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Preface

Riemannian geometry has become an important and vast subject. It deserves
an encyclopedia, rather than a modest-length book. It is therefore impossible
to present Riemannian geometry in a book in the standard fashion of math-
ematics, with complete definitions, proofs, and so on. This contrasts sharply
with the situation in 1943, when Preissmann’s dissertation 1943 [1041] pre-
sented all the global results of Riemannian geometry (but for the theory of
symmetric spaces) including new ones, with proofs, in only forty pages.

Moreover, even at the root of the subject, the idea of a Riemannian mani-
fold is subtle, appealing to unnatural concepts. Consequently, all recent books
on Riemannian geometry, however good they may be, can only present two
or three topics, having to spend quite a few pages on the foundations. Since
our aim is to introduce the reader to most of the living topics of the field,
we have had to follow the only possible path: to present the results without
proofs.

We have two goals: first, to introduce the various concepts and tools of
Riemannian geometry in the most natural way; or further, to demonstrate
that one is practically forced to deal with abstract Riemannian manifolds in a
host of intuitive geometrical questions. This explains why a long first chapter
will deal with problems in the Euclidean plane. Second, once equipped with
the concept of Riemannian manifold, we will present a panorama of current
day Riemannian geometry. A panorama is never a full 360 degrees, so we will
not try to be complete, but hope that our panorama will be large enough to
show the reader a substantial part of today’s Riemannian geometry.

In a panorama, you see the peaks, but you do not climb them. This is
a way of saying that we will not prove the statements we quote. But, in a
panorama, sometimes you can still see the path to a summit; analogously in
many cases we will explain the main ideas or the main ingredients for the
proof.

We hope that this form of presentation will leave many readers wanting
to climb some peak. We will give all the needed references to the literature
as the introduction and the panorama unfold. For alpinists, the equivalent
of such a book will be the refuge de haute-montagne (the base camp) where
you need to spend the night before the final climb. In the worst (we might
say, the grandest) cases, like in the Himalayas, a climber has to establish as
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many as five base camps. The scientific analogue is that you need not only
books, but also original articles.

Even without proofs or definitions, some of the peaks lie very far beyond.
Distant topics will be mentioned only briefly in chapter 14. The judgement
that a peak lies far away is personal; in the present case, we mean far from
the author. His writing a book on Riemannian geometry does not indicate
that he is an expert on every topic of it, especially the recent topics.

One may ask why we study only two objects: Euclidean domains with
boundary, and Riemannian manifolds without boundary. There is a notion of
Riemannian manifold with boundary, but in the Euclidean domain the inte-
rior geometry is given, flat and trivial, and the interesting phenomena come
from the shape of the boundary. Riemannian manifolds have no boundary,
and the geometric phenomena are those of the interior. Asking for both at
the same time risks having too much to handle (however see §§14.5.1).

The present text is an introduction, so we have to refrain from saying
too much. For example, we will mainly consider compact Riemannian mani-
folds. But noncompact ones are also a very important subject; they are more
challenging and more difficult to study.

We will conform to the following principles:

– This book is not a handbook of Riemannian geometry, nor a systematic
awarding of prizes. We give only the best recent results, not all of the
intermediate ones. However, we mention when the desired type of results
started to appear, this being of historical interest and at the same time
helping the reader to realize the difficulty of the problem. We hope that
those whose results are not mentioned will pardon us.

– We present open problems as soon as they can be stated. This encourages
the reader to appreciate the difficulty and the current state of each problem.

Since this text is unusual, it is natural to expect unusual features of pre-
sentation. First, references are especially important in a book about mathe-
matical culture. But there should not be too many. Generally, we will only
give a few of the recent references. From these, the interested reader will be
able to trace back to most of the standard sources. When we are consid-
ering very basic notions (like that of manifold or billiard) we will typically
give many references. The reader might prefer to work with one more than
another. Second, since we will not give formal definitions in the text, we
thought the reader might find it useful to have most of them collected in the
final chapter.

Some words about organization: first, the immensity of the field poses a
problem of classification; in our division into chapters, necessarily arbitrary,
we did not follow any logical or historical order. We have tried to follow a
certain naturalness and simplicity. This explains why many recent discoveries,
like those concerning the isoperimetric profile, the systolic inequalities, the
spectrum, the geodesic flow and periodic geodesics come before a host of
discoveries relating the topology of the underlying manifolds with various
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assumptions on curvature, although the latter results came to light much
earlier than the former.

Second, our treatment of topics is certainly uneven, but this reflects the
tastes and knowledge of the author. Disparities appear in the choice of results
presented and in what we will offer as ideas behind the proofs. We apologize
for that. For example, everything concerning bundles over Riemannian man-
ifolds, especially spin bundles and spin geometry, will be very sketchy.

We hope that despite these weaknesses, the present book will bring plea-
sure and be of help to professional Riemannian geometers as well as those
who want to enter into the realm of Riemannian geometry, which is an amaz-
ingly beautiful, active and natural field of research today. The reader who
finds this book worthwhile will be interested in reading Dillen & Verstraelen
2000 [449].
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1.1 Preliminaries

Some (not all) of the following generalizes to any dimension; this will be left to
the reader. We will only give references for special topics. General references
could be Berger and Gostiaux 1988 [175], Coxeter 1989 [409], do Carmo 1976
[451], Klingenberg 1995 [816], Spivak 1979 [1155], Sternberg 1983 [1157], and
Stoker 1989 [1160]. For those who like computer programming, Gray 1998
[584] will be of interest. We will assume elementary calculus and also that
functions are differentiable as often as needed.

1.2 Distance Geometry

1.2.1 A Basic Formula

p

q

r

A

a

b

c

Fig. 1.1. A triangle in E2

In the Euclidean plane E2 we have distances between points and angles
between smooth curves wherever the curves meet. The equation

a2 = b2 + c2 − 2bc cosA (1.1)

should be kept in mind, where a, b, c are the pairwise distances between three
points, as in figure 1.1 and A is the angle opposite the side of length a. The
triangle inequality in E2:
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a ≤ b+ c

is strict, in that equality forces the three points to be colinear, with p between
q and r. Equation 1.1 is basic in telemetry, needed when your instant camera
measures distances for you. To know the distance between any two of the
points, you only need the angle (a local measurement) and two side lengths,
not all three.1 We will encounter other spaces like this later on. Think of
mountains in your way along one side, as in figure 1.2. We use equation 1.1
in everyday life, in primitive geodesy, astronomy, automatic focusing, etc.

�������
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p

q

r

Fig. 1.2. One side is hard to measure

1.2.2 The Length of a Path

Fig. 1.3. Polygonal approximation

A path between two points is a continuous curve between those points.
Its length is the supremum of the total lengths of polygons inscribed in the
curve. The supremum need not be finite, e.g. a fractal curve like a snowflake.
But if the curve, c(t), is smooth enough2 say with derivative c′(t), then it has
finite length

∫
‖c′(t)‖. The strict triangle inequality above ensures that the

shortest path between two points is exactly the straight line interval between
them.

For any metric space, one can define the length of a path as a supremum
as above, and then consider the infimum of path lengths between two points.
1 However, keep in mind the difficulty of making local measurements; angles be-

tween little pieces of straight lines are very sensitive to mismeasurement.
2 More precisely, rectifiable; see Wheeden & Zygmund 1977 [1258].
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If all points are connected by finite length paths, then this infimum is another
metric on the same metric space. In general, it is a different metric, as in the
case of the sphere in E3. The new metric is called the inner metric, and if the
initial metric coincides with the inner metric, then the space is called a length
space. Length spaces are becoming more important today. For example, see
Burago, Gromov and Perelman 1992 [282] and Gromov 1999 [633].

1.2.3 The First Variation Formula and Application to Billiards

p(t)

q(t)
p'(t)

q'(t)

C

D(t)

Fig. 1.4. Two points travelling through the plane

Imagine that we have two points p(t) and q(t) running along two curves
in the Euclidean plane, as in figure 1.4 and we watch how the distance
d (p (t), q (t)) varies with time t. The first variation formula is:

d

dt
d (p (t), q (t)) = (q′ (t) − p′ (t)) · q (t) − p (t)

‖q (t) − p (t)‖ (1.2)

Consequently, if we have a one parameter family of straight lines, then any two
curves which are perpendicular to the lines must be at constant distance; for
example, circles about the origin. So the tangent line to a circle is orthogonal
to the radius.

A more elaborate application of this equation, which will be important
later on, is the billiard table. Suppose that we have a convex domain in the
plane, say D, and consider a small particle (think of a small ball, of infinitesi-
mal radius) flying inside D with no force applied to it. The particle will travel
on a straight line with constant speed through the interior of D, and when
it strikes the boundary ∂D it will bounce and travel on a new straight line.
The new straight line path and the old one will be reflections of one another
about the normal line of the curve ∂D at the point of impact. We will refer
to this as mirror bouncing, since we see the same trajectories if we have light
rays travelling inside a curved mirror in the shape of ∂D. For the moment,
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we will suppose that ∂D is differentiable and strictly convex. We will call our
particle a billiard ball . The book of Tabachnikov 1995 [1175] is a complete
reference on billiards; some other references are Sinai 1990 [1141], Katok et.
al. 1986 [788], Arnoux 1988 [70], Veech 1989 & 1991 [1208, 1209], Katok 1987
[785], and Gutkin 1996 [672].

Fig. 1.5. A billiard ball

Fig. 1.6. The long term behaviour of the billiard ball
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What happens to these trajectories over large periods of time? As we will
see in chapter 10, this question is fundamental in rational mechanics and
almost every field of physics. It may happen that a trajectory is periodic,
returning eventually to its original position and velocity. The search for pe-
riodic trajectories is a corner stone in the study of long duration dynamics.
We devise the length counting function to try to count periodic trajectories,
setting CF (L) to be the number of periodic trajectories of length less than
L. Let us now see how to exhibit some periodic trajectories.

In 1913, G. D. Birkhoff remarked that the first variation formula yields
many periodic trajectories. Pick any number P of points of ∂D, in a fixed
order (not necessarily consecutive along ∂D) as in figure 1.7, turning around
the boundary Q times. Draw the polygon connecting those points in that
order. Using the first variation formula, we find that mirror bouncing is ex-
actly the condition that the polygon has critical length under perturbing its
vertices along ∂D. But now for each choice of P and Q, we can take the poly-
gon of greatest length, which exists by compactness of the space of polygons
with given P and Q values. N.B. this construction does not yield all of the
periodic trajectories. We will return to billiards in §§1.8.6.

Fig. 1.7. Two of Birkhoff’s configurations

Let us take our domain D to be a convex polygon, a case we expect
to be simpler than a general convex curve. We shall be careful to eliminate
trajectories which strike a vertex of the boundary. It is still an open question if
there is even one periodic trajectory. This question is solved for polygons with
angles rational multiples of π (see below), but is open for general polygons,
even triangles. If the triangle is not obtuse, I leave it to you to find a (classical)
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periodic trajectory (hoping that you are not obtuse either). Everyone expects
that infinitely many periodic trajectories exist, as for rational angled polygons
and convex domains.

Fig. 1.8. Two triangular billiard tables

Rational angled polygons and convex domains are the only domains for
which periodic billiard trajectories are well understood. To the rational angled
polygons, one can associate a compact space, a generalized Riemannian man-
ifold, locally Euclidean but for 2πk singularities, k an integer. See Arnoux
1988 [70] for more information. One knows that CF (L) is asymptotically
quadratic in L, as L → ∞. See Vorobets, Gal′perin, and Stëpin 1992 [1224]
and Gal′perin and Chernov 1991 [545].

