidien, rapporté à une base orthonormée $\mathscr{B} = (\overrightarrow{\iota}, \overrightarrow{\jmath})$, \mathscr{P} un plan affine associé à P, O un point de \mathscr{P} ; on note \mathscr{R} le repère (O; \mathscr{B}) de \mathscr{P} . Pour les représentations graphiques dans \mathscr{P} on prendra deux centimètres pour unité de longueur. On désigne par L(P) l'ensemble des endomorphismes de P. On rappelle que $\mathscr{L}(P)$ a une structure d'espace vectoriel et que, muni de l'addition et de la composition des applications, notées respectivement + et \circ , cet ensemble a aussi une structure d'anneau unitaire.

On désigne respectivement par e et 'l'application identique et l'application nulle de $\mathcal{L}(P)$. Si f est un élément de $\mathcal{L}(P)$ et si n est un entier naturel, on note f^n l'élément de $\mathcal{L}(P)$ défini par les relations

$$f^0 = e$$
, $f^1 = f$, $f^n = f \circ f^{n-1}$ si $n > 1$.

Partie A

On se propose d'étudier les endomorphismes f de $\mathcal{L}(P)$ vérifiant la relation

$$f^2 + \frac{1}{2}f - \frac{5}{18}e = \omega. \tag{1}$$

1. Soit g l'endomorphisme de P dont la matrice dans la base \mathcal{B} est :

$$\begin{pmatrix} -\frac{1}{4} & -\frac{7}{12} \\ -\frac{7}{12} & -\frac{1}{4} \end{pmatrix}$$

Vérifier que g est solution de (1).

- **2. a.** Déterminer les deux homothéties vectorielles solutions de (1). On appelle k_1 et k_2 leurs deux rapports avec $k_1 < k_2$.
 - **b.** Démontrer que la relation (1) est équivalente à la relation

$$(f - k_1 \mathbf{e}) \circ (f - k_2 \mathbf{e}) = \omega. \tag{2}$$

3. Soit f l'endomorphisme de P, autre qu'une homothétie vectorielle, vérifiant (1). On note de la manière suivante deux noyaux et deux images :

$$N_1 = \ker(f - k_1 e), N_2 = \ker(f - k_2 e), I_1 = \operatorname{Im}(f - k_1 e), I_2 = \operatorname{Im}(f - k_2 e).$$

- **a.** Démontrer que $I_2 = N_1$ et $I_1 = N_2$. En déduire que N_1 et N_2 sont deux sous-espaces vectoriels supplémentaires de P.
- **b.** Soient p_1 la projection vectorielle de P sur N_1 de direction N_2 et $p_2 = e p_1$.

Démontrer le relation :

$$f = k_1 p_1 + k_2 p_2$$
.

En déduire, pour n entier naturel, une expression de f^n combinaison linéaire de p_1 et p_2 .

- **4.** On désigne par π le sous-espace vectoriel de $\mathcal{L}(P)$ engendré par p_1 et p_2 de la question précédente.
 - **a.** Quelle est la dimension de π ?

Le baccalauréat de 1980 A. P. M. E. P.

- **b.** Démontrer que $(\pi, +, \circ)$ est un anneau unitaire. Préciser l'élément neutre de cet anneau.
- **c.** Déterminer les solutions de (1) dans π , autres que f.
- **5.** On suppose désormais que f est l'endomorphisme g définie à la première question.
 - **a.** Déterminer N_1 et N_2 . Donner une base de chacun de ces espaces vectoriels.
 - **b.** Vérifier que p_1 et p_2 sont des projections orthogonales. En déduire que :

$$\forall x, x \in P$$
, $||x||^2 2 = ||p_1(x)||^2 + ||p_2(x)||^2$.

c. Démontrer qu'un élément $\lambda_1 p_1 + \lambda_2 p_2$ de π est une isométrie si et seulement si $|\lambda_1| = |\lambda_2| = 1$.

En déduire que l'ensemble des applications de π qui sont des isométries est un groupe dont on précisera les éléments.

Partie B

Soit γ l'application affine de $\mathscr P$ dans $\mathscr P$ dont l'endomorphisme associé est l'application g du A 1. et telle que $\gamma(O)=O_1$, O_1 étant le point d'abscisse $\frac{7}{3}$ et d'ordonnée 5 dans $\mathscr R$.

- 1. Démontrer que γ admet un point invariant unique A dont on donnera les coordonnées dans \mathcal{R} .
- **2. a.** Démontrer qu'il y a exactement deux droites de \mathscr{P} passant par A, globalement invariantes par γ . Représenter graphiquement ces droites dans \mathscr{P} muni de \mathscr{R} .
 - **b.** Démontrer que ce sont les seules droites de ${\mathscr P}$ globalement invariantes par γ .
- **3.** Soit \mathscr{R}' le repère $\left(A; \overrightarrow{u_1}, \overrightarrow{u_2}\right)$ où $\overrightarrow{u_1} = \frac{\sqrt{2}}{2} \left(\overrightarrow{i} + \overrightarrow{j}\right)$ dirige l'axe des abscisses et $\overrightarrow{u_1} = \frac{\sqrt{2}}{2} \left(-\overrightarrow{i} + \overrightarrow{j}\right)$ celui des ordonnées.

Soit M_0 un point de \mathscr{P} . Si n est un entier naturel non nul, on pose $M_1 = \gamma(M_0)$, \cdots , $M_n = \gamma(M_{n-1})$.

a. Montrer que l'on peut écrire

$$\overrightarrow{AM_n} = k_2^n p_1 \overrightarrow{AM_0} + k_1^n p_2 \overrightarrow{AM_0}.$$

En déduire que

$$\|\overrightarrow{AM_n}\| \leq (|k_1|^n + |k_2|^n) \|\overrightarrow{AM_0}\|.$$

Que peut-on en déduire pour la suite des points $(M_n)_{n \in \mathbb{N}}$?

- **b.** Déterminer le réel strictement positif α tel que la courbe C du plan \mathscr{P} , représentant dans \mathscr{R}' la fonction de \mathbb{R}^* dans \mathbb{R} , $x \longmapsto |x|^{\alpha}$ soit globalement invariante par γ .
- **c.** Démontrer que si $M_0 \in \mathbb{C}$, on a :

$$\forall n, n \in \mathbb{N}, M_n \in \mathbb{C}.$$

d. Soit Γ le cercle de \mathscr{P} de centre A et de rayon 4. Déterminer une équation de $\gamma(\Gamma)$ dans \mathscr{R}' . Quelle est la nature de cette courbe ? Préciser ses sommets.

Représenter graphiquement Γ et $\gamma(\Gamma)$ sur le dessin de la question B 2. a.