Concours Mathématiques et Physique Correction de l'Epreuve de Mathématiques II

PARTIE I

- 1. (a) Trivial.
 - (b) i. p est une projection orthogonale sur Im A, pour $b \in M_{n,1}(\mathbb{R})$, on a $p(b) \in Im A$. D'où l'existence d'un élément $\xi_0 \in M_{m,1}(\mathbb{R})$ tel que $A\xi_0 = p(b)$.
 - ii. D'après Pythagore on a, pour tout $\xi \in M_{m,1}(\mathbb{R})$:

$$||A\xi - b||_n^2 = ||A\xi - A\xi_0 + A\xi_0 - b||_n^2 = ||A\xi - A\xi_0||_n^2 + ||A\xi_0 - b||_n^2,$$

$$\operatorname{car} (A\xi - A\xi_0) \in \operatorname{Im} A \text{ et } A\xi_0 - b = p(b) - b \in (\operatorname{Im} A)^{\perp}. \text{ D'où l'inégalité}:$$

$$||A\xi - b||_n^2 \ge ||A\xi_0 - b||_n^2, \quad \forall \xi \in M_{m,1}(\mathbb{R}).$$

iii. La fonction $\sqrt{\ }$ est strictement croissante et le minorant est atteint en $\xi=\xi_0$. Il en résulte que :

$$\min_{\xi \in M_{m,1}(\mathbb{R})} ||A\xi - b||_n = ||A\xi_0 - b||_n.$$

2. Soient ξ_1 et ξ_0 deux pseudo-solutions. On a :

$$||A\xi_1 - b||_n^2 = ||A\xi_1 - A\xi_0 + A\xi_0 - b||_n^2 = ||A\xi_1 - A\xi_0||_n^2 + ||A\xi_0 - b||_n^2,$$

car $(A\xi_1 - A\xi_0) \in ImA$ et $A\xi_0 - b \in (ImA)^{\perp}$. D'après la question 1, $||A\xi_1 - b||_n^2 = ||A\xi_0 - b||_n^2$, on obtient alors : $||A\xi_1 - A\xi_0||_n^2 = 0$ ce qui entraı̂ne $(\xi_1 - \xi_0) \in KerA = \{0\}$, et donc $\xi_1 = \xi_0$.

3. (C.N.)

Si ξ_0 est une pseudo-solution de (S1) alors $A\xi_0 = p(b)$, et donc $(A\xi_0 - b) = p(b) - b \in (Im A)^{\perp}$. C'est à dire : $\langle A\xi, A\xi_0 - b \rangle_n = 0$.

(C.S.)

Inversement, si pour tout $\xi \in M_{m,1}(\mathbb{R})$: $\langle A\xi, A\xi_0 - b \rangle_n = 0$, alors on a $(A\xi_0 - b) \in (Im A)^{\perp}$ et comme $A\xi_0 \in Im A$ on obtient $A\xi_0 = p(b)$. C'est à dire que ξ_0 est une pseudo-solution du système (S1).

4.

 ξ_0 est une pseudo-solution du système (S1)

$$\Leftrightarrow \langle A\xi, A\xi_0 - b \rangle_n = 0 \quad \forall \xi \in M_{m,1}(\mathbb{R})$$

$$\Leftrightarrow \quad {}^{t}(A\xi)(A\xi_{0}-b)=0 \quad \forall \xi \in M_{m,1}(\mathbb{R})$$

$$\Leftrightarrow \quad {}^{t}\xi^{t}A(A\xi_{0}-b)=0 \quad \forall \xi \in M_{m,1}(\mathbb{R})$$

$$\Leftrightarrow \quad {}^t A(A\xi_0 - b) = 0$$

$$\Leftrightarrow {}^{t}A A \xi_0 = {}^{t}A b.$$

PARTIE II

- A - Minimisation dans $\mathbb{R}_m[X]$

1.
$$P(x_i) = a_0 + a_1 x_i + ... + a_m x_i^m$$
.