In concave domains, beams of light or pencils of trajectories are dispersed
when reflected from the boundary, as in figure 1.10 on page 9 and this implies
ergodicity (see §§§10.5.1.1 for the definition). See Katok et. al. 1986 [788] for
the proof. Finding a simple proof is an open problem. However, a good deal is
known about concave domains; for example let us just mention that CF (L)
is asymptotically exponential in L. Also see §§1.8.6 below for a heuristic
relation between concave billiard tables, statistical mechanics, and manifolds
with negative curvature.

For both rational angled polygons and convex domains, rigorous proofs
of existence of periodic trajectories are quite difficult. There is a third case,
a generalization of the Bunimovitch stadium which is not completely mys-
terious; see section 5.3 of Tabachnikov 1995 [1175] for a modern proof that
there are periodic trajectories, and also see the references therein. In this
case we have ergodicity and CF (L) is exponential in L. These examples are
convex (but with flat parts) and came as a shock to the ergodic community
in 1979 when most people were convinced that some concavity was required
for ergodicity, or if you prefer, that convex domains had too much focus-
ing to achieve ergodicity. Defocusing is apparent in figure 1.10 on page 9.
In §§1.4.3 we will see an interesting curvature condition needed to construct
these examples.

A strictly convex billiard table can not be ergodic, because its flow has
caustics (at least if its boundary is six times differentiable, or perhaps less—
the optimal result is open), by a fundamental result of Lazutkin, discussed
on page 105. But it is an open problem whether there are smooth ergodic
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Fig. 1.10. Spreading rays in a nonconvex billiard table

billiard tables (the Bunimovitch and Wojtkowski examples are not smooth,
having flat parts joined to curved parts with nonvanishing curvature).

One does not know how general these examples are. Let us mention two
general results. The first, due to Katok, asserts that for polygonal billiards,
CF (L) grows more slowly than exponentially. See Katok’s 1987 [785] and also
the nice survey of Gutkin 1996 [672]. The proof is extremely interesting and
consists of two parts. The first part studies the trajectories using successive
reflexions on the sides, unwrapping the trajectory to make it a straight line on
the plane. But this is not enough: the second part resorts to a strong theorem
in ergodic theory connecting topological and metric entropy. We will define
entropy in §§§10.5.1.2.

The second result is a density theorem in the set of all convex billiard ta-
bles, found in Arnoux 1988 [70]. For concave billiard tables, the length count-
ing function CF (L) is very well understood. One has the precise asymptotic
expression

CF (L) ∼ exphL
hL

as L→ ∞ with h the entropy, which is known to be positive. For information
on higher dimensional billiards, see §§ 1.9.3 on page 112.

1.3 Geometry of Plane Curves and Two Dimensional
Point Kinematics

1.3.1 Length

We will briefly recall some classical observations concerning plane curves, but
also some less classical ones. Our style will probably appear different from
standard expositions. This is intentional, in order to introduce the viewpoint
of Riemannian geometry. So even if you think you know everything about
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plane curves and point kinematics, you might do well to glance at what
follows.

We have a plane curve c with a point c(t) running along it, a function
of a parameter t, as smooth as needed (i.e. differentiable as many times as
needed). The velocity of this curve c is c′(t). As we have already noted, the
length of c from t = a to t = b is∫ b

a

||c′(t)|| dt .

This gives a distance on the curve, which is the time needed to traverse
from c(a) to c(b) with unit speed. This inner geometry is the same as the
geometry of an interval. By inner we mean that you care only about what
happens on the curve itself, and not what happens outside. Consequently, all
curves having the same length are isometric, namely they are the same as
metric spaces. Equivalently, there is a one to one map which is an isometry
between them (i.e. preserves distances). Moreover all of them are isometric
to an interval of the same length on the Euclidean line E1. Surfaces will be
completely different; see §§1.6.1.

Alternately, look at the triangle inequality. For the inner metric of a plane
curve, at least locally,

d (p, r) = d (p, q) + d (q, r)

for any three points p, q, r with q between p and r. On a circle, between is a
local notion, as you see in figure 1.11. Or think about the word “between”.
If we call a curve closed when it is periodic, then such a curve has a total
length, and two closed curves are isometric exactly when they have the same
length.

p

q

L L

these two curves are isometric

Fig. 1.11. These two curves are isometric

An important remark is in order: the attentive reader might have been
puzzled, even outraged, that we never distinguished between a curve as a
map t → c(t) from an interval of the real line, and its image as the set of
points c(t) when t ranges through the values of that interval. It is not easy to
have a clear view of these two notions, and the relations between them; they
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are obscure even in many books. We refer the interested reader to chapter 8
of Berger and Gostiaux 1988 [175] for a very detailed exposition of this point.
Now we will just say a few words about this distinction.

Fig. 1.12. Geometric images you can travel through on different routes

Maps t �→ c(t) from an interval of E1 into E2 should be called parameter-
ized curves. Most often only regular curves are allowed, i.e. the speed c′(t)
is never zero. Note that here, and also in the sequel, we use two different
notions of how quickly something moves: the speed ‖c′(t)‖ which is the norm
of the velocity c′(t) (see Feynman, Leighton and Sands 1963 [516], page 9-2).
We skip intermediate developments (again, see Berger and Gostiaux 1988
[175]) and jump directly to the concept of a geometric curve: a line in the
plane (not necessarily a straight line). By this we mean a subset of the plane
which, near any point, can be reshaped into a straight line, i.e. taken by dif-
feomorphism of an ambient region of the plane into a straight line. In modern
mathematical jargon, such an object is called a one dimensional submanifold
of the plane. The link between the two notions is that the image set made by
all of the c(t) is always, but in general only locally, a geometric curve, and
conversely a geometric curve admits regular parameterizations, in particular
by arc length (i.e. with constant unit scalar speed). In the sequel, we will
most often leave it to the reader to understand if parameterized or geometric
curves are considered.

A word about orientations of curves: parameterized curves are automat-
ically oriented, while geometric curves can be given two orientations. When
you change parameterizations of a curve, two invariants appear: the first is
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Fig. 1.13. Concavity and tangent line

the tangent line to which every c′(t) belongs. The second is defined only for
biregular curves, i.e. curves for which the acceleration c′′(t) is not proportional
to the velocity c′(t). The acceleration will then remain in the same open half
plane under any reparameterization, and this half plane is called the con-
cavity of the curve. It does not depend on orientation. If you parameterize
the curve by arc length, the two orientations yield two opposite unit velocity
vectors, but one acceleration vector, which is then attached canonically to
the curve.

Fig. 1.14. Tangent lines

Everything said here is valid with obvious modification for curves in any
Euclidean space Ed.

A closed (periodic) plane curve is said to be simple if it is a one-to-one
map up to the period (this for a parameterized curve). For a geometric curve,
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simple means a curve which has the global topology of a circle (in the jargon,
it is a differentiable embedding in the plane of the circle seen as an abstract
one dimensional manifold). We also will assume the speed never vanishes,
indeed that it has unit speed.

Do not think that everything is known today about plane curves. A famous
problem is to prove that in any plane closed curve, one can inscribe a square.
For this problem, and other open ones, see the book Croft, Falconer & Guy
1994 [410]. The oldest unsolved problem in plane geometry is the equichordal
problem, from 1916: prove that no plane curve can have two equichordal
points, i.e. points so that all chords through them have constant length. The
problem is studied extensively in note 6.3, chapter 6 of Gardner 1995 [548].
Do not miss the recent revolution in the theory of plane curves: see the end
of §1.4.

1.3.2 Curvature

We now look at the outer geometry of plane curves. The inner geometry
of curves does not differ from that of straight lines, but the geometry is
radically different if we look at the way a curve sits in the plane. We are
going to introduce a concept of curvature which measures how much a curve
differs from a straight line. For a curve seen as a kinematic motion, curvature
is directly linked with the acceleration vector c′′(t). For a geometric curve, we
can introduce it by looking at the variation of the length of the curves drawn
at a constant distance, called the parallel curves (recall the first variation
equation 1.2 on page 4). If the absolute value of the infinitesimal change of
length of these equidistant curves, close to a point m = c(t), is the same
as for a circle of radius r we say that the curve c has radius of curvature r
at m = c(t), and that its curvature is K = 1/r. The formula to compute
curvature is

K(t) =
1
r(t)

=
|det (c′(t), c′′(t))|

‖c′(t)‖3

where t is any parameter, and boils down to

K(t) =
1
r(t)

= ‖c′′(t)‖

when t is a unit speed parameterization (i.e. arc length parameterization).
Of course a circle of radius R has constant curvature equal to 1/R. Another
way to look at it is the following: the circle C(t) which is defined as tangent
to the curve at the point c(t) and has radius r(t) is the circle which has the
most intimate contact with the curve (technically, the contact is third order,
meaning that the curve and the circle have the same first three derivatives at
that point). This circle is called the osculating circle to the curve at m = c(t).

To rest a little, we mention an interesting fact rarely found in text-
books. When at a point m of the curve c, the curvature varies, that is to
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Fig. 1.15. Finding tangent line, concavity and curvature

say dK/dt(m) �= 0, then the osculating circle at m crosses the curve (guess
where it is inside, and where outside). A baffling consequence is that the os-
culating circles of of a curve whose curvature is never critical never intersect
one another. See the picture in figure 1.15. This picture gives two counterex-
amples. First, consider the unit tangent vectors to this family of circles. We
get a continuous vector field, alias a differential equation in the plane. Now at
every point of the curve there are at least two different integral curves of that
vector field: namely the curve and the circle. The moral is that uniqueness of
solutions of ordinary differential equations does not follow only from continu-
ity. Second, consider the envelope of this family of circles. In many books it
is “proven” that the envelope is the limit of the so-called characteristic point,
the point of intersection of close-by curves. This is wrong (unless we invoke
“complex circles”).

There is another geometric definition of the curvature. Parameterize the
curve by arc length, so that ‖c′(t)‖ = 1 identically. Then c′(t) is a unit vector,
running through the unit circle of the plane. The curvature is the speed of
its rotation. More precisely, one needs first to orient the plane, and choose
an oriented direction in the plane. Then one can define an angle α(t) for
c′(t) which is a real number, defined only up to integer multiples of 2π. The
curvature is K(t) = dα/dt.

To get rid of the 2π ambiguity, there is an important fact which we are
going to use below. For regular curves, when t runs through the interval of
definition, one can follow α(t) by continuity and then define a map t �→ α(t)
into R. Note that if the curve is closed with period T then α(t + T ) will in
general differ from α(t) by an integral multiple of 2π.
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Fig. 1.16. Picture drawn for us by Etienne Ghys

We saw above that straight lines are the shortest paths between two
points. Let us look at this again, now in a more sophisticated way. We start
with a curve c with ends p = c(a) and q = c(b). Suppose it is as short as
any curve can be with these extremities. Consider any one parameter family
of curves cμ with the same ends, with c = c0, and compute their lengths.
The fact that the length should be a minimum implies in particular that the
first derivative of the length as a function of the parameter μ has to vanish.
Computation yields



16 1 Euclidean Geometry

F
ig

.
1
.1

7
.

