→ Baccalauréat C Orléans–Tours juin 1980 →

EXERCICE 1 3 POINTS

Soit l'équation

$$4x^3 + x^2 + x - 3 = 0 \tag{1}$$

1. Montrer, en étudiant la fonction numérique f définie sur \mathbb{R} par

$$f(x) = 4x^3 + x^2 + x - 3$$

que l'équation (1) n'a qu'une solution réelle, qui de plus, appartient à l'intervalle]0; 1[.

- **2.** Montrer que si l'équation (1) a une solution rationnelle $\frac{p}{q}$, où p et q sont premiers entre eux, alors p divise 3 et q divise 4.
 - Quels sont les rationnels vérifiant cette dernière condition?
- **3.** Déterminer la solution rationnelle $\frac{p}{q}$ de l'équation (1) et, après avoir mis en facteur (qx p) dans l'expression de f(x), achever la résolution de l'équation (1) dans le corps des complexes.

EXERCICE 2 4 POINTS

Soit A, B et C trois points alignés deux à deux distincts dans un plan affine E associé à un plan vectoriel \overrightarrow{E} .

On pose $\overrightarrow{AC} = \lambda \overrightarrow{AB}$, où $\lambda \in \mathbb{R}$.

1. **a.** Donner une condition nécessaire et suffisante portant sur le triplet (α, β, γ) de \mathbb{R}^3 pour que le propriété suivante soit vérifiée

A est le barycentre du système (B, β), (C, γ), et B est le barycentre du système (A, α), (C, γ), et C est le barycentre du système (A, α), (B, β).

- **b.** On vérifiera que l'ensemble X des triplets (α, β, γ) satisfaisant à cette condition est la droite vectorielle de \mathbb{R}^3 engendrée par le vecteur $\xrightarrow{}$
 - $\overrightarrow{u} = (\lambda 1; -\lambda; 1)$, privée du vecteur nul.
- **2.** Soit (α, β, γ) un élément de X.
 - **a.** Soit f la fonction de E dans \overrightarrow{E} définie par

$$\forall M \in E, \quad f(M) = \alpha \overrightarrow{MA} + \beta \overrightarrow{MB} + \gamma \overrightarrow{MC}.$$

Déterminer l'image de E par f.

b. Dans le cas où E est euclidien, on considère la fonction Φ de E dans $\mathbb R$ définie par

$$\forall M \in E$$
, $\Phi(M) = \alpha M A^2 + \beta M B^2 + \gamma M C^2$.

Montrer que Φ est constante.

PROBLÈME 13 POINTS

Le baccalauréat de 1980 A. P. M. E. P.

Partie A

Pour tout entier naturel non nul n, on pose

$$I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, \mathrm{d}x.$$

- **1. a.** Justifier l'existence de I_n .
 - **b.** Sans calculer I_n , montrer que la suite $(I_n)_{n\in\mathbb{N}}$ est une suite décroissante dont tous les termes sont positifs.
- **2. a.** Pour tout entier naturel n, calculer la dérivée de la fonction $x \mapsto \tan^{n+1} x$. En déduire

$$\forall n \in \mathbb{N}^*, \quad I_n + I_{n+2} = \frac{1}{n+1}.$$

- **b.** Montrer que $\forall n \in \mathbb{N}^*$, $\frac{1}{2(n+1)} \leqslant I_n \leqslant \frac{1}{n+1}$.
- **c.** En déduire la limite de la suite $(I_n)_{n\in\mathbb{N}}$ lorsque n tend vers $+\infty$.
- **d.** Calculer $f(n) = I_{n+4} I_n$ en fonction de n, où $n \in \mathbb{N}^*$.
- **3. a.** Calculer I_2 .
 - **b.** Calculer $f(2) + f(6) + f(10) + \cdots + f(4k-2)$ en fonction de I_2 et de I_{4k+2} , où $k \in \mathbb{N}^*$.
 - c. En déduire la limite de la somme

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots - \frac{1}{4k-1} + \frac{1}{4k+1}$$
.

lorsque k tend vers $+\infty$.