2. L'écriture précédente de $P(x_i)$ pour tout $0 \le i \le n$, donne l'équation matricielle suivante :

$$\begin{pmatrix} P(x_0) \\ P(x_1) \\ \vdots \\ P(x_m) \\ \vdots \\ P(x_n) \end{pmatrix} = \begin{pmatrix} 1 & x_0 & \cdots & x_0^m \\ 1 & x_1 & \cdots & x_1^m \\ \vdots & \vdots & & \vdots \\ 1 & x_m & \cdots & x_m^m \\ \vdots & \vdots & & \vdots \\ 1 & x_n & \cdots & x_n^m \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_m \end{pmatrix} = A\xi$$

3. La sous matrice carrée $(A_{ij})_{1 \leq i,j \leq m+1}$ est une matrice de type Vondermonde associée à une famille de $(x_i)_i$ de valeurs deux à deux distinctes, et donc inversible. Par suite, on a

$$rg(A) = m + 1.$$

Remarque: On pourra démontrer facilement que si $V=(A_{ij})_{1\leq i,j\leq m+1}$ alors elle est inversible, en effet: On suppose que VY=0, et on associe au vecteur Y de composantes $(y_k)_{0\leq k\leq m}$ le polynôme $Q=\sum_{k=0}^m y_k X^k$. Ce polynôme vérifie $Q(x_i)=0$, pour tout $0\leq i\leq m$, et donc Q est identiquement nul puisqu'il est de degré $\leq m$. C'est à dire Y=0.

4. Si on pose
$$b = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_m \end{pmatrix}$$
, on obtient alors : $||A\xi - b||_{n+1}^2 = \sum_{i=0}^n (A\xi - b)_i^2 = \sum_{i=0}^n (P(x_i) - y_i)^2$.

- 5. A cause de la bijection $\phi_m: P \in \mathbb{R}_m[X] \mapsto \xi \in M_{m+1,1}(\mathbb{R})$ et d'après la question précédente on obtient le résultat.
- 6. Le théorème de rang appliqué à la matrice A, donne :

$$m + 1 = dim\{Ker A\} + rg(A) = dim\{Ker A\} + m + 1$$

Il en résulte que $Ker A = \{0\}$, d'après la partie I, il existe une pseudo-solution unique ξ_0 . Soit $P_m = \phi_m^{-1}(\xi_0)$, selon les questions 4 et 5, on aura

$$\min_{P \in \mathbb{R}_m[X]} \Psi_m(P) = ||A\xi_0 - b||_{n+1}^2 = \Psi_m(P_m).$$

1. < .,. > est une forme bilinéaire symétrique.

Cette forme est définie-positive :

$$< P, P > = \sum_{i=0}^{n} (P(x_i))^2 \ge 0, \quad \forall P \in \mathbb{R}_n[X]$$

et
$$\langle P, P \rangle = 0$$
 \Rightarrow $P(x_i) = 0$, $\forall i = 0, ..., n$ \Rightarrow $P = 0$, puisque $P \in \mathbb{R}_n[X]$.

En conclusion, $\langle .,. \rangle$ est un produit scalaire sur l'espace vectoriel réel $\mathbb{R}_n[X]$, et donc elle munit $\mathbb{R}_n[X]$ d'une structure euclidienne.

2. (a) $degré(L_i) = n$, $\forall i = 0, ..., n$.

(b) Pour
$$i = j$$
, $L_i(x_i) = \prod_{\begin{subarray}{c}0 \le k \le n\\k \ne i\end{subarray}} (\frac{x_i - x_k}{x_i - x_k}) = 1.$

Pour
$$i \neq j$$
, $L_i(x_j) = \frac{x_j - x_j}{x_i - x_j} \prod_{\substack{0 \leq k \leq n \\ k \notin \{i, j\}}} (\frac{x_j - x_k}{x_i - x_k}) = 0.$

- (c) Pour tout $0 \le i, j \le n$, on a : $\langle L_i, L_j \rangle = \sum_{k=0}^n L_i(x_k)L_j(x_k) = \delta_{ij}$. La famille $(L_0, ..., L_n)$ est donc une base orthonormale de $\mathbb{R}_n[X]$, car $\dim \mathbb{R}_n[X] = n + 1$.
- (d) La décomposition de P dans la base $(L_0,...,L_n)$ donne :

$$P = \sum_{i=0}^{n} \langle P, L_i \rangle L_i$$

Avec

f

$$\langle P, L_i \rangle = \sum_{k=0}^{n} P(x_k) L_i(x_k) = P(x_i),$$

d'après $L_i(x_k) = \delta_{ik}$.

