EXERCICE 1 5 POINTS

Dans le plan complexe \mathscr{P} rapporté au repère orthonormal $(O, \overrightarrow{u}, \overrightarrow{v})$, l'unité graphique étant 4 cm, on définit l'application f qui à tout point M d'affixe z associe le point M' d'affixe z' définie par

$$z' = -jz + i$$
, où $j = e^{i\frac{2\pi}{3}}$.

- 1. Montrer que f admet exactement un point invariant Ω , dont on donnera l'affixe. Caractériser géométriquement f.
- **2.** On définit dans \mathscr{P} la suite $(M_n)_{n\in\mathbb{N}}$ par

$$\begin{cases} M_0 = O \\ M_{n+1} = f(M_n), \text{ pour tout } n. \end{cases}$$

- **a.** Construire Ω , M_0 , M_1 , M_2 .
- **b.** Pour tout entier n, on note z_n l'affixe de M_n et on pose

$$Z_n = z_n - e^{i\frac{\pi}{6}}$$
.

Déterminer un nombre complexe a tel que, pour tout entier n,

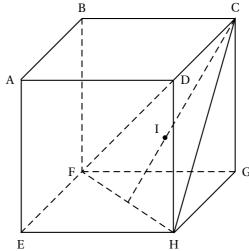
$$Z_{n+1} = aZ_n$$
.

Mettre a sous forme trigonométrique et déterminer un entier p strictement positif tel que $a^p = 1$.

c. Calculer Z_n puis z_n en fonction de n. Calculer z_{1989} et placer M_{1989} sur le dessin

EXERCICE 2 5 POINTS

On considère un cube ABCDEFGH d'arête *a*. On note I l'isobarycentre du triangle CFH.



- 1. a. Prouver que le triangle CFH est équilatéral.
- 1. Paris, Créteil, Versailles

Le baccalauréat de 1989 A. P. M. E. P.

- **b.** Prouver que les points A, G et I appartiennent au plan médiateur de [CH] et au plan médiateur de [CF].
- **c.** En déduire que la droite (AG) est orthogonale au plan (CFH) et qu'elle passe par I.
- **2.** On note P le plan contenant les droites (AB) et (HG) et P' le plan contenant les droites (AD) et (FG). On désigne par *s* et *s*(les réflexions par rapport aux plans P et P'.
 - a. Déterminer l'intersection des plans P et P'.
 - **b.** Déterminer les images des points C, F et H par s puis s', puis par $s' \circ s$.
 - **c.** Indiquer la nature de $s' \circ s$ et déterminer ses éléments caractéristiques.

PROBLÈME 10 POINTS

Partie A:

L?objet de cette partie est d'étudier la fonction g définie sur $[0; +\infty[$ par :

$$g(t) = \frac{1 - e^{-t}}{t}$$
 si $t > 0$, et $g(0) = 1$.

- 1. a. Établir que g est continue en 0.
 - **b.** Déterminer la limite de g en $+\infty$.
- **2. a.** Pour tout t > 0, calculer g'(t).
 - **b.** Prouver que pour tout t > 0, $1 + t \le e^t$.
 - **c.** En déduire le signe de g' et le sens de variation de g (on ne demande pas de construire la courbe représentative de g).
- 3. On se propose d?étudier la dérivabilité de g en 0.

À cet effet on introduit la fonction h définie sur $[0; +\infty[$ par :

$$h(t) = 1 - t + \frac{t^2}{2} - e^{-t}.$$

- **a.** Calculer h'(x) et h''(x), ainsi que les valeurs de h(0) et h'(0).
- **b.** Prouver que pour tout t > 0:

$$0 \leqslant h(t) \leqslant \frac{t^3}{6} \tag{1}$$

pour cela, on établira d'abord que $0 \le h''(t) \le t$, et on en déduira un encadrement de h' puis de h.

c. Déduire de la relation (1) un encadrement de $\frac{1 - e^{-t} - t}{t^2}$.

Prouver finalement que g est dérivable en 0 et que $g'(0) = -\frac{1}{2}$.

Partie B:

On se propose d'étudier la fonction f définie sur $[0; +\infty[$ par :

$$f(x) = \frac{1}{x} (e^{-x} - e^{-2x})$$
 si $x > 0$, et $f(0) = 1$

1. a. Déterminer la limite de f en $+\infty$.

Le baccalauréat de 1989 A. P. M. E. P.

b. Prouver que pour tout x > 0,

$$f'(x) = \frac{1}{x^2} e^{-2x} \left(2x + 1 - e^x (x+1) \right).$$

- **c.** À partir de l'inégalité $1+x \le e^x$, établie au A. 2. b., montrer que, pour tout x > 0, $f'(x) \le 0$.
- **2.** Vérifier que pour tout x > 0,

$$f(x) = 2g(2x) - g(x)$$
 (2)

où g est la fonction étudiée dans la partie A.

En déduire que f est dérivable en 0 et calculer f'(0).

3. Construire la courbe représentative (\mathscr{C}) de f, le plan étant rapporté à un repère orthonormal $(0, \overrightarrow{i}, \overrightarrow{j})$. Unité graphique : 4 cm.

Partie C:

On étudie maintenant la fonction F définie sur $[0; +\infty[$ par :

$$F(t) = \int_0^t f(x) \, \mathrm{d}x.$$

On ne cherchera pas à calculer cette intégrale.

- **1. a.** Étudier le sens de variation de *F*.
 - **b.** Établir que pour tout x > 0, $0 \le f(x) \le e^{-x}$. En déduire que pour tout t > 0, $0 \le F(t) \le 1$.
- **2.** Soit G la fonction définie sur $[0; +\infty[$ par :

$$G(t) = \int_0^t g(x) \, \mathrm{d}x.$$

a. En utilisant la relation (2), prouver que pour tout t > 0:

$$F(t) = G(2t) - G(t).$$

b. En déduire que pour tout t > 0:

$$F(t) = \int_0^{2t} g(x) \, \mathrm{d}x. \tag{3}$$

c. Établir que pour tout x > 1:

$$0 \leqslant \frac{1}{x} - g(x) \leqslant e^{-x}.$$

En déduire que pour tout t > 1:

$$0 \leq \ln 2 - F(t) \leq e^{-t}$$
.

d. Prouver finalement que F(t) admet une limite lorsque t tend vers $+\infty$ et déterminer cette limite.