- **4. a.** Vérifier que la fonction $x \mapsto \log(\cos x)$ est définie et dérivable sur $\left[0; \frac{\pi}{4}\right]$ et déterminer sa dérivée. Calculer I_1 .
 - **b.** Calculer f(1) + f(5) + f(9) + ... + f(4k-3) en fonction de I_1 et de I_{4k+1} , où $k \in \mathbb{N}^*$.
 - c. En déduire la limite de la somme

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2k-1} - \frac{1}{2k}$$

lorsque k tend vers $+\infty$.

Partie B

Soit α un réel donné élément de $\left]0; \frac{\pi}{4}\right[$. On pose

$$\forall n \in \mathbb{N}^*, K_n(\alpha) = \int_0^\alpha \tan^n x \, \mathrm{d}x$$
 et

$$S_n(\alpha) = K_1(\alpha) + K_2(\alpha) + \cdots + K_n(\alpha).$$

1. Soit x un élément de $[0; \alpha]$. Calculer pour n entier naturel non nul, $|\tan x + \tan^2 x + \dots + \tan^n x|$ en fonction de x et de n. Montrer que

$$\left|\tan x + \tan^2 x + \dots + \tan^n x - \frac{\tan x}{1 - \tan x}\right| = \frac{\tan^{n+1} x}{1 - \tan x}.$$

Le baccalauréat de 1980 A. P. M. E. P.

2. Étudier le sens de variation de la fonction g_p , où $p \in N^*$, définie sur $[0; \alpha]$ par $g_p(x) = \frac{\tan^p x}{1 - \tan x}$. En déduire que

$$\forall p \in \mathbb{N}^{\star}, \forall x \in [0; \alpha], 0 \leqslant \frac{\tan^{p} x}{1 - \tan x} \leqslant \frac{\tan^{p} \alpha}{1 - \tan \alpha}.$$

3. Montrer que

$$\forall p \in \mathbb{N}^*, \quad \left| S_n(\alpha) - \int_0^\alpha \frac{\tan x}{1 - \tan x} \right| \leqslant \frac{\alpha \tan \alpha}{1 - \tan \alpha}.$$

En déduire l'existence de la limite de la suite $(S_n(\alpha))_{n\in N^*}$ quand n tend vers $+\infty$.

- 4. On se propose de préciser cette limite.
 - **a.** Montrer que la fonction $x \mapsto \log(\cos x \sin x)$ est définie et dérivable sur l'intervalle $\left[0; \frac{\pi}{4}\right[$. Calculer sa dérivée.
 - **b.** On pose

$$A(\alpha) = \int_0^\alpha \frac{\sin x}{\cos x - \sin x} \, \mathrm{d}x \quad \text{et}$$

$$B(\alpha) = \int_0^\alpha \frac{\cos x}{\cos x - \sin x} \, \mathrm{d}x$$

Calculer $B(\alpha) - A(\alpha)$ et $B(\alpha) + A(\alpha)$ puis $A(\alpha)$ et $B(\alpha)$. En déduire la valeur de la limite de la suite $(S_n(\alpha))_{n \in \mathbb{N}^*}$ quand n tend vers $+\infty$.

Partie C

On pose, pour $n \in \mathbb{N}^*$, $S'_n = I_1 + I_2 + \ldots + I_n$.

On se propose de démontrer que la suite $(S'_n)_{n\in\mathbb{N}^*}$ tend vers $+\infty$ quand n tend vers $+\infty$, c'est à dire que

$$\forall C \in R_+, \exists x_0 \in \mathbb{N}^*, \forall n \in N^*, \quad n > n_0 \Rightarrow S_n' > C.$$

Dans cette partie, α varie dans l'intervalle 0; $\frac{\pi}{4}$

- **1. a.** Étudier la limite de $A(\alpha)$ quand α tend vers $\frac{\pi}{4}$. En déduire qu'il existe un élément α_0 de $\left]0$; $\frac{\pi}{4}\right[$ tel que $A(\alpha_0) > C + 1$.
 - b. En utilisant les résultats de la partie B, montrer que

$$\exists n_0 \in \mathbb{N}^*, \forall n \in \mathbb{N}^*, n > n_0 \Rightarrow |A(\alpha_0) - S_n(\alpha_0)| < 1.$$

2. Montrer que

$$\forall n \in \mathbb{N}^*, \forall \alpha \in \left[0; \frac{\pi}{4}\right[, S'_n \geqslant S_n(\alpha).\right]$$

3. Utiliser ce qui précède pour montrer que $\lim_{n \to +\infty} S'_n = +\infty$.