∽ Baccalauréat C La Réunion septembre 1987 ∾

EXERCICE 1 4 points

Construire dans le plan rapporté à un repère orthonormé, la courbe d'équation :

$$16(x+6)|x+6|+36y|y|=576.$$

EXERCICE 2 4 points

Dans le plan, on donne un triangle équilatéral ABC.

À chaque point M du segment [AC], on associe :

- le projeté P de M sur la droite (BC) parallèlement à la droite (AB),
- le point Q vérifiant : BCQM est un parallélogramme,
- le point d'intersection N des droites (MQ) et (AB),
- et les points O, I, J et D, milieux respectifs de (B, C), (M, Q), (N, P) et (A, B).
- 1. Montrer qu'il existe un déplacement D que l'on déterminera tel que, pour tout élément M du segment [AC], on ait : D(M) = I.

Déterminer le lieu géométrique du point I lorsque M décrit le segment [AC].

- 2. Lorsque le point M décrit le segment [AC] :
 - a. Déterminer le lieu géométrique du centre de gravité G du triangle MCQ.
 - **b.** Déterminer le lieu géométrique du point J.
 - **c.** Montrer que la droite (IJ) passe par un point indépendant du choix de M sur le segment [AC].

PROBLÈME 12 points

On désigne par $R = (O, \vec{\iota}, \vec{j})$ un repère orthonormé du plan, et par a, b et c des réels quelconques. Les fonctions f_0, f_1, f_2 et f sont respectivement définies sur l'ensemble \mathbb{R} des réels par :

$$f_0(x) = e^{-\frac{x}{2}}, \quad f_1(x) = xe^{-\frac{x}{2}}, \quad f_2(x) = x^2 e^{-\frac{x}{2}}$$

et

$$f(x) = (a + bx + cx^2) e^{-\frac{x}{2}}$$
.

On désignera par : \mathcal{C}_0 , \mathcal{C}_1 et \mathcal{C}_2 les courbes représentatives respectives de f_0 , f_1 et f_2 dans le repère R.

A On se propose de représenter \mathscr{C}_0 , \mathscr{C}_1 et \mathscr{C}_2 .

- **1.** Étudier les variations des fonctions f_0 , f_1 et f_2 .
- **2.** Préciser par leurs coordonnées dans le repère R, les points d'intersection de \mathscr{C}_1 et \mathscr{C}_0 , \mathscr{C}_2 et \mathscr{C}_0 , et \mathscr{C}_2 et \mathscr{C}_1 .
- 3. Étudier sur l'ensemble $\mathbb R$ des réels, le signe de chacune des expressions :

$$f_1(x) - f_0(x)$$
, $f_2(x) - f_0(x)$ et $f_2(x) - f_1(x)$

Terminale C A. P. M. E. P.

4. Tracer les courbes \mathscr{C}_0 , \mathscr{C}_1 et \mathscr{C}_2 dans le repère R, et hachurer le domaine fermé \mathscr{E} , déterminé par les trois courbes \mathscr{C}_0 , \mathscr{C}_1 et \mathscr{C}_2 , c'est-à-dire l'ensemble \mathscr{E} des points M du plan, dont les coordonnées (x;y) dans le repère R vérifient :

$$\left\{ \begin{array}{llll} -1 & \leqslant & x & \leqslant & 0 \\ f_2(x) & \leqslant & y & \leqslant & f_0(x) \end{array} \right. \quad \text{ou} \quad \left\{ \begin{array}{llll} 0 & \leqslant & x & \leqslant & 1 \\ f_1(x) & \leqslant & y & \leqslant & f_0(x) \end{array} \right.$$

B On se propose de calculer l'aire de $\mathscr E$

1. Soit n un entier naturel quelconque. Montrer qu'en posant :

$$I_n(x) = \int_0^x t^n \mathrm{e}^{-\frac{t}{2}} \, \mathrm{d}t,$$

on définit une fonction I_n qui a l'ensemble $\mathbb R$ des réels pour ensemble de définition

2. Soit n un entier naturel, et x un réel quelconque. Montrer que

$$I_{n+1}(x) = -2x^{n+1}e^{-\frac{x}{2}} + 2(n+1)I_n(x).$$

- **3.** Soit x un réel quelconque. Calculer $I_0(x)$ en fonction de x. En déduire les expressions de $I_1(x)$ et $I_2(x)$ en fonction de x.
- 4. Calculer l'aire de &.
- **C.** On se propose de calculer la dérivée d'ordre n de f

On désigne par $f^{(0)}$ (ou f), $f^{(1)}$ (ou f'), $f^{(2)}$ (ou f''), $f^{(3)}$ ou f'''), etc., les dérivées successives de la fonction f.

1. Montrer par récurrence, que pour tout entier naturel n, on peut trouver trois réels : α_n , β_n et γ_n vérifiant pour tout réel x :

$$f_n(x) = (\alpha_n + \beta_n x + \gamma_n x^2) e^{-\frac{x}{2}}.$$

On trouvera : $\alpha_0 = a$, $\beta_0 = b$ et $\gamma_0 = c$; et pour chaque entier naturel n, le raisonnement par récurrence, montrera que α_{n+1} , β_{n+1} et γ_{n+1} vérifient :

$$\alpha_{n+1} = \beta_n - \frac{1}{2}\alpha_n$$
, $\beta_{n+1} = 2\gamma_n - \frac{1}{2}\beta_n$ et $\gamma_{n+1} = -\frac{1}{2}\gamma_n$.

2. Pour chaque entier naturel n, on pose

$$\beta'_n = \beta_n + 4n\gamma_n$$
 et $\alpha'_n = \alpha_n + 2n\beta_n + 4n(n+1)\gamma_n$.

Montrer que (α'_n) , (γ'_n) et (γ'_n) sont des suites géométriques de raison $-\frac{1}{2}$.

3. En déduire pour chaque entier naturel n, l'expression de α_n , β_n et γ_n en fonction de n, a, b et c.