D
iff

eren
t

d
efi

n
itio

n
s

o
f

cu
rva

tu
re



1.3 Plane Curves 17

d length (cμ)
dμ

∣∣∣∣
μ=0

= −
∫ b

a

〈f(s), c′′(s)〉 ds (1.3)

where the vector valued function f(s) (which we can choose to be orthogonal
to the curve everywhere) estimates the derivative of the normal displacement
of the family of curves. This is also a first variation formula. Note that this
formula is nothing but the integrated version of the definition we previously
gave for curvature. A classical calculus trick (which is not obvious) proves
that if we want all of these derivatives to vanish, namely the above integral
to be 0 whatever the function f vanishing at s = a and s = b, then c′′(t) = 0
identically, and in particular our curve should have everywhere vanishing
curvature. Curves with everywhere vanishing curvature are, of course, straight
lines. Beware: what we have proven up to now by this method is that shortest
paths can only be found among straight lines. Not every zero of the derivative
of a function is a minimum. For a local minimum, a sufficient condition is to
have positive second derivative. But we still have to search for an absolute
minimum. The above proof is interesting because it is the simplest model of
a field called the calculus of variations, and gives a general scheme to start
searching for shortest paths. We will use it soon in §1.6 but principally in
chapter 6. To conclude this story for the Euclidean plane, we know that if
shortest paths exist, they should be straight lines. Then we check directly as
above.

f

f

c

Fig. 1.18. Planar calculus of variations

There is a notion of algebraic curvature k as opposed to the scalar cur-
vature K, linked by K = |k|. This is defined as soon as the curve is regular
and oriented and the plane is also oriented, or (equivalently) if one side of
the geometric curve is chosen, or (equivalently) if one of the two possible unit
normal vectors is chosen. This side need not be the concavity side. Denote
by n(t) the unit normal vector you have chosen. Remember now that c′′(t)
is an invariant. The algebraic curvature of c at t is the real number k(t) so
that

c′′(t) = k(t)n(t)

A nice theorem about algebraic curvature:
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Theorem 1 (More tightly curved curves) If two curves c1, c2 are arc
length parameterized, and have respective curvatures satisfying k1(t) ≥ k2(t)
and start at the same initial point in the same direction, then the curve c1
lies entirely inside the curve c2.

(because it is “more curved” as intuition tells you). For a proof see Chern
1989 [366] and exercise 7, section 5-7 of do Carmo 1976 [451]. Beware that

Fig. 1.20. (a) One is more curved than the other (b) The little circle can roll
inside the closed curve, and the closed curve can roll inside the big circle

you need simple curves if you want a global result. If not, you just get a local
one. The above theorem is one of the simplest ones in control theory. You will
see many, many others later on. Note the following amusing consequences.
Consider a simple closed plane curve, and the point where the curvature is
maximum. Then the osculating circle at that point can keep rolling inside
the curve all the way around. Similarly, the curve itself can roll inside its
osculating circle of minimum curvature.

Let us make more precise our claim above that curvature is the only
invariant of plane curves. More precisely the algebraic curvature is a charac-
teristic invariant: if in the above inequality for curvatures we have equality
(k1(t) = k2(t) for every t) then the curves c1 and c2 are the same. Moral: if
you know the value of the curvature as a function of the arc length then you
know the curve completely. If the curves do not have the same initial point
and direction, this just means that they are deduced one from the other by
a Euclidean motion. The simplest example: a curve with non-zero constant
curvature is part (or the whole) of a circle.

A spectacular application of this property of arcs of circle is the manu-
facture of a perfect straightedge. Take two pieces (of anything suitable for
the job) and rub one against the other. The above theorem tells you that
such a rubbing will eventually carve the two bounding curves into perfect
circles. Now take three pieces, and rub them two by two. The boundaries will
be circles, but the pieces will have to exhibit opposite convexity, i.e. equal
algebraic curvature with opposite sign. For three, this is not possible unless
the common curvature is zero. Naively, one might imagine that a laser can
draw straight lines, but this is impractical. Today, lasers are used only to
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check the accuracy of the straightedge, after it is manufactured following the
above recipe; once the laser has reported its evaluation of the straightedge,
corrections are carried out by skilled hands using emery powder. Before the
invention of the laser, accuracy was tested with interferences.

The same technique is still the only one available to make “perfect” planes:
rub three surfaces against one another, and the result has to be a plane. To
prove it, use the fact which we will quote on page 54 that pieces of a surface,
all of whose points are umbilics, are pieces of spheres. To check accuracy,
one doesn’t use a laser, but drags a straightedge around on the surface, or
a comparison plane, or applies an interferometer.3 Rubbing only two pieces
will yield pieces of a sphere, and is still the only method to sculpt spherical
lenses.

In the same spirit, to fashion “perfect” balls, (which have thousands of
practical applications, for example as ball bearings), one method was to put
approximate balls inside a box, and stir them. Proof that the limit object is a
sphere is not as elementary as proofs of the efficacy of the previous production
methods, and was only recently established in Andrews 1999 [52]. Since 1907,
balls for ball bearings have been produced by rolling rough balls between two
plates with toroidal concentric groves and random indentations. See Berger
2003 [173] or technical books for more details.

For the story of curves in E3 see Berger and Gostiaux 1988 [175], do Carmo
1976 [451], or Stoker 1989 [1160]. We will just mention briefly what happens
there. This time there are two characteristic invariants, curvature and torsion,
but the curves need to be biregular, i.e. the acceleration should never vanish.
Things also extend similarly to any Ed, this time with d − 1 invariants: see
Spivak 1979 [1155]. But the first invariant is always the curvature and is
defined simply as the norm ‖c′′(t)‖ for any arc-length parameterization. Only
straight lines have everywhere zero curvature. For the kinematician this is the
old fact that points with no force applied to them move along straight lines
and at constant speed.

Take helices for example. They can be characterized as the curves with
constant curvature and torsion. A practical application, in the spirit of the
one just above: graduate a straightedge to make ruler; this is equivalent to
making a protractor, dividing a circle in equal parts, etc. It is clear that you
can do it if you can produce a screw (a helix). This is even simpler than a
straightedge. Just start with an approximately good pair of a bolt and a nut
and rub one against the other. At the end we will get a perfect bolt, and a
perfect nut, because the common boundary will be made up of a union of
curves with necessarily constant metric invariants, hence easily seen to be
helices.
3 An interferometer is a device which uses the interference of two waves (radio,

acoustic, or light waves will do) to make very precise distance measurements.
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1.4 Global Theory of Closed Plane Curves

1.4.1 “Obvious” Truths About Curves Which are Hard to Prove

Systematic references for what follows are Stoker 1989 [1160], do Carmo 1976
[451], Berger and Gostiaux 1988 [175], among others. See also the new events
in Arnol′d 1994 [65] and other references in §§1.4.6.

Fig. 1.21. A trick to find when a point belongs to the interior or to the exterior
of a curve

Theorem 2 (Jordan curve theorem) A simple closed plane curve has an
interior and an exterior.

This implies the more common statement that a simple plane closed curve
separates the plane in two regions. More precisely the plane with the curve
deleted from it has two connected components and moreover one is bounded
whilst the other is not. The bounded one is of course the one called the
interior. An immediate corollary is that a simple closed plane curve has a
given side, the interior one, and by the above this implies that its algebraic
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curvature is defined, independently of an orientation of the curve and an ori-
entation of the plane. More generally, closed plane curves have a well defined
algebraic curvature. Note again that the interior side need not be concave.
From the viewpoint of algebraic topology the interior is homeomorphic to a
disk and so it is simply connected.

inner normals

Fig. 1.22. Inner normals

This first result is valid even for curves which are not smooth but only
continuous. The next result we will cite needs two derivatives and claims that
any simple plane closed curve satisfies∫

k(s) ds = 2π . (1.4)

The proof cannot avoid using the so-called Umlaufsatz (the turning tangent
theorem) which asserts intuitively that the total rotation of the velocity (or
of the tangent line to the curve) is equal to 2π. If you visualize this velocity
vector as a point of the unit circle of E2 it means that when the parameter
t runs through a complete period of definition of the curve the continuous
determination α(t) ∈ R which was considered above runs exactly from 0 to
2π. This does not mean that α(t) is monotonically increasing: it means that
the unit circle is at the end algebraically covered once. Beware that the same
point of the unit circle can be obtained many times but that, for example,
if you come back a second time at a value previously passed you will have
to come again a third time to “erase” it. To make all this mathematically
precise one needs the notions of universal covering, simple connectivity, etc.
The Umlaufsatz was essentially known to Riemann but a rigorous proof is
pretty hard (try one if not convinced). Simplicity of the curve is necessary
here. For closed (periodic) curves the turning number, defined as the number
of rotations of the tangent line, hence

turning number =
1
2π

∫
k(s) ds
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can be any integer including 0. See the pictures below as well as Berger &
Gostiaux 1988 [175] for an elementary proof and interesting theorems about
that number. Also see §§1.4.4.

A basic remark is in order: the turning tangent theorem is a very particular
case of the Gauß–Bonnet theorem given in §§3.1.2 for general surfaces, when
moreover the curve can admit corners. See §§1.4.4.

Fig. 1.23. Turning numbers equal to 1, 0 and n

The Umlaufsatz has many other corollaries. The first is a surprising ex-
plicit tube formula. Consider a simple plane closed curve c and take the tube
around it of radius ε. Beware that the boundary of this tube might not be
smooth if ε is too large. But for ε small enough,

area of this tube = 4πε · length(c)

Please check this on some examples. The length of the inner boundary curve
is

length(c) − 2πε

An amusing consequence: consider the belt highway of a big town and a
car running through it completely. Is it more economical to drive on the inside
lane rather than the outside? Not much, because the above shows that the
difference of elapsed distance is always 2πε where ε is the distance between
the two lanes (say something like less than 100 meters at the end), this being
true whatever the shape and the total length of the belt.

The second is a convexity result: suppose a simple closed plane curve
satisfies k(t) < 0 for every t. Then its interior is a convex set. Try to prove it
your own way before dismissing this result.
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Fig. 1.24. The beltway theorem

1.4.2 The Four Vertex Theorem

On a simple closed plane curve the curvature k(t) is a continuous function (a
periodic one). So it admits at least one maximum and one minimum. At such
a point the derivative k′(t) vanishes. Points where k′(t) = 0 are called vertices
(think of ellipses if you are interested in the etymology). So any closed plane
curve has at least two vertices. Now try to draw a curve with only two vertices:
you will have a hard time (this is no reason not to try it seriously) because
the four-vertex theorem asserts precisely that every closed plane curve has at
least four vertices. In fact the proof of Osserman (see Osserman 1985 [983])
shows that generically it has at least six vertices. Ellipses have exactly four
vertices. The converse of the four-vertex theorem was proven only recently
in Gluck 1971 [569]: a function on a circle can be realized as the curvature
of a closed curve exactly if it admits at least two maxima separated by two
minima.

Recently the four vertex theorem was applied to physics as follows. In a
planar world with no gravitational forces, a plane convex body D stands in
equilibrium between two liquids of different capillary constants and with a
straight line common boundary. From the physics, at both of the two points
of separation the angle θ between the tangent to the curve and the line of
separation of the two liquids satisfies

cos θ =
γ13 − γ23

γ12

where γij is the energy per unit area between phases i and j, the three phases
here being 1 for the first liquid, 2 for the second liquid and 3 for the body.
Using the four-vertex theorem and being quite tricky one can prove that there
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are at least four equilibrium positions, two of them moreover being stable ones
(and two unstable): see Raphaël, di Meglio, Berger & Calabi 1992 [1048] or
the latest on the story in Berger 1996 [168].

