EXERCICE 1 5 POINTS

1. Résoudre dans \mathbb{C} l'équation en Z:

$$Z^2 + \left(1 - \sqrt{3}\right)Z - \sqrt{3} = 0.$$

2. Résoudre dans \mathbb{C} les équations en z :

(1)
$$z + \frac{1}{z} = -1$$

(2) $z + \frac{1}{z} = \sqrt{3}$

On désigne par α et α' les solutions de l'équation (1), par β et β' celles de l'équation (2).

3. Soit

$$f(z) = z^4 + (1 - \sqrt{3})z^3 + (2 - \sqrt{3})z^2 + (1 - \sqrt{3})z + 1.$$

Vérifier que pour tout nombre complexe z non nul,

$$\frac{f(z)}{z^2} = \left(z + \frac{1}{z}\right)^2 + \left(1 - \sqrt{3}\right)\left(z + \frac{1}{z}\right) - \sqrt{3}.$$

4. Déduire de l'étude précédente que α , α' , β , β' sont solutions dans $\mathbb C$ de l'équation f(z) = 0.

EXERCICE 2 4 POINTS

Soit ABC un triangle équilatéral du plan. On pose AB = a, où a est un réel strictement positif; l'unité du plan étant le centimètre, on prendra a = 6 pour la figure demandée au 3.

1. Soit m un réel différent de -2. On note G_m le barycentre du système $\{(A, m), (B, 1), (C, 1)\}.$

Déterminer l'ensemble (E_1) des points G_m lorsque m décrit \mathbb{R} en restant différent de -2.

- 2. On note G l'isobarycentre des trois points A, B, C.
 - a. Déterminer l'ensemble (E2) des points M du plan tels que

$$MA^2 + MB^2 + MC^2 = 2a^2$$
.

b. Déterminer l'ensemble (E₃) des points M du plan tels que

$$-2MA^2 + MB^2 + MC^2 = 0.$$

3. Faire une figure où l'on représentera le triangle ABC et les ensembles (E_1) , (E_2) et (E_3) .

PROBLÈME 4 POINTS

Le baccalauréat de 1989 A. P. M. E. P.

On note f la fonction numérique définie sur $\mathbb R$ par

$$f(x) = e^{-\cos x}$$
.

1. Étudier la parité et la périodicité de f.

Construire son tableau de variations sur l'intervalle $[0; \pi]$.

Tracer la courbe représentative (\mathscr{C}) de la restriction de f à $[0; \pi]$ dans le plan rapporté à un repère orthonormal $(0, \overrightarrow{\iota}, \overrightarrow{J})$ où l'unité de longueur est 5 cm.

- **2.** On se propose de rechercher un encadrement de l'aire S, exprimée en unité d'aire, de la partie du plan délimitée par (\mathscr{C}) , l'axe des abscisses et les droites d'équations x = 0 et $x = \pi$.
 - **a.** Étant donnés deux nombres réels u et v tels que $0 \le u \le v \le \pi$, démontrer que l'on a

$$(v-u)f(u) \leqslant \int_{u}^{v} f(x) \, \mathrm{d}x \leqslant (v-u)f(v)$$

et interpréter géométriquement ce résultat.

b. En utilisant le résultat précédent, établir l'encadrement suivant du nombre
 S :

$$\frac{\pi}{4} \left[f(0) + f\left(\frac{\pi}{4}\right) + f\left(\frac{\pi}{2}\right) + f\left(\frac{3\pi}{4}\right) \right] \leqslant S$$

$$\leqslant \frac{\pi}{4} \left[f(0) + f\left(\frac{\pi}{4}\right) + f\left(\frac{\pi}{2}\right) + f\left(\frac{3\pi}{4}\right) + f(\pi) \right]$$

- c. En déduire une valeur approchée entière, à une unité près, du nombre S.
- **3.** On se propose de rechercher les tangentes à (\mathscr{C}) issues de l'origine O.
 - **a.** Soit A le point de (\mathscr{C}) ayant pour abscisse a. Écrire une équation de la tangente en A à (\mathscr{C}) et montrer que cette tangente passe par O si, et seulement si, $a \sin a = 1$.
 - **b.** On définit la fonction numérique Ψ sur]0; π] par

$$\Psi(x) = \sin x - \frac{1}{x}.$$

Étudier les variations de Ψ (on pourra étudier les variations de Ψ' pour connaître le signe de Ψ').

En déduire l'existence pour la fonction Ψ d'un maximum absolu M en un point x_0 (on ne cherchera à calculer ni x_0 , ni M).

Calculer $\Psi'(\pi/2)$ et $\Psi(\pi/2)$; en déduire la position de x_0 par rapport à $\pi/2$ et le signe de M.

Montrer alors que Ψ s'annule en deux points p et q de]0; $\pi]$ et donner, en la justifiant, une valeur décimale approchée par défaut, à 10^{-1} près, de chacune de ces racines p et q.

c. En utilisant les résultats précédents, conclure quant au nombre de tangentes à (*C*) que l'on peut mener à partir de O.

B

On définit une suite numérique $(u_n)_{n \in \mathbb{N}^*}$ par

$$u_n = \frac{1}{2} e^{-\cos n}$$

et, pour tout entier naturel non nul n, on pose :

$$S_n = u_1 + u_2 + \cdots + u_n.$$

Le baccalauréat de 1989 A. P. M. E. P.

1. Établir que pour tout entier naturel non nul n, on a l'encadrement

$$\frac{1}{ne} \leqslant u_n \leqslant \frac{e}{n}.$$

En déduire $\lim_{n\to+\infty}u_n$.

2. a. En utilisant le fait que pour tout x élément de l'intervalle [n; n+1] on a $\frac{1}{x} \le \frac{1}{n}$ (n entier naturel non nul), démontrer que

$$\int_{n}^{n+1} \frac{1}{x} \, \mathrm{d}x \leqslant \frac{1}{n}.$$

En déduire l'inégalité $\ln(n+1) - \ln(n) \leqslant \frac{1}{n}$.

b. On pose

$$\Sigma_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}.$$

En utilisant le résultat précédent, établir que

$$\lim_{n\to+\infty}\Sigma_n=+\infty.$$

c. En déduire que $\lim_{n \to +\infty} S_n = +\infty$.

(On pourra utiliser l'encadrement obtenu au B. 1.)