MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE SECRETARIAT GENERAL ECTION GENERALE DE L'ENSEIGNEMENT SUPERIE

DIRECTION GENERALE DE L'ENSEIGNEMENT SUPERIEUR DIRECTION DE L'ENSEIGNEMENT SUPERIEUR

Service d'Appui au Baccalauréat

Série: A

Code matière: 009

BACCALAUREAT DE L'ENSEIGNEMENT GENERAL

SESSION 2011

Epreuve de : MATHEMATIQUES

ue. MAITIEMAIIQUES

Durée:

02 heures 15 minutes

Coefficients:

A1 = 1 ; A2 = 3

N.B: - Les DEUX (02) exercices et le Problème sont obligatoires.
- Machine à calculer scientifique NON programmable autorisée.

Exercice 1 (05 points) On considère les suites numériques (Un) $n \in \mathbb{N}$ et (Vn) $n \in \mathbb{N}$ définies respectivement par : $U_{n+1} = \frac{1}{2}(U_n + 1)$ et $V_n = U_n - 1$ 1°) Calculer U1, Vo et V1 (0,25 pt x3)2°)a) Montrer que (V_n) $n \in \mathbb{N}$ est une suite géométrique de raison $q = \frac{1}{n}$ (1pt) b) Exprimer V_n puis U_n en fonction de n (0,5pt+0,5pt)3°) Soit la suite (W_n) $n \in \mathbb{N}$ définie par : $W_n = \ln V_n$ a) Montrer que (Wn) est une suite arithmétique dont on précisera sa raison et son premier terme. (1pt) b) Ecrire Wn en fonction de n et calculer lim Wn (1pt + 0,25pt)Exercice 2 Une boîte contient 10 jetons indiscernables au toucher dont 3 jaunes, 2 rouges et 5 blancs. 1°) On tire au hasard et simultanément 3 jetons de la boîte. Déterminer le nombre de cas possibles. (1pt) Calculer la probabilité de chacun des événements suivants : A: « Obtenir trois jetons de même couleur ». (1pt) B: « Parmi les trois jetons tirés, deux et deux seulement sont de même couleur ». (1pt)

NB : On donnera les résultats sous forme de fraction irréductible.

Calculer la probabilité de chacun des événements suivants :

D: « Les deux jetons rouges sont tirés ».

On tire au hasard et successivement sans remise 3 jetons de la boîte.

C: « Obtenir dans l'ordre un jeton rouge et deux jetons blancs ».

1

(1pt)

(1pt)

Problème

(10 points)

A2

A1

Soit f la fonction numérique définie sur $\mathbb R$ par $\mathscr R$

$$f(x) = e^{x}(e^{x}-2)-3$$

On note (\mathscr{C}) sa courbe représentative dans un repère orthonormé (0; i, j) d'unité 1cm.

Dim e = +00

260 400

1°) Vérifier que $\lim_{x\to -\infty} f(x) = -3$. Interpréter géométriquement ce résultat.

(1+0,5pt) (0,5ct

2°)a) Calculer $\lim_{x \to +\infty} f(x)$.

(1pt) (0,5pt

b) Sachant que $\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$. Que peut- on dire pour la courbe (%)?

(0,75pt) (0,5pt)

3°) Déterminer les coordonnées du point A , intersection de la courbe ($\mathscr C$) avec l'axe des abscisses (x'0x).

(0,75pt) (0,75cm

4°)a) Vérifier que pour tout réel x de \mathbb{R} , $f'(x) = 2e^x \left(e^x - 1\right)$ où f' est la fonction dérivée de f.

(1pt) (1pt)

b) Etudier le sens de variation de f et dresser son tableau de variation sur $\mathbb R$

(1+0,5pt) (1+0,5pt)

5°) Ecrire une équation de la tangente (T) à (\mathscr{C}) au point d'abscisse $x_0 = \ln 3$.

(1pt) (1pt)

6°) Montrer que le point I $(-\ln 2; -\frac{15}{4})$ est un point d'inflexion pour la courbe (8°).

(1pt) (0,75pt

7°) Tracer (T) et (8) dans le même repère.

(0,5+1pt) 0,5+1pt

Pour A2 seulement

 8°) soit F la fonction définie sur \mathbb{R} par :

$$F(x) = \frac{1}{2}e^{2x} - 2e^x - 3x$$

a) Prouver que F est une primitive de f sur $\mathbb R$.

(0,00pt) (1pt)

b) Calculer, en cm², l'aire \mathscr{A} du domaine plan délimité par la courbe (\mathscr{C}), l'axe (x'ox) et les droites d'équations respectives : x = 0 et $x = \ln 3$.

(0,00pt) (1pt)

On donne: ln2 = 0,7 et ln3 = 1,1