1

2

1

2

A B

θA θB

3

3

3

θA

θB

C

A

B

π-2θC

1

2

a

b

Fig. 1.26. (a) Angles of contact. (b) A spherical particle and convex particle at a
fluid–fluid interface. (c) A convex particle with six equilibrium positions

1.4.3 Convexity with Respect to Arc Length

Very recently an interesting local condition on a curve appeared in the liter-
ature, namely that the radius of curvature should be a concave function of
the arc length:

d2r

ds2
≤ 0.

As an exercise compute which parts of an ellipse obey it. This inequality
allows one to build convex billiard tables (see §§1.2.3 above, and Wojtkowski
1986 [1274]) for which almost every nonperiodic trajectory is everywhere
dense in space as well as in phase (they are called ergodic). The inequal-
ity controls geometric optics: it insures divergence after two reflections (see
figure 1.27 on the facing page).
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Fig. 1.27. Convexity with respect to arc length

1.4.4 Umlaufsatz with Corners

An important remark is in order, which might have already occured to the
reader. Consider a triangle in the plane and think of it “à la Umlaufsatz”,
that is to say: drag the unit tangent vector along as you traverse each side.
As a vector it keeps being constant but when you arrive at a vertex of angle
A you have to turn by exactly π − A. Coming back to the origin you have
finally turned from

(π −A) + (π −B) + (π − C) = 3π − (A+B + C) = 3π − π = 2π

As you might guess there is a formula covering both cases, namely for curves
with reasonable singularities. We leave to you to write it, because we will
give a much more general one in lemma 18 on page 125.

π - A   π - B

π - C

C

A
B

Fig. 1.28. Umlaufsatz with corners

1.4.5 Heat Shrinking of Plane Curves

Recently the global theory of plane curves became richer with results on
the following evolution problem (sometimes also called the heat shrinking
curve equation). This is one instance of the modern invasion of geometry
by dynamical ideas, to be compared also with the invasion by iteration and
combinatorics. Consider a simply closed plane curve and try to make it more
like a circle by a systematic dynamical flow. The idea is to deform by moving
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the curve along its normal direction at a speed proportional to the algebraic
curvature. This is natural; at points where the curve has large curvature, one
should reshape it more. This leads to a parabolic partial differential equation,
which one can call a heat equation, because it turns out to be very similar
to the standard heat equation as in §1.8. But it is very hard to prove that
evolution is possible, first for a short time and then forever. Moreover one can
prove that the curve, suitably normalized, converges to a circle as expected.
A good reference is the survey of Linnér 1990 [871] and Gage and Hamilton
1986 [537]. Related problems were studied by Andrews 1996 [51] and 1999
[52]. A practical application: when one drops some liquid on a hot plate of
metal, the drop evolves according to this heat equation; see Wang 2002 [1242].

Fig. 1.29. A curve undergoing heat shrinking

1.4.6 Arnol′d’s Revolution in Plane Curve Theory

Is the global theory of curves just beginning? We alluded above to the turning
number of a plane closed curve. The Whitney–Grauenstein theorem asserts
that two immersed (not embedded in general) plane curves with the same
turning number can be deformed one into the other through proper immer-
sions. So one can say that the turning number is a characteristic invariant.4

Until lately, that theorem remained isolated, along with the four vertex one,
as well as a mysterious formula of Fabricius–Bjerre 1962 [500] relating the
number of double tangents to the numbers of inflexion points and crossings
(see section 9.8 of Berger & Gostiaux 1988 [175]). Very recently, Vladimir I.
Arnol′d started a revolution when studying plane curves, hammering out a
general frame to encompass these results. This is a very active field of research
4 For the historian, it was discovered by Pinkall (see Karcher & Pinkall 1997 [782])

that the Whitney–Grauenstein theorem appears in Boy 1903 [249] as a footnote.
We will meet Boy’s article again on page 153.
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today. There is a price to pay of course. It is quite reasonably expensive. The
curve has to be considered together with its tangent lines, so that the object
to study is the set of all oriented tangent directions to the Euclidean plane,
an object of dimension three (not two) and inside it the curve consisting of
the tangents of a given plane curve. The three dimensional space has the
topology of the inside of a torus; an immersed circle in the plane will lift to a
knotted closed curve inside that torus and then one will appeal both to the
theory of knots and the field of contact geometry, intimately linked to sym-
plectic geometry, both very active fields of research. Deformations of curves
will then be interpreted as wave fronts in a geometrical optics language, fol-
lowing flows given inside that torus by a more or less canonical vector field.
Some references: the initial bomb was Arnol′d 1994 [65], then Aicardi 1995
[13], Ferrand 1997 [513], and Chmutov & Duzhin 1997 [374]. One can find an
informal presentation of these theories, along with a discussion of the open
problems in the theory of real algebraic plane curves, in chapter V of the
work in progress Berger 2003 [173].

1.5 The Isoperimetric Inequality for Curves

The isoperimetric inequality for closed plane curves tells us that among all
such curves bounding regions of fixed area, the circle, and only the circle, is
the shortest. Or, among closed curves with fixed length, the circle encloses
the greatest area. Explicitly, if A is the enclosed area, and L the perimeter,

L2 ≥ 4πA

with equality only for circles. This was known to the Greeks, but the history of
the proof is fantastic. Let us just say that the first solid proof was written by
Schwarz around 1875; references for this history are Osserman 1978 [982] and
section 1.3 of the article by Talenti in Gruber and Wills 1993 [661]. One might
also consult chapter 12 of Berger 1987 [164]. For the plane, and arbitrary
dimensions as well, there is the excellent reference Burago & Zalgaller 1988
[283]. To our knowledge, it is the only source of not just one but all of the
classical proofs of the isoperimetric inequality, handling the cases of equality
with minimal regularity assumptions on the boundary.

Do not be surprised that we are going to spend quite a lot of time on
isoperimetric inequalities. Generalizations of them to Riemannian manifolds
are very important, and surprisingly recent. We believe that it is useful to
explain the inequality in the plane because the general case is quite compli-
cated.

One of the most natural proofs should be one using Stokes’ theorem. The
desired inequality is a relation between the area, which is an integral over
the interior of the region, and the perimeter: an integral over the boundary.
Stokes’ theorem is a basic equality between integrals over domains and other
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L
A A

L

Fig. 1.30. Two planar domains

integrals over their boundaries. Astonishingly, it was not until 1957 that
Knothe found a proof of the isoperimetric inequality using Stokes’ theorem.5

This proof remained unnoticed for a long time, and was brought to light by
Misha Gromov, who communicated it to the author in the 1980’s. One can
find it in Berger 1987 [164] and also in chapter VI of Sakai 1996 [1085].

Since closed curves are periodic objects, an analyst or a physicist will
naturally use harmonic analysis, i.e. Fourier series. Hurwitz established just
such a proof in 1901 (see section 7.4 of Groemer’s contribution to Gruber &
Wills 1993 [661]), and it is quite simple. Contrary to the Gromov–Knothe
proof, it has the major drawback that, at least up to today, nobody has been
able to extend it to higher dimensions using the natural extension of Fourier
series, spherical harmonics. See §1.9 and Gruber & Wills 1993 [661] for more
on spherical harmonics.

The other most natural proof should be as follows: pick up a curve which
realizes the minimum of the ratio L2/A and just prove that it is a circle. But in
exchange it is the most expensive proof, because one needs very hard results
from analysis to ensure first the existence of such a curve and second that
such a minimizing curve is differentiable. But this is known now and more, in
any dimension and also in general Riemannian manifolds (with the proviso
that the minimizing object is differentiable only almost everywhere, but that
is enough as we will see in §§§7.1.2.2). As for plane curves, let us consider
our minimizing curve c. Follow the same scheme as above when we proved
that straight lines minimize length among curves with fixed ends. Again we
employ the (sophisticated but fruitful) notion of curvature. Here we have to
express that the length is critical, among a family of curves deforming the
given one, as long as all of the curves enclose the same area. The derivative
is easily computed (using the first variation formula 1.3 on page 17) to show
that the algebraic curvature satisfies:∫ b

a

k(t) f(t) dt = 0

for every function f(t) such that

5 Peter Petersen points out that Schmidt’s proof in Schmidt 1939 [1105] uses
Stokes’ theorem, even if obliquely.
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a

f(t) = 0 .

The classical Lagrange multiplier technique implies immediately that k(t)
has to be constant (a necessary, but perhaps not sufficient, condition). But we
know that only circles have constant curvature (prove it directly). This comes
from the above statement to the effect that curvature is a characterizing
invariant. We will see in section §1.6 that this technique, with one trick more,
extends to the isoperimetric inequality for surfaces in E3, and in §§§7.1.2.2 we
will watch it extend to Riemannian manifolds with Ricci curvature bounded
from below.

The reader will ask now what were the older, classical proofs. Proving that
only circles can achieve equality turns out to be difficult in every demonstra-
tion of the inequality, which is otherwise simple (this for general dimension,
see §§1.6.8). But for the plane case, there is a very tricky and completely
elementary geometric “quadrilateral” argument due to Steiner which can be
seen for example in the pictures below (see also Berger 1987 [164]).

Two proofs are classical and not too difficult: the one based on Steiner
symmetrization and the one based on the Brunn–Minkowski theorem. We
refer the reader to Berger 1987 [164] for both of them; see also the entry of
Talenti in Gruber & Wills 1993 [661] and the very comprehensive reference
Burago & Zalgaller 1988 [283]. Steiner symmetrization is too important, pow-
erful and geometric an idea to be concealed. Briefly it goes like this. To every
plane domain D and every straight line d we associate the symmetrization
d(D) of D with respect to d as depicted in figure 1.32 on page 33. Slice D
along every perpendicular line to d and then slide every slice in order that
its middle sits on d. This yields by construction a domain which is symmet-
ric with respect to d. One shows quite easily that the operation D �→ d(D)
keeps areas constant and can only lessen the perimeter. With some general
topology one then concludes the inequality using the fact that disks are the
only domains which are symmetric with respect to every direction.

Performing line symmetrizations with respect to suitably chosen direc-
tions is interesting to visualize: the convergence to a circle is very fast. We
leave the interested and capable reader to see this on a computer.

Quite recently a very expensive proof has arisen, based on the evolution
equation mentioned in §§1.4.5. Under this deformation the initial curve will
look more and more like a circle; one discovers that, under the evolution, the
isoperimetric ratio does not increase. See Linnér 1990 [871] for this. This proof
is not really interesting when applied to a planar curve—its true purpose lies
in the fact that it also works for Riemannian surfaces to yield the existence
of simple periodic geodesics, a hard and expensive topic; see a lot about this
in §10.4.
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Fig. 1.32. Steiner symmetrization

1.6 The Geometry of Surfaces Before and After Gauß

Unlike for curves, we will only define geometric surfaces in the space E3

(see why for yourself). Geometric curves are everywhere locally differentiable
nice one-dimensional subsets in E2, while surfaces are the nice subsets of
E3, nice in the sense that there is a local map from E3 to itself sending the
local piece of the surface onto an open subset of a plane. That map must
be differentiable, one to one and with a differentiable inverse. The jargon is:
surfaces are two dimensional submanifolds of E3. Equivalently near any point,
M can be written as f−1(0) where f is a smooth locally defined function
f : U open ⊂ E3 → R whose derivative never vanishes. The fact that we
do not introduce parameterized surfaces does not prevent our using local
parameterizations of geometric surfaces, also called local charts. Moreover,
unless explicitly stated, we require our surfaces to be connected. Alexandrov
gave a very brief and accessible account of the theory of surfaces in chapter 7
of Aleksandrov, Kolmogorov & Lavrent′ev 1956 [15], translated into English
in Aleksandrov, Kolmogorov & Lavrent′ev 1999 [16]; also see Morgan 1998
[936]. Monge gave a terse explanation of surface theory, translated to English
in Struik 1969 [1165]. For an exposition of the submanifolds of Ed see Berger
& Gostiaux 1988 [175].
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plane

Fig. 1.33. Straightening a piece of a surface

1.6.1 Inner Geometry: a First Attempt

Following the scheme we used for plane curves we first study the inner geom-
etry of our surface. The way that M sits in E3 will be studied next. Imagine
people living on the surface M and ignoring things which happen outside
of it. Those people walk, and they are interested in the distance needed to
travel from one point p to another point q of M . Mathematically, we consider
a curve drawn on M—it is forbidden to leave M and to go, even for one
second, into the outside world. Because such a curve c lies in E3 it has a
length, and of course the surface’s inhabitants want to find the shortest path
from p to q. We define the distance from p to q in M as the infimum of the
lengths of all curves going from p to q in M , and denote it by dM (p, q) (or
d(p, q) if there is no need to be more precise):

d(p, q) = dM (p, q) = inf {length(c) | c is a curve in M from p to q} . (1.5)

p

q

q
p

Fig. 1.34. Curves drawn on a surface

It is easy to see that d = dM is a metric on the set M (since M is
connected). This metric is sometimes called the inner or intrinsic metric(see
again §§1.2.2). Beware that dM is not what is called the induced metric onM
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from that of E3. The only surfaces M for which the induced metric and the
inner metric coincide are portions of a plane. This inner metric is determined
by the Euclidean structures on the collection of the tangent planes TmM
when m runs through M , as we will see.

