→ Baccalauréat C juin 1990 → Aix–Marseille–Nice–Corse–Montpellier–Toulouse

Exercice 1 4 points

Soit P la plan complexe muni d'un repère orthonormal $(O, \overrightarrow{u}, \overrightarrow{v})$, unité graphique 1 cm. On donne les points A et B d'affixes respectives 12 et 9i et l'application f de P dans P qui au point M d'affixe Z associe le point M' d'affixe Z définie par

$$Z = -\frac{3}{4}iz + 9i.$$

- 1. Démontrer que f admet un point invariant Ω de coordonnées $\left(\frac{108}{25}; \frac{144}{25}\right)$.

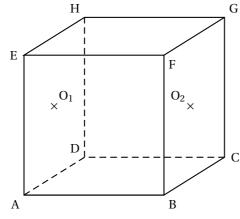
 Démontrer que f est une similitude plan directe d'angle $-\frac{\pi}{2}$, de rapport $\frac{3}{4}$. Quel est son centre?
- **2.** Quelles sont les images par f des points A et O?

 Montrer que Ω est commun aux deux cercles (\mathscr{C}_1) et (\mathscr{C}_2) de diamètres respectifs [OA] et [OB].

Établir que Ω est le pied de la hauteur issue de O dans le triangle OAB et montrer que $\Omega A \times \Omega B = \Omega O^2$.

Faire une figure comportant les points Ω , A, B ainsi que les cercles (\mathscr{C}_1) et (\mathscr{C}_2) .

EXERCICE 2



On considère un cube ABCDEFGH, on appelle O_1 et O_2 les centres respectifs des faces ADHE et BCGF.

4 points

Soit N un point du segment [HF] et P un point du segment [AC] définis par

$$\overrightarrow{HN} = k\overrightarrow{HF} \text{ et } \overrightarrow{AP} = k\overrightarrow{AC} \text{ où } k \in [0; 1].$$

- **1.** Montrer que N est barycentre du système des points pondérés $\{(H, 1-k), (F, k)\}$ et que P est barycentre du système des points pondérés $\{(A, 1-k), (C, k)\}$
- **2.** Soit d le demi-tour d'axe (O_1O_2) . Quelles sont les images par d des points A, C et P?
- 3. I étant le milieu du segment [NP], montrer que $\overrightarrow{HN} + \overrightarrow{AP} = 2\overrightarrow{O_1I}$ puis que $\overrightarrow{HF} + \overrightarrow{AC} = 2\overrightarrow{O_1O_2}$.

En déduire que $\overline{O_1I} + = k\overline{O_1O_2}$, $k \in [0; 1]$.

Quel est l'ensemble des points I lorsque k décrit l'intervalle [0; 1]?

PROBLÈME 4 points

L'objet de ce problème est l'étude de quelques propriétés des fonctions f_n , $n \in \mathbb{N}^*$, définies sur l'intervalle]0; $+\infty[$ par :

$$f_n(x) = x - n - \frac{n \ln x}{x}.$$

La représentation graphique de f_n dans le plan rapporté au repère orthonormal $(0, \overrightarrow{i}, \overrightarrow{j})$ est appelée \mathscr{C}_n . On prendre 2 cm pour unité graphique.

A. Étude des variations de f_n , $(n \in \mathbb{N}^*)$.

1. Soit, pour tout entier naturel n non nul, la fonction g_n définie sur l'intervalle]0; $+\infty[$ par :

$$g_n(x) = x^2 - n + n \ln x.$$

Étudier le sens de variation de g_n , préciser ses limites en 0 et en $+\infty$. Montrer que l'équation $g_n(x) = 0$ admet une solution unique notée α_n et que cette solution appartient à l'intervalle [1 ; 3].

- **2.** Établir, sur l'intervalle]0; $+\infty[$, $f'_n(x)=\frac{g_n(x)}{x^2}$; étudier le signe de $g_n(x)$ et en déduire le sens de variation de f_n .
- **3.** Étudier les limites de f_n en 0 et en $+\infty$. Montrer que la droite D_n d'équation y = x n est asymptote à la courbe \mathscr{C}_n . Étudier la position de \mathscr{C}_n par rapport à D_n lorsque x décrit l'intervalle]0; $+\infty[$.

Étude des cas particuliers n = 1 et n = 2.

- 1. α_n étant le nombre défini en **??**, montrer que pour n=1, $\alpha_1=1$ et que, pour $n=2,1,2<\alpha_2<1,3$.
- En utilisant les règles sur les inégalités et l'encadrement de α₂ ci-dessus, montrer que l'on a f₂(α₂) ≥ −1,24.
 En utilisant le sens de variation de f₂ montrer que f₂(α₂) ≤ −1,10.
- **3.** Former les tableaux de variations de f_1 et f_2 .
- **4.** Représenter dans le même repère $(0, \vec{\iota}, \vec{j})$ les droites D_1 et D_2 , puis les courbes \mathscr{C}_1 et \mathscr{C}_2 .
- **5.** Calculer en cm² la valeur exacte de l'aire S_1 de la partie du plan comprise entre \mathcal{C}_1 et les droites d'équations x = 1, x = e, y = 0.

C. Étude des positions relatives des courbes C_n .

- 1. Pour tout entier naturel non nul et pour tout réel x de l'intervalle]0; $+\infty[$, calculer la différence $f_n(x) f_{n+1}(x)$. Calculer la limite de cette différence lorsque x tend vers $+\infty$.
- **2.** Soit d la fonction définie sur l'intervalle]0; $+\infty[$ par :

$$d(x) = 1 + \frac{\ln x}{x}.$$

- **a.** Étudier les variations de d, préciser ses limites en 0 et en $+\infty$.
- **b.** Déduire de la question précédente que l'équation d(x) = 0 admet une solution unique β et que β appartient à l'intervalle [0; 1].
- **c.** Montrer que pour tout entier naturel non nul on a $f_n(\beta) = \beta$.
- **3.** À l'aide des résultats obtenus dans la question 1. et 2. de cette partie, établir que les courbes \mathscr{C}_n se coupent en un point A que l'on placera sur la figure. Pour $n \in \mathbb{N}^+$ préciser les positions relatives de \mathscr{C}_n et \mathscr{C}_{n+1} .