3. (a) $Y = \sum_{i=0}^{n} y_i L_i$ (il s'agit du polynôme d'interpolation de Lagrange).

Pour
$$j \in \{0, 1, ..., n\}, Y(x_j) = \sum_{i=0}^{n} y_i L_i(x_j) = y_j.$$

(b) Comme la base $(L_0,...,L_n)$ est orthonormale, on obtient d'après la question précédente

$$||Y - P||^2 = \sum_{i=0}^{n} (y_i - P(x_i))^2, \quad \forall P \in \mathbb{R}_m[X],$$

Et par conséquent $\min_{P \in \mathbb{R}_m[X]} \Psi_m(P) = \min_{P \in \mathbb{R}_m[X]} ||Y - P||^2$.

(c) Constatons que $\mathbb{R}_m[X]$ est un sous espace vectoriel de $\mathbb{R}_n[X]$ $(m \leq n)$. On a

$$\min_{P \in \mathbb{R}_m[X]} \|Y - P\|^2 = \min_{P \in \mathbb{R}_m[X]} \Psi_m(P) = \Psi_m(P_m) = \|P_m - Y\|^2,$$

d'où P_m est le projeté orthogonal de Y sur $\mathbb{R}_m[X]$.

4. (a) $Q_1 = X - \frac{\langle X, Q_0 \rangle}{\|Q_0\|^2} Q_0$, avec

$$\langle X, Q_0 \rangle = \sum_{i=0}^{n} x_i = \sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$
 et $||Q_0||^2 = \sum_{i=0}^{n} 1 = n+1$

$$\Rightarrow Q_1 = X - \frac{n}{2}.$$

(b) Récurrence sur k:

 $\operatorname{degr\'e}(Q_0)=0$. Supposons que $\operatorname{degr\'e}(Q_i)=i, \quad \forall i=0,...,(k-1)$.

Dans ce cas, le polynôme $\sum_{i=0}^{k-1} \frac{\langle X^k, Q_i \rangle}{\|Q_i\|^2} Q_i \in \mathbb{R}_{k-1}[X] \text{ et donc degré}(Q_k) = k.$

(c) Montrons par récurrence sur $k \in \{1,...,n\}$ que la famille $\{Q_0,...,Q_k\}$ est orthogonale:

$$=<1, X-\frac{n}{2}>=\sum_{i=0}^n(i-\frac{n}{2})=\frac{n(n+1)}{2}-\frac{n(n+1)}{2}=0.$$

Supposons que $\{Q_0,...,Q_{k-1}\}$ est une famille orthogonale de $\mathbb{R}_n[X]$. Pour $k' \in \{0,...,k-1\}$, on a

$$\begin{split} &=< X^k - \sum_{i=0}^{k-1} \frac{< X^k,Q_i>}{\|Q_i\|^2} Q_i,Q_{k'}> \\ &=< X^k,Q_{k'}> - < \sum_{i=0}^{k-1} \frac{< X^k,Q_i>}{\|Q_i\|^2} Q_i,Q_{k'}> \\ &=< X^k,Q_{k'}> - < X^k,Q_{k'}> \\ &=0 \end{split}$$

d'où le résultat.

- (d) Il suffit de constater que $\{Q_0, Q_1, ..., Q_n\}$ est une famille orthogonale de (n+1) vecteurs non nuls de $\mathbb{R}_n[X]$, qui est de dimension n+1.
- (e) i. Pour $j \in \{0, ..., k-1\}$:

$$< H_k, X^j > = \sum_{i=0}^n H_k(x_i) x_i^j = \sum_{i=0}^n H_k(i) i^j = \sum_{i=0}^n Q_k(n-i) i^j$$

 $= \sum_{p=0}^n Q_k(p) (n-p)^j = < Q_k, (n-X)^j >$
 $= 0$

En effet, $(n-X)^j \in \mathbb{R}_{k-1}[X]$ et $Q_k \in (Vect\{Q_0, ..., Q_{k-1}\})^{\perp} = (\mathbb{R}_{k-1}[X])^{\perp}$.