As a first example, consider the unit sphere S2 ⊂ E3. How do we compute
d(p, q)? We should find the shortest paths. Assume we know, or have made
the right guess: the shortest paths on spheres are arcs of great circles (i.e.
the intersections of the sphere by planes through its center). From this the
distance is easily computed:

d(p, q) = arccos 〈p, q〉 ∈ [0, π].

N

S
Fig. 1.35. Latitude grows at unit rate along longitude lines

To prove that the shortest paths are indeed great circular arcs, we take
such an arc, less than half of a great circle, and arrange by rotation that it be
a longitude line, and that it touches neither the north nor the south pole; see
figure 1.35. The latitude (expressed in radians) increases at unit rate as we
traverse the longitude line at unit speed, i.e. change in latitude is arc length.
One now needs to see only that the rate of increase of latitude along any unit
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speed curve is slower than unit rate (i.e. slower than arc length) except where
the curve is tangent to a longitude line (due south). We conclude that total
arc length must be greater than difference in latitude, except along longitude
lines. If we have a longitude line, and any other path with the same end
points, then the other path has the same total change in latitude between
its end points, and so must have greater length. This is an important idea
because it is the basic scheme of the proof that geodesics locally minimize
length on arbitrary surfaces; see equation 3.8 on page 131.

q

p

q

p α

Fig. 1.36. Curves on spheres

The principal formula of spherical trigonometry provides the sphere an
analogue of the Euclidean formula 1.1 on page 2:

cos a = cos b cos c+ sin b sin c cosA (1.6)

for every spherical triangle {p, q, r} with side lengths a = d(q, r), b =
d(r, p), c = d(p, q) and where A is the angle at the vertex p. It is a good
exercise to extend this formula to a sphere of radius R, let R go to infinity
and prove that the formula converges to the Euclidean one. Another exercise
is to check that the sphere has the strict triangle inequality, which easily
comes out of equation 1.6. Conclusion: shortest paths on the sphere are the
arcs of great circles provided we keep them of length smaller than or equal
to π. In particular, shortest paths between two given points are unique with
the sole exception of antipodal points. The word “principal” is used because,
as with equation 1.1 on page 2, all the other formulas for spherical triangles
can be deduced from this one by pure trigonometrical computations.

Another consequence of the formula is that the sphere is never, even
locally, isometric to a part of the Euclidean plane E2. From the inner geometry
distance measurements, we can compute angles. But then the angle sums of
a spherical triangle will be too large to be those of a planar triangle. Most
surfaces are not even locally isometric to E2 (see §§3.1.1 for proof). The
case of curves was radically different, remember §§1.3.1. This explains why
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cartography is a whole world in itself; if interested see chapter 18 of Berger
1987 [164].

Before leaving the sphere, recall an old formula whose importance for the
sequel is not to be underestimated. The formula says that for a spherical
triangle T with angles A,B,C its area is given by

Area(T ) = A+B + C − π. (1.7)

Fig. 1.38. Spherical areas and angle sums

The real history of this formula seems to have come to light only very
recently. It was discovered by Thomas Harriot (1560-1621) in 1603 and pub-
lished (perhaps rediscovered) in 1629 by Albert Girard (1595-1632). See ref-
erences on page 55 of Ratcliffe 1994 [1049], a fascinating and extremely in-
formative book.

Note 1.6.1.1 (Space forms) Returning to formulas 1.6 on page 36 and 1.1
on page 2 we see that spheres share with Euclidean spaces the basic philos-
ophy of §§1.2.1. The tempting question to find all such spaces was in the
minds of many mathematicians starting in the second half of the 19th cen-
tury and thereafter. See §§4.3.2, note 4.3.2.3 on page 202 and §§6.3.2 for the
continuation of this story. �

1.6.2 Looking for Shortest Curves: Geodesics

Let us talk to somebody who does not know how to find the shortest paths on
the sphere. We want to apply the first variation technique of §§1.3.2 and find
the formula which is the analogue of equation 1.3 on page 17. Because we can
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displace curves only under the proviso that the curves are traced entirely on
our surface M , only the tangential part of a variation can be chosen freely.
At a point c(t) of the considered curve pick up a unit vector n(t) tangent
to the surface and at the same time normal to the curve. Note that (as for
plane curves) there are two possibilities up to ±1. We parameterize c by its
arc length s.

M

a

b

n

n(t)

n(t)

c c'(t)

M

M is oriented and {a,b,n} is positive for the space orientation

Fig. 1.39. M is oriented and {a, b, n} is positively oriented

The first variation of the lengths of a one parameter family of curves cα
around c = c0 is

d length (cα)
dα

∣∣∣∣
α=0

= −
∫ b

a

f(s) 〈c′′(s), n(s)〉 ds (1.8)

where the variation of the curves is

∂cα
∂α

∣∣∣∣
α=0

= f(s)n(s)

We give a name to the important quantity 〈c′′(s), n(s)〉, calling it the geodesic
curvature of c. It will be denoted by kg = kgc. Geodesic curvature changes
sign when a different choice is made for the unit normal vector. The scalar
geodesic curvature is just its absolute value |kg|. From equation 1.8 we see
that

Lemma 3 The geodesic curvature of a curve on a surface depends only on
the inner metric of the surface, not on how the surface is embedded in E3.

As before we deduce from this formula that the curve c can be shortest
only if its geodesic curvature vanishes identically: kg(t) = 0 for every t. This
amounts exactly to ask the curve c to have acceleration normal to the surface.
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c'(s)
c

f(s)

c"(s)

n(s)

M

Fig. 1.40. Variation of a curve on a surface

This condition was known to Jacob Bernoulli I, who taught it to his student
Euler in the beginning of the 18th century. It appeared for the first time in
written form in Euler’s work. Such curves are called geodesics of the surface.
This justifies the name of geodesic curvature because kg is a measure of how
the curve under consideration differs from a geodesic. Unless otherwise stated,
geodesics will always be parameterized by arc length.

Fig. 1.41. A cart traverses geodesics

In an intuitive sense, to follow a geodesic is just walking straight ahead in
front of you. A more picturesque (approximate) way to get geodesics is to roll
along the surface a small buggy made of two wheels of equal radii joined by a
short axle, as in figure 1.41. We leave to the reader the proof of this fact. The
kinematic interpretation of geodesics is that they are the trajectories followed
by a point moving on the surface with no force applied to it. In some sense you
should feel no inner acceleration. Shortest paths are necessarily geodesics but
geodesics are not in general the shortest paths between points, as we will see
later. We will call a path a segment if it is the shortest path between its end
points (some books call these minimal geodesics). Geodesics are segments
only between points which are close enough to one another (think of the
sphere). This comment is valid in any Riemannian manifold; see §§6.1.1. The
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distance between end points of a segment is exactly the length of the segment.
To give the reader a flavor for the general Riemannian manifold, we study
the theory of geodesics and of the shortest paths in a somewhat detailed way.
This because there is not much difference in difficulty between surfaces and
general Riemannian manifolds.

There are extremely few surfaces on which geodesics (and a fortiori short-
est routes) can be more or less explicitly determined. But one can get a rea-
sonably general statement first as follows. We want to find out if geodesics
exist. For a general surface the simplest possible chart is the one given when
one considers the surface (locally) as the graph of a function, and this is
always possible (perhaps after relabeling the Cartesian coordinates). So we
write M locally as the image of the map

(x, y) �→ (x, y, F (x, y)) (1.9)

where (x, y) runs through some open set in E2.
Our curve will be c given by

t �→ (x (t) , y (t) , F (x (t) , y (t)))

and we just write that its acceleration c′′(t) is normal to M at every point.
Computation yields the equations

x′′(t) + P
(x′)2R+ 2x′y′S + (y′)2 T

1 + P 2 +Q2
= 0 (1.10)

y′′(t) +Q
(x′)2R+ 2x′y′S + (y′)2 T

1 + P 2 +Q2
= 0 (1.11)

where for simplicity we set

P = ∂F
∂x Q = ∂F

∂y

R = ∂2F
∂x2 S = ∂2F

∂x∂y T = ∂2F
∂y2

and general theorems about differential equations tell us immediately that
geodesics exist with any given initial conditions, at least for small values of
t, and are unique under these conditions. In particular there is one and only
one geodesic parameterized by arc length, starting from a given point m ∈M
and with given unit length velocity vector in the tangent plane to M at m.

From the above, general topology implies quite easily (using Gauß’s
lemma on page 131) that geodesics are shortest paths locally and that for
any two sufficiently close points on M there is one and only one shortest
path. But to find it explicitly is almost always impossible. Moreover globally
uniqueness is false as already seen on the sphere. Let us now mention a few
cases where geodesics are exceptionally easy to find.



42 1 Euclidean Geometry

M

n

p

q

geodesics through m meridians are geodesics 
by a symmetry argument

Fig. 1.42. (a) Geodesics through a point. (b) Meridians are geodesics by symmetry

The first case is when one has a plane of symmetry for the surface, because
then the local uniqueness implies that the intersection with that symmetry
plane is always a geodesic. Example: the great circles of the sphere are exactly
its geodesics. For a surface of revolution every meridian will be a geodesic.

Surfaces of revolution are those obtained by rotating a curve around an
axis. Geodesics on surfaces of revolution are a step easier to find because they
satisfy a conservation law. The conservation law was discovered by Clairaut
around 1730. We use two facts: the first is that the normal straight line to a
surface of revolution always meets the axis of revolution. The second is that
under projection to a plane orthogonal to the axis of revolution, the accel-
eration of the projection is the projection of the acceleration. This implies,
in kinematic language, that the projected curve is a motion under a central
force because the straight line containing the acceleration vector always goes
through the origin of the plane. Then it is classical that such a motion obeys
the law of area and from there the geodesic can be uncovered just by find-
ing a primitive of a given function. For details and examples, see Berger &
Gostiaux 1988 [175], Klingenberg 1995 [816] or do Carmo 1976 [451] and also
§§10.2.1.

