EXERCICE 1 4 POINTS

Soient trois points non alignés A, B, C d'un plan affine euclidien ${\mathcal P}$.

On pose d(B, C) = a, d(C, A) = b, d(A, B) = c. On désigne par I le milieu du segment [BC]. Quels que soient les points P et Q du plan, on notera PQ la distance de ces points.

- 1. Établir l'égalité : $b^2 + c^2 = 2AI^2 + \frac{a^2}{2}$.
- **2.** À tout point M du plan \mathcal{P} on associe le réel :

$$\varphi(M) = MB^2 + MC^2 - MA^2.$$

- **a.** Soit G le barycentre des points B, C et A affectés respectivement des coefficients 1, 1 et −1.
 - Donner une détermination simple de G et placer ce point sur la figure.
- **b.** Exprimer $\varphi(M)$ à l'aide de MG, a, b, c. Donner une condition nécessaire et suffisante portant sur a, b, c pour qu'il existe un point M au moins vérifiant $\varphi(M) = 0$.

EXERCICE 2 4 POINTS

Soit la famille d'équations :

$$z^{2} - (1 + i\sin 2\theta)z + \frac{1}{2}\sin 2\theta = 0$$
 $(E_{\theta})^{2}$

dans laquelle θ désigne un réel appartenant à l'intervalle $\left] -\frac{\pi}{2} ; \frac{\pi}{2} \right[$.

Soit \mathscr{P} le plan affine muni d'un repère orthonormé $\left(0,\overrightarrow{u},\overrightarrow{v}\right)$; à tout complexe $z=x+\mathrm{i}y,(x\,;\,y)$ étant élément de $\mathbb{R}\times\mathbb{R}$, on associe le point M de coordonnées $(x\,;y)$ dans \mathscr{P} .

- 1. Résoudre l'équation (E_{θ}) dans l'ensemble des nombres complexes. Préciser la cas des racines doubles.
- **2.** Soient $M'(\theta)$ et $M''(\theta)$ les points de \mathscr{P} associées aux solutions $z'(\theta)$ et $z''(\theta)$ de l'équation (E_{θ}) et soit $I(\theta)$ le milieu du segment $[M'(\theta), M''(\theta)]$.
 - **a.** Déterminer l'ensemble des points $I(\theta)$ quand θ décrit $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$.
 - **b.** Montrer que l'ensemble des points $M'(\theta)$ et $M''(\theta)$ est un cercle $\mathscr C$ que l'on précisera.
 - **c.** Démontrer, lorsque $M'(\theta)$ et $M''(\theta)$ sont distincts, que la droite contenant ces deux points a une direction indépendante de θ .
 - **d.** θ étant donné (on fera la figure avec $\theta = \frac{\pi}{6}$), déduire de ce qui précède une construction simple de $I(\theta)$ et des points $M'(\theta)$ et $M''(\theta)$. Une figure soignée comportera tous les éléments intéressants de l'exercice

^{1.} Paris, Créteil, Versailles

Le baccalauréat de 1980 A. P. M. E. P.

PROBLÈME 12 POINTS

Soit f l'application de l'intervalle I = J - 1; $I[dans \mathbb{R} définie par :$

$$x \mapsto f(x) = \int_0^x \frac{1}{1 - t^2} dt.$$

Partie A

 a. Démontrer qu'il existe deux réels a et b tels que pour tout t appartenant à I:

$$\frac{1}{1-t^2} = \frac{a}{1-t} + \frac{b}{1+t}.$$

b. Calculer f(x).

Étudier les variations de l'application f (en particulier la parité) et construire la courbe représentative de f dans un plan affine euclidien muni d'un repère orthonormé $\left(0, \overrightarrow{i}, \overrightarrow{j}\right)$.

2. Montrer que f est une bijection de I sur \mathbb{R} . En désignant par u un réel strictement positif, résoudre dans I l'équation $f(x) = \log u$. (On désigne par $\log u$ le logarithme népérien de u.)

Partie B

Soit r un rationnel strictement supérieur à 1. On pose $r = \frac{p}{q}$, p et q étant deux entiers naturels premiers entre eux.

On désigne par \mathbb{N}' l'ensemble des entiers naturels strictement supérieur à 1.

- Démontrer que si a et b sont deux entiers naturels premiers entre eux vérifiant a > b, les entiers naturels a + b et a b ont pour plus grand diviseur commun soit 1, soit 2. Préciser, en considérant les parités de a et de b, dans quelles conditions on obtient chacun de ces deux cas.
- **2.** Montrer que, quel que soit r, l'équation

$$f\left(\frac{1}{m}\right) = \log r, \quad m \in \mathbb{N}'$$

n'a pas de solution.

3. a. Résoudre les équations

$$2f\left(\frac{1}{m}\right) = \log 2, \quad m \in \mathbb{N}'$$
$$2f\left(\frac{1}{m}\right) = \log 4, \quad m \in \mathbb{N}'.$$

b. Montrer qu'une condition nécessaire et suffisante pour que l'équation :

$$2f\left(\frac{1}{m}\right) = \log r, \quad m \in \mathbb{N}'$$

ait une solution est qu'il existe un entier naturel non nul k tel que

$$r=1+\frac{2}{k}$$

Résoudre alors cette équation.

4. Soit l'équation à deux inconnues :

$$f\left(\frac{1}{m}\right) + f\left(\frac{1}{n}\right) = \log r, \quad (m, n) \in \mathbb{N}' \times \mathbb{N}'.$$
 (E_r)

Le baccalauréat de 1980 A. P. M. E. P.

a. Montrer que l'équation (E_r) a les mêmes solutions que l'équation :

$$(m-s)(n-s) = t$$
, $(m; n) \in \mathbb{N}' \times \mathbb{N}'$

où s et t désignent deux rationnels que l'on calculera en fonction de r.

b. Résoudre les équations

$$f\left(\frac{1}{m}\right) + f\left(\frac{1}{n}\right) = \log 2, \quad (m; n) \in \mathbb{N}' \times \mathbb{N}'$$

$$f\left(\frac{1}{m}\right) + f\left(\frac{1}{n}\right) = \log 4, \quad (m; n) \in \mathbb{N}' \times \mathbb{N}'$$