- ii. La famille $(X^j)_{0 \le j \le (k-1)}$ est une base de $\mathbb{R}_{k-1}[X]$, d'après la question précédente on obtient $H_K \in (\mathbb{R}_{k-1}[X])^{\perp}$.
- iii. On a $H_k \in \mathbb{R}_k[X] \Rightarrow H_k = \sum_{i=0}^k a_i Q_i$ de même $H_k \in (\mathbb{R}_{k-1}[X])^\perp \Rightarrow a_i = \langle H_k, Q_i \rangle = 0, \ \forall i = 0, ..., k-1 \Rightarrow H_k = a_k Q_k$. Comme Q_k est unitaire et le coefficient dominant de H_k est $(-1)^k$ alors $H_k = (-1)^k Q_k$.
- (f) i. On a démontrer que P_m est la projection orthogonale de Y sur $\mathbb{R}_m[X]$. D'autre part, $(Q_i)_{0 \le i \le m}$ est une base orthogonale de $\mathbb{R}_m[X]$. En exprimant que $(Y P_m)$ est orthogonal au sous espace vectoriel $\mathbb{R}_m[X]$, on obtient :

$$< Y - P_m, Q_i > = 0, \quad \forall i = 0, ..., m,$$

et donc

$$\langle Y, Q_i \rangle = \langle P_m, Q_i \rangle, \quad \forall i = 0, ..., m.$$

ii. La famille $(\frac{Q_i}{\|Q_i\|})_{0 \le i \le m}$ est une base orthonormale de $\mathbb{R}_m[X]$. Dans cette base on peut écrire

$$P_m = \sum_{i=0}^m \frac{\langle P_m, Q_i \rangle}{\|Q_i\|^2} Q_i = \sum_{i=0}^m \frac{\langle Y, Q_i \rangle}{\|Q_i\|^2} Q_i.$$

iii. Pour tout $m \in \{1, 2, ..., n\}$:

$$P_m = \sum_{i=0}^{m-1} \frac{\langle Q_i, Y \rangle}{\|Q_i\|^2} Q_i + \frac{\langle Q_m, Y \rangle}{\|Q_m\|^2} Q_m = P_{m-1} + \frac{\langle Q_m, Y \rangle}{\|Q_m\|^2} Q_m.$$

D'autre part,

$$\begin{split} \delta_{m-1} &= \|Y - P_{m-1}\|^2 = \|Y - P_m + \frac{\langle Q_m, Y \rangle}{\|Q_m\|^2} Q_m\|^2 \\ &= \|Y - P_m\|^2 + \frac{(\langle Q_m, Y \rangle)^2}{\|Q_m\|^4} \|Q_m\|^2, \text{ car } (Y - P_m) \text{ est orthogonal à } Q_m. \end{split}$$

On en déduit que :

$$\delta_m = \delta_{m-1} - \frac{(\langle Q_m, Y \rangle)^2}{\|Q_m\|^2}.$$

iv. P_n est le projeté orthogonal de $Y \in \mathbb{R}_n[X]$ sur $\mathbb{R}_n[X]$, d'où $P_n = Y$ et par suite $\delta_n = 0$.

- C - Exemple

1. Il suffit de considérer $P_0=a_0,\ A=\begin{pmatrix}1\\1\\1\\1\end{pmatrix}$ et $b=\begin{pmatrix}1\\2\\1\\2\end{pmatrix}$, d'après ce qui précède et en particulier le système (S2) : ${}^tA\ Aa_0={}^tAb$, on trouve $4a_0=6$ et donc $P_0=\frac{3}{2}$. Ceci entraine, $\delta_0=\Psi_0(P_0)=1$.

ś:

2. D'après le système de récurrence (S3), on a :

The de récurrence (SS), on a :
$$P_1 = P_0 + \frac{\langle Q_1, Y \rangle}{\|Q_1\|^2} Q_1 \quad \text{et} \quad \delta_1 = \delta_0 + \frac{(\langle Q_1, Y \rangle)^2}{\|Q_1\|^2}$$

D'après un calcul précédent on a $Q_1 = X - \frac{3}{2}$. Comme $< Q_1, Y >= 1$ et $\|Q_1\|^2 = 5$, on obtient alors:

$$P_1 = \frac{1}{5}(X+6)$$
 et $\delta_1 = \frac{4}{5}$.

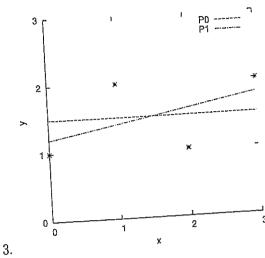


Figure 1: Approximations polynômiales.