For example, the global behavior of geodesics is very simple when the
meridian is convex: geodesics move between two parallels of the surface, par-
allels which moreover are at the same distance from the axis. In particular
the behavior of a geodesic when the time goes to infinity is completely known.
One can also find the periodic ones. For a torus of revolution we suggest that
you study the different kinds of geodesics, or see Bliss 1902 [208].

The second type of surface whose geodesics are easily determined is a
quadric. Quadrics are the surfaces of E3 given as the points where a quadratic
form vanishes. The simplest ones are the compact ones, i.e. the ellipsoids:

x2

a2
+
y2

b2
+
z2

c2
= 1
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Fig. 1.43. Geodesics on surfaces of revolution

When a = b = c we have a sphere; when only two of the three are equal we
are on an ellipsoid of revolution and the determination of geodesics is easy to
carry through completely (but the geodesics are given by elliptic functions).6

But for a, b, c all distinct, it is much harder. Jacobi succeeded in 1839 in
integrating the equations for geodesics of ellipsoids by a quite difficult trick;
explicit expression requires hyperelliptic functions. Details in textbook form
are in Klingenberg 1995 [816] along with a lot of information about ellipsoids,
but note that some statements are imprecise.

Jacobi’s motivation to find ellipsoidal geodesics has some historical inter-
est. He was asked to do this job by Weierstraß for the following reason. At
that time, the earth was considered to be an ellipsoid of revolution, whose
eccentricity was quite well measured. However, geographers found discrepan-
cies and the conjecture was that the real shape is that of an ellipsoid with
three distinct axis lengths. So there was enormous interest in finding the
geodesics. The picture is now back to an ellipsoid of revolution, but with a
little flattening around the poles.
6 Do not be afraid of elliptic functions. They are just the “classical functions” which

come next after polynomials, rational fractions, exponentials and logarithms,
trigonometric functions and their combinations.
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The geometric version of Jacobi’s result is too nice to be concealed. It is
explained in Arnol′d 1996 [66] pp. 469–479. First we introduce the one param-
eter family of quadrics called homofocal to the above ellipsoid (or confocal).
They are defined by the equation

x2

a2 + λ
+

y2

b2 + λ
+

z2

c2 + λ
= 1

and are pictured in figure 1.44 on the facing page. A line will usually be
tangent to exactly two quadrics of this family, at two different points of the
line. Given any quadric of this family, we take the lines which are tangent
to it at one point and to the original ellipsoid somewhere else. These lines
form a geodesic on the ellipsoid, and all geodesics arise this way. As a conse-
quence, a geodesic on the ellipsoid will either be periodic or everywhere dense
in a region given by the corresponding quadric. Thus the global behavior of
geodesics is completely understood. In particular, for example, there are in-
finitely many periodic geodesics, coming in one parameter families (bands).
Note, for the geometer, that the intersection curves of the ellipsoid with the
confocal quadrics are exactly the curvature lines of the ellipsoid: those lines
are the integral curves of the two line fields given by the principal directions
and play an important role in surface theory (see §§1.6.3). The family of con-
focal quadrics gives the ellipsoid nice coordinates which are basic for various
studies, see Morse & Feshbach 1953 [945] or Courant & Hilbert 1989 [407]
for example.

But the story of the shortest paths on ellipsoids is not finished, even
when they are of revolution. Here is why. We continue to suppose that our
axes have three distinct lengths. On our ellipsoid there are four points called
umbilic points; they come in two pairs p, p′ and q, q′. These four points are
the intersection of the ellipsoid with the quadric of the confocal family which
has degenerated into a hyperbola located in the x = 0 plane. Every geodesic
from one umbilic goes after a time T to the other point of the pair. The
time T does not depend on the initial direction because of the first variation
formula for surfaces (see §§3.1.4). Caution: if you take a second lap for time
T you will come back to your original point, but in general with a different
direction, unlike on the sphere. This is of course completely proven. The
complete picture of such a geodesic, infinite in both directions, is quite subtle:
it will be used for an interesting application in §10.9.

If p is not one of the four umbilics then associated to it is its cut locus
(see §3.3 and §6.5 for the general definition of the cut locus and details). The
cut locus of a point p is the closure of the set of points which can be joined
to p by more than one segment. For nonumbilic points p of the ellipsoid, it
was claimed by Braunmühl 1878 that the cut locus of a point p, as a subset
of the ellipsoid, is homeomorphic to a compact interval (see Braunmühl 1882
[257]). The two extremities are joined to p by a unique shortest path, while
points in the interior of this interval are joined to p by exactly two shortest
paths. There is still no complete proof of this assertion, despite von Mangoldt
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(a)

(b)

Fig. 1.44. Homofocal quadrics
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1881 [893]. Very recently, Sinclair & Tanaka 2002 [1142][1143] wrote software
to study the cut loci of surfaces; moreover they proved the conjecture for the
particular case of an ellipsoid of revolution for points sitting on the equator.

(a)

2
1

1

(b)

Fig. 1.45. Cut loci on the ellipsoid

Some clever readers will have been wishing to ask the author for some
time why he did not address two natural questions. The first: can we extend
geodesics indefinitely? The second: is there always at least one shortest path
between any pair of points of a surface? Both answers are no in general;
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the simplest counterexample killing both questions is a plane with one point
deleted.

hole

p q

Fig. 1.47. There is no shortest path from p to q

The answers to these questions on general surfaces are neither easy to
find nor to state. What is happening in the above example of a punctured
plane is that a line running through this deleted point will arrive at it as to
a boundary point. So we hope that things will be alright for surfaces with no
boundary. Indeed they will, but for boundary in the sense of the inner metric
of the surface. For example, if you draw in the plane a curve of infinite length,
and then produce in three dimensional Euclidean space the “cylinder” on
that curve (see figure 1.49 on the next page), i.e. the lines through the curve
which are perpendicular to the plane, then on that surface every geodesic is
indefinitely extendable and any two points can be joined by a unique geodesic
which is moreover the shortest path between those points. However, in E3

this cylinder can have a boundary. The jargon answer is: the surface should
be a complete metric space when endowed with the inner metric forced on
it by its embedding in E3. The simplest case is when the surface is compact:
then it is also complete in the above sense. We leave the subject here because
we will study it intensively in the general case of Riemannian manifolds in
§6.1.

Another important question: do our geodesics provide the shortest pas-
sage? Assume the surface M is complete and pick up a geodesic c (parame-
terized by arc length) starting from a point p = c(0) ∈M . We know that we
can extend it indefinitely and that at first (for small t) it will be the shortest
route between c(0) and c(t). But there is no reason that this will remain
true for larger t; think for example of any compact surface M . People like
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curve asymptotic to a circle

Fig. 1.48. Curve asymptotic to a circle

Fig. 1.49. A complete surface, not closed

to control things, analysts like to have a priori inequalities. Here we would
like to specify a positive real number I (attached to a given surface M of
course) such that any geodesic of length smaller than I is a segment. As we
will see later (in §6.5) for the general compact Riemannian manifold, the best
possible I always exists (is positive) and has a name because of its basic im-
portance: it is called the injectivity radius of M , written Inj (M). For the unit
sphere its value is π. Even for ellipsoids it is not easy to compute. Note that
it can fail to exist (more precisely, it can be zero) for complete noncompact
surfaces as shown in figure 1.50 on the following page. Even for surfaces of
revolution, cut loci and injectivity radius are impossible to find explicitly. A
few exceptions are tori of revolution and Zoll’s surfaces; see Besse 1978 [182]
for Zoll’s ones. For tori of revolution, the result is not found in textbooks.
From what will be said in chapter 6 it can be left to the reader as a hard
exercise, say already only for the case where the point is sitting in the outer
meridian.

In §§1.2.3 we were interested in periodic trajectories of billiard balls, for
example as a kinematic problem. Running along geodesics on a given surface
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p

Inj(M) = 0

Fig. 1.50. Inj (M) = 0

is also a type of kinematics. Moreover it is a paragon for kinematics because
many mechanical situations, as soon as they involve only two parameters,
have motions given exactly as the geodesics of a surface. Note, to be more
careful, that the surface under consideration should most often be an ab-
stract surface (not one embedded in E3) and that will one of our important
motivations to extend the notion of surface and of geometry to abstract Rie-
mannian manifolds. In any event we now play billiards on a surface M in E3

with no boundary and so we look for periodic geodesics and ask ourselves
the standard questions: are they many of them, or is there at least one? How
many of them have length smaller than a given length L (this is called the
length counting function and denoted by CF (L)).

We look first at the sphere and discover that all geodesics are periodic
with the same period equal to 2π. Given a general surface, assuming moreover
that it is strictly convex, even Poincaré could not prove there is at least one
periodic geodesic on it. Birkhoff established it in 1917. Proof that there is
an infinity for every surface had to wait until 1993; prior to that date it was
not known even for strictly convex surfaces. We will come back to this more
seriously in chapter 10.

Be careful about infinity: we want an infinite number of geometrically
distinct geodesics. As a kinematic motion, running twice along a periodic
geodesic is different from running only once, but it is not geometrically dis-
tinct. For example when working on counting functions one should be careful
to distinguish between the counting function for geometric periodic geodesics
and that for parameterized ones. The question is difficult because the stan-
dard ways to prove existence of periodic geodesics consider them as motions.
We will devote an entire chapter to this (and more) in the case of a general
compact manifold, namely chapter 10.

We come back to the sphere. A typical mathematically minded question:
are spheres the only surfaces all of whose geodesics are periodic? In kinematics
this is the case for one of the simplest systems, the harmonic oscillator: one
considers in Euclidean space a point which is attracted to the origin by a
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Fig. 1.51. Geodesics on the sphere

c L

2L

Fig. 1.52. Counting periodic geodesics

force positively proportional to the distance. Then every trajectory is an
ellipse and thus periodic. So our question (at least as regards surfaces) asks
for the harmonic oscillators of Riemannian geometry.

The question was taken up by various people around the end of the last
century. They worked only with surfaces of revolution because their geodesics
are easily computed as we saw above. The question was settled by Zoll 1903
[1310] when he proved that there are many surfaces of revolution all of whose
geodesics are periodic and which are not spheres.7 These surfaces are not all
convex and most remarkably some of them are even real analytic.8

This does not end the question. In fact mathematicians like to classify,
if possible completely, objects with a given property. So we want to find all
surfaces which are harmonic oscillators. Only partial results are known today.
Moreover to have a clear view of the problem it is better to work with abstract
Riemannian surfaces. We then refer the reader to §10.10 where we will see
the current state of the art.
7 Some people say closed instead of periodic, which can be ambiguous since it could

also be used to mean only that a geodesic comes back to the same point, but not
with the same direction; such a geodesic will not usually be periodic, and will be
called a geodesic loop.

8 Real analytic functions are those equal to their convergent Taylor series, in an
open set about each point. The definition of real analytic surfaces is analogous.
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Let us come back again to the inner geometry of the sphere. Not only are
all geodesics periodic, all of those starting from a given point pass after time
π through the same point, its antipode. Are spheres the only surfaces having
that property? This time the answer conforms to intuition: only spheres can
do this. The question was raised by Blaschke in the 1930’s but solved only
in 1961 by Leon Green, see Green 1963 [586]. . For all the above questions
the standard reference is Besse 1978 [182], but it is now outdated, so see
§10.10. We will just prepare the reader for the first variation formula for
general Riemannian manifolds to be uncovered in §§6.1.1: this formula shows
immediately that in an antipodal manifold the running time from one point
to its antipode has to be a constant (for example, π for unit spheres).

We stop here because we need more powerful tools to study the inner
metric, namely those invented by Gauß. They will provide the content of
chapter 3.

