SERIES:

MTE-TSEco-STG

Soient f et g deux fonctions numérique définies sur $\mathbb R$ par :

$$f(x) = \sin^3 x$$
 et $g(x) = \cos^3 x$

1°) Linéariser f(x) et g(x)

2°) Calculer
$$I = \int_0^{\frac{\pi}{6}} (f(x) + g(x)) dx$$

Soit (U_n) la suite définie sur
$$\mathbb{R}$$
-{0; 1; 2} par
$$\begin{cases} U_1 = 2 \\ U_2 = 1 \\ U_n = \frac{2U_{n-1} + U_{n-2}}{3} \end{cases}$$

Soit (W_n) la suite définie par $W_n = U_n - U_{n-1}$ pour tout n $\in \mathbb{N}$ - $\{0; 1\}$.

- 1°) Calculer W_n en fonction de W_{n-1} .
- 2°) Montrer que (W_n) est une suite géométrique dont on déterminera la raison et le premier terme W_2 ; exprimer W_n en fonction de n.
- 3°) Calculer $S_n = W_2 + W_3 + \dots + W_n$ en fonction de n.
- 4°) Calculer S_n en fonction de U_n et de U_1 et en déduire l'expression de U_n en fonction de n.
- 5°) Calculer $\lim_{n\to+\infty} U_n$.

<u>Problème</u>: (10 points)

Soit f la fonction définie par $f(x) = \ln[(e-1)x + 1]$.

- 1°) Etude et représentation graphique de f dans un repère orthonormé $(O; \vec{i}; \vec{j})$.
- 2°) Donner une équation cartésienne des tangentes à la courbe ($\boldsymbol{\mathcal{C}}$) de f aux points d'abscisse respectives 0 et 1; tracer ces tangentes.
- 3°) Montrer que f est une bijection de son ensemble de définition sur un ensemble F que l'on précisera. Déterminer sa bijection réciproque f^{-1} .
- 4°) On se propose de calculer $I = \int_0^1 f(x)dx$ par deux méthodes :
 - a) Calculer I à l'aide d'une intégration par parties
 - b) Calculer $J = \int_0^1 f^{-1}(y) dy$; retrouver I en montrant que I + J = 1.