1.6.3 The Second Fundamental Form and Principal Curvatures

We now are interested in how a surface M sits in E3. We will generalize the
notion of curvature for plane curves seen in §§1.3.2, and erect an object called
the second fundamental form, which will tell us how much the surface differs
from its tangent plane.

We will look at the curvature of various curves sitting inM, parameterized
by arc length. The first result on these curvatures is Meusnier’s theorem which
goes back to the end of the 18th century. To a curve c, to be studied at the
point m = c(t), we attach the curve d which is the cross section of M by the
plane containing both the tangent c′(t) to c at m and the normal straight
line to M at m. Orient M near m (i.e. pick a unit normal vector to M at
m), and orient d to agree with the orientation of c at m where c and d are
tangent. In general, the acceleration vector c′′(t) is not normal to M at m,
but makes an angle α ∈ [0, π/2] with it. Meusnier’s theorem relates the two
geodesic curvatures kc(t) and kd(t):

kc(t) = kd(t) arccosα.

Note those are essentially the lengths of the accelerations, not the radii of
curvature, explaining why things are not too intuitive. But for osculating
circles this relation is the one we expect: the osculating circle of c is the
projection of the osculating circle of d on the plane determined by c′(t) and
c′′(t). It helps to draw curves on a sphere (see figure 1.54 on the next page).

Conclusion: to know the curvature of any curve, we need only know the
curvatures of the normal cross sections of M .

The next theorem organizes these curvatures algebraically. The curvature
of a normal section d at m ∈M depends obviously only on the unit tangent
vector u = d′(t). When u runs through the unit circle in the tangent plane
TmM to M at m, the curvature ku turns out to be a quadratic form in u,
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Fig. 1.54. Meusnier’s theorem

denoted by IIm and called the second fundamental form of M at m. With
respect to the Euclidean norm on TmM this form has principal directions
(which do not depend on the unit normal vector choice) and principal values
for these principal directions. We denote them by k1 and k2 and call them the
principal curvatures of M at m. Keep in mind our choice of an orientation
for M : if we reorient M , then the sign of IIm flips, and so do the signs of
k1 and k2, although the principal directions are unchanged. We now have
on TmM two quadratic forms: the first one, the Euclidean norm induced by
the embedding of TmM in E3 (which then depends only, so to speak, on the
inner geometry) and the second, denoted by II which depends on the outer
geometry (i.e. on the way that M sits in E3). The second fundamental form
measures the defect of M to be a plane.

It turns out that for most standard examples, the elements of the second
fundamental form are quite easy to compute (contrary to the inner geometry,
where we had trouble computing distances and geodesics). For a unit sphere,
at every point k1 = k2 = 1 (if the unit normal vector is the inward pointing
one) and so the principal directions are not defined. For any surface the points
where k1 = k2 are called umbilics. This is not a contradiction with the same
word used for ellipsoids in §§1.6.2 because in fact these points of ellipsoids
are also umbilics in the present sense. It is not hard to see that a surface all
of whose points are umbilics is a part (or the totality) of a sphere or plane.
But there is a conjecture of Carathéodory (made in the early 1920’s) still
open:

Conjecture 4 (Carathéodory) Every compact surface in E3 which is home-
omorphic to a sphere has at least two umbilics.

This was proven between 1940 and 1959 by different authors (Hamburger,
Bol, Klotz 1959 [818]) for surfaces which are strictly convex and real analytic.
The proof is very hard and it seems that rigor was varying. For the state of
affairs today see Scherbel 1993 [1102] and Gutierrez & Sotomayor 1998 [671].
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It is natural to apply Hopf’s index formula (see equations 15.9 on page 735
and 15.12 on page 739)

χ(M) =
∑
x

indexx(ξ) (1.12)

where ξ is a vector field on M with a finite number of singular points. If M is
topologically the sphere S2 then one has χ(M) = 2. Now at nonumbilic points
of M one has the two principal directions. By continuity and orientation one
hopes to use them to define a vector field, with singularities only at umbilics.
In fact one can first extend Hopf’s result to fields of directions; then indices
are no longer necessarily integers but in general only half integers (rational
numbers with denominator 2): for example the four umbilics of an ellipsoid
have index equal to 1/2. This does not prove that there are at least two
umbilics, because one umbilic might have an index equal precisely to 2. The
essence of the result above consists in proving, when the surface is moreover
real analytic, that the index of an umbilic cannot be larger than one. The
proof is extremely involved.

For very recent contributions to the subject, see Rozoy 1990 [1073] and
Smith & Xavier 1999 [1150].

impossible everywhere
 on topological sphere

possible on a topological torus

Fig. 1.55. (a) Impossible everywhere on a topological sphere. (b) Possible on a
topological torus

More generally for surfaces of revolution, using a symmetry argument,
one sees immediately that the principal directions at a point m ∈ M are
the tangents to the meridian and the parallel through m. Then one of the
principal curvatures is the curvature of the meridian, while the other is the
inverse of the distance between m and the point of the axis of revolution
where the normal to M at m meets this axis.

For a cone, a cylinder and more generally for the envelope of a one pa-
rameter family of planes things are as follows.9 Such surfaces contain through
9 These surfaces are called developable for a reason to be seen below in §§1.6.7.
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Fig. 1.56. The principal curvatures of a surface of revolution and the particular
case of a torus of revolution

every point m a generatrix which is a portion of a straight line and also a
geodesic. Along a generatrix the tangent plane does not turn, i.e. the unit
normal vector is constant. The generatrix is always a principal direction and
the associated principal curvature vanishes.

We leave the reader to compute the elements of the second fundamental
form for ellipsoids. More generally principal curvatures are easy to compute
either when M is given as the level set of a function or by some parameteri-
zation: see one case on page 61.

To every quadratic form on Euclidean space are attached two basic in-
variants: its trace and its determinant. It is thus most natural to attach to a
surface M the two following invariants:

K = k1k2 the total or the Gauß!curvature
H = k1+k2

2 the mean curvature

Note that K does not depend on the choice of unit normal, while H changes
sign if we change the unit normal. The reason for the name of Gauß will
appear fully in the sequel. As a first example one sees from the above that K
vanishes identically on developable surfaces. ObviouslyK and H are constant
on spheres and planes. But there are many surfaces, different from spheres,
with either H or K constant (not both). We will come back to this later
on in §3.4. For the moment, we just mention the simplest examples of these.
Surfaces of revolution with constant H or K can be explicitly determined, for
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Fig. 1.57. The second fundamental form has opposite signs

Fig. 1.58. The second fundamental form is positive definite
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Fig. 1.59. A developable surface

the reason that (from what was said above about their principal curvatures)
one can reduce the condition to an ordinary differential equation for their
meridian curve. The shapes of some such surfaces are given in figure 1.60.

Fig. 1.60. (a) Beltrami’s trumpet. (b), (c) Meridians of surfaces of revolution of
constant negative Gauß curvature

Note that there are singularities (except for the standard sphere, and the
standard cylinder). This is compulsory because there are theorems which
say that closed surfaces of either constant mean or constant Gauß curvature
must be spheres; see §§3.4.1 and §§3.4.2. Note that these theorems are hard to
prove. They were obtained only at the turn of the century. But the philosophy
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Fig. 1.61. Constant positive Gauß curvature surfaces of revolution

is that local pieces of surfaces of revolution are then easy to find. Now take
a small cap of sphere or take some piece out of a tennis ball. Intuitively
you might think it is easy to deform it in many ways keeping either K or
H constant, because we have lot of freedom and are asking only for one
condition. Rotational symmetry is exceptional. Indeed this flexibility with
fixed mean or Gauß curvature turns out to be true for “general” surfaces,
e.g. when K is not zero, but one needs extremely hard analysis to prove it.
Moreover it is false for some surfaces which have exceptionally flat points.
Indeed, some surfaces with such a strange flat point on them can not be
bent without stretching (i.e. deformed through isometries other than rigid
motions), even after cutting away all but an arbitrarily small neighborhood
of that point.

For K a positive constant, it is natural to ask for closed surfaces, because
positive K makes the surface shaped a little like an ellipsoid at each point.
But how about K ≡ −1? It should be shaped more like a saddle. We know
from §§1.6.4 that if it is complete for the inner metric, then such a surface
cannot be compact. But is it possible to find an inner-complete surface in E3

with K ≡ −1? The answer is no, and this was proved by Hilbert in 1901. The
proof is hard. Hilbert proved even more: the answer is still no even if you
permit the surface to cross itself as in figure 1.63 on page 61. Such surfaces
are called immersions as opposed to embeddings, see Berger & Gostiaux 1988
[175], do Carmo 1976 [451], Gallot, Hulin, & Lafontaine 1990 [542] for the
jargon. Hilbert’s theorem is of fundamental historical importance. It explains
why hyperbolic geometry has to be defined abstractly, and can never be
obtained as the inner geometry of a surface in E3. The interested reader can
find its proof in section 5.11 of do Carmo 1976 [451] or in chapter 5 of volume
III of Spivak 1979 [1155]. A recent survey of the state of affairs for the various
generalizations and conjectures connected with Hilbert’s result is presented
in chapter II of Burago & Zalgaller 1992 [284].
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Fig. 1.63. An immersion

Note the following kinematic interpretation of the meridian of surfaces of
revolution with H constant (see figure 1.62 on the preceding page), called
Delaunay surfaces. They are obtained by rolling a conic in a plane along one
of its tangents and the desired curve is that described during that rolling by
one of its foci. This is not only a graceful depiction; there are deeper things
behind it in connection with harmonic maps (see §14.3 and V.3 of Eells &
Rato 1993 [480]).

We mention that computing K and H is easy even in the more general
form

(u, v) �→ (x (u, v) , y (u, v) , z (u, v)) .

When M is locally the graph (x, y) �→ (x, y, F (x, y)) of a function F , then K
is

K =
RT − S2

(1 + P 2 +Q2)2
(1.13)

(with notation as in equation 1.10 on page 41).

1.6.4 The Meaning of the Sign of K

A first interpretation of K concerns the outer geometry. To say that K(m) >
0 is to say that the principal curvatures are not zero and of the same sign.
You can deduce easily that the surface M is locally strictly convex at m,
and therefore that locally all points of M stay on one side of the tangent
plane TmM with only the point m being in TmM . If K(m) < 0 the principal
curvatures are non-zero and of different signs. Locally the surface is close to
a hyperbolic paraboloid. This, for example follows from the Taylor expansion
for M around m:

(x, y) �→
(
x, y,

1
2
k1(m)x2 +

1
2
k2(m)y2 + o

(
x2 + y2

))
(1.14)
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in a chart where m = (0, 0, 0), where TmM is the plane z = 0 and the x and
y axes are the principal directions. A similar expansion clarifies the positive
case.

It is important to remark that if K(m) = 0 nothing can be said about the
shape of M locally at m without further assumptions. In some sense, every
shape is possible. Consider some of the possibilities presented in figure 1.65
on page 64.

The second meaning will be treated in the most conceptually appropriate
manner later on, but we can now give just the first zest of it. Consider a
surface having the property thatK ≥ 0 everywhere. In particular, it is locally
convex. Thinking, for example, of the spherical case, we might guess that if
we have a triangle with sides a, b, c and an angle A, the basic formula 1.1 on
page 2 is bent into an inequality:

a2 ≤ b2 + c2 − 2bc cosA (1.15)

We will see in §3.2 that such an inequality is always valid under the sole
assumption that K ≥ 0 everywhere on M (provided, of course, that M is
inner-complete).

How about K ≤ 0? This time the surface is in some sense the opposite of
convex10 in the sense that every point (at least whenK < 0) is a saddle point.
The reader can guess that at saddle points geodesics diverge, and possibly
confirm her impression on some explicit examples. We will see in §3.2 that
this intuition is correct, namely that for triangles on surfaces enjoying K ≤ 0
everywhere one always has

a2 ≥ b2 + c2 − 2bc cosA. (1.16)

But beware that in the negative case, unlike the positive one, one has to
restrict to small triangles, more precisely to triangles which can be filled up
by a nice piece of the surface. Figure 1.67 on page 65 shows a counterexample,
the angle at the vertex being equal to π and the distance between q and r
being as small as we like, for large b and c. This counterexample is linked
with the notion of injectivity radius introduced on page 49. For the proof of
these two theorems see §3.2.

1.6.5 Global Surface Geometry

Let us mention some global results on surfaces, to give the reader an inkling of
the subject. But only a few, much less comparatively than we did for plane
curves in §1.4. There are two reasons: first, surfaces are more complicated
objects than curves. Secondly, surfaces M ⊂ E3 are not our aim, which is
Riemannian geometry. Surfaces are just used here as an introduction.
10 Also the opposite of concave, since concave versus convex is just a change of

orientation, which doesn’t affect K.
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Fig. 1.65. Flat points
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Fig. 1.66. Triangles on surfaces with positive and negative Gauß curvature
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p
q

r
Aangle A equal to π

Fig. 1.67. Angle A = π

One open problem is the two umbilics conjecture mentioned above. An-
other open problem is Alexandrov’s conjecture. Consider all compact surfaces
with K ≥ 0 and look for a kind of isoperimetric inequality, better an isodia-
metric inequality, specifying the maximal area of a surface with given inner
diameter. The diameter of a metric space is the supremum of the distances
between any two of its points. The inner diameter of a surface is its diameter
for its inner metric. Check that the sphere is certainly not the best (just
bend it). The conjecture is that the best bound is for the (flat) double disk
for which, if the diameter is equal to D, the area is equal to πD2/2. Note:
this a bound which is not realizable by a smooth surface, but probably only
by an object which is a limit of smooth surfaces with better and better ratios
for Area /D2, as in figure 1.68 on the next page. See partial results in Croke
1988 [417].

A simple theorem:

Theorem 5 On any compact surface there is at least one point m with
K(m) > 0.

You will enjoy finding the proof for yourself. Another result (which to our
knowledge appears in no modern textbook and was told us by Gromov) ex-
tends the rolling theorem 1 on page 17.

Theorem 6 (Rolling surface theorem) Take a compact surface M and
let sup k be the largest of the absolute values of its principal curvatures. Then
a sphere of radius sup k can roll everywhere inside M . And the analogous
result for the infimum value of the principal curvatures. Consequence: every
closed surface can be squeezed between two spheres, one of radius 1/

√
inf k

and the other of radius 1/
√

supk.

We now explain Hadamard’s theorem, which is the analogue for surfaces of
the plane curve global convexity theorem we described in §1.4.

Theorem 7 (Hadamard, 1898) Let M be a compact surface with positive
Gauß curvature everywhere. Then M is the boundary of a convex body and
consequently as a topological surface is a sphere.

Proof. Remember the proof in the case of the plane. What is needed is a
result ensuring here that there is only one point of M where the unit inner
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(a) Very thin disk

(b) Double flat disk

Fig. 1.68. The limit of a flattening disk

normal vector has any particular value (the existence of one being trivial). In
the plane case this intermediate result was a consequence of the Umlaufsatz.
Here things are simpler. The idea is to introduce the normal map, most
often called the Gauß map. It is a map going from the surface M into the
unit sphere S2 ⊂ E3 obtained, as you have already guessed, by attaching to
the point m the unit inner normal vector to M at m. The positivity of K
(its convexity if you prefer) ensures that this map is a covering map. Now
algebraic topology says that a sphere cannot have a covering map unless the
map has a continuous inverse, because the sphere is simply connected (see
§§4.1.3 for example).

Note 1.6.5.1 Various people discovered more or less recently that this map
appeared explicitly before Gauß in the work of Rodrigues in 1815, so we
propose to call it in this book the Rodrigues–Gauß map. Rodrigues used it to
prove, among other things, that the integral of the curvature of an ellipsoid is
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equal to 4π (i.e. without any explicit computation). See references in §3.4.5.
�

Note 1.6.5.2 For closed (but not necessarily simple) curves in the plane, it
is possible to have examples where the curve is everywhere locally strictly
convex but is not the boundary of a convex domain of the plane. The turning
number can be any integer as we saw on page 22. In E3 things are simpler:
consider an immersion in E3 of an abstract surface M (for the jargon, if
needed, any differential geometry book will do11). It is clear how to define the
Gauß curvature K of an immersed surface. Assume that K > 0 everywhere.
Then this immersion has to be one-to-one, i.e. an embedding, and of course
the image is the boundary of a convex body; in particular, topologically M
is a sphere. This follows with no change from the argument above because
the Gauß map is still defined and is still a covering of S2 by S2. See more
details in §§3.2.1. �

Note 1.6.5.3 It seems intuitive that for a compact surface in E3 the condi-
tion K ≥ 0 should be enough to insure that it is a topological sphere which
is the boundary of a convex body: why not admit “flat” parts, or flat points,
as in figure 1.70 on page 69? You expect a sphere, but proof had to wait for
Chern and Lashof in 1958. For references see Berger & Gostiaux 1988 [175]
section 11. 3. 2, do Carmo 1976 [451] 5. 6-B and Burago & Zalgaller 1992
[284], chapter I, for generalizations. �

1.6.6 Minimal Surfaces

In this section and the next one we are going to address the natural question

Question 8 What are the surfaces for which one of the two fundamental
invariants K or H vanishes identically?

We begin with the mean curvature H = (k1 + k2)/2. The mean curvature
happens to have a very simple geometrical meaning: exactly the extension to
surfaces of the curvature of plane curves when this curvature is seen as yield-
ing the first variation for the length of curves (see equation 1.3 on page 17).

More precisely consider a surface M , a piece Ω of it and a one parameter
family of neighboring surfaces, parameterized by a parameter t, and given by
a normal variation function f . Then

Lemma 9 The first derivative at M of the area of the piece of surface that
Ω stretches into is

d

dt
Area (Ωt) = 2

∫
Ω

H(m)f(m) dm (1.17)
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n(m)

mTmM

M

if M were not entirely on one side of TmM

flat parts are permitted

Fig. 1.70. (a) If M were not entirely on one side of TmM . (b) Flat parts are
permitted

Fig. 1.71. Variation of a piece of a surface

We will use this first variation formula in §§1.6.8 and in §§3.4.2. It implies
that the surfaces with H ≡ 0 everywhere are in some sense candidates for
minimizing area. For this reason, surfaces with H ≡ 0 are called minimal
surfaces. Consider the so-called Plateau problem: given a curve C in E3 find
a surface S whose boundary is C and which has smallest area. This you can
solve experimentally by dipping your curve, as realized by a piece of wire,
in soapy water (these are not soap bubbles which correspond to surfaces for
which H is not zero but only constant, see §§1.6.8). The study of minimal
surfaces is a mathematical topic in itself which has been extremely active
since the 1960’s. Before then, there were only a few results, due to the lack of
analysis tools. We refer to the two complementary bibles (and of course the
references there): Dierkes, Hildebrandt, Küster, & Wohlrab 1992 [444, 445]
and Nitsche 1989 [968], and to the excellent survey Meeks 1981 [911], and the
recent Osserman 1997 [984]. Some minimal surfaces are drawn in figure 1.72

11 Except, perhaps, this one.
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on the next page. Minimal surfaces can sometimes be found by an evolution
flow; see Chopp 1993 [376] and Wang 2002 [1242].

Examples of minimal surfaces with no boundary condition are easy to
build up; H ≡ 0 is a weak condition in that case. To get examples system-
atically there is a trick linking minimal surfaces with complex functions of a
one variable: see section 10.2.3.6 of Berger & Gostiaux 1988 [175].

Minimal surfaces of revolution are straightforward to produce and ana-
lyze, because we saw in §§1.6.3 how to find principal curvatures of surfaces
of revolution. From this, an exercise will prove that surfaces which are at
the same time minimal and of revolution are necessarily catenoids, namely
those whose meridian is the graph of the cosh (hyperbolic cosine) function.
It is also easy to prove that the only ruled minimal surfaces are helicoids and
planes. A surface is ruled when it is the set made up by a one parameter
family of straight lines called the generatrices of the surface; beware that for
a general ruled surface the tangent plane TmM turns when m moves along
a generatrix. A helicoid is the image of a straight line moving under a spi-
ral staircase motion. Computing the principal curvatures is especially easy
for ruled surfaces. For catenoids and helicoids, if needed, see section 4. 2 of
do Carmo 1976 [451]. An important technique in thinking about mean cur-
vature is the mean curvature flow ; see §§1.4.5, Ecker 2001 [477], Chopp 1993
[376] and Chen & Li 2001 [361].

We can slice a catenoid to wrap it into a helicoid, as in figure 1.73 on
page 72. This is a famous example of a one parameter family of surfaces (a
deformation) having two properties. The first is that every surface in the
family is minimal. The second is that all the inner metrics of these surfaces
are isometric under a suitable point to point correspondence (this property
to be an isometric deformation is sometimes called bending [without stretch-
ing]). The fundamental theorem of Gauß which is going to be the keystone
of chapter 3 implies then that the invariant K is preserved by isometries.
But H = 0 throughout the bending, hence the two principal curvatures are
preserved since their two values are ±

√
−K.

Note 1.6.6.1 Recalling that the curvature of a plane curve, given as a func-
tion of the arc length, characterizes the curve up to Euclidean motion, could
have suggested to you that the knowledge of the two principal curvatures
will do the same for surfaces. This is false. However, if one knows the sec-
ond fundamental form, that is, not only the principal curvatures but also the
principal directions, then the surface is determined up to rigid motion. In
the family above these principal directions are not preserved by the isometric
correspondence, they turn. For demonstration of the above see for example
the theory of these families in 3.5 of Dierkes, Hildebrandt, Küster, & Wohlrab
1992 [444, 445]. �
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Fig. 1.73. Cutting a catenoid to make a helicoid

1.6.7 The Hartman-Nirenberg Theorem for Inner Flat Surfaces

We want to study surfaces M with K ≡ 0. We saw in §§1.6.3 that this
is always the case for developable surfaces, i.e. for the envelope of a one
parameter family of planes. Let us not forget the special case of a piece of
plane for which the second fundamental form vanishes identically. One can
build very wild examples of surfaces by attaching to pieces of planes pieces of
cones and pieces of cylinders. This can be done as smoothly as we like using
functions like exp(−1/x2) sin(1/x), etc. Or just smoothly bend the unbound
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upper corner of this page; now notice that you still have freedom to bend the
unbound lower corner with your other hand. Such a surface will have both
planar points (where k1 = k2 = 0) and non-planar points where one of the
principal curvatures is non zero.

planar points

rank one points

Fig. 1.74. Surfaces with K = 0

Locally at a non-planar point it is easy to prove (see section 5-8 of
do Carmo 1976 [451] for details) that a surface with vanishing Gauß curva-
ture is a piece of a developable one and second, that its inner metric is locally
isometric to that of the Euclidean plane (this will also follow from §§3.1.4).
To get the generatrices, just follow the principal direction associated with
zero principal curvature. A similar assertion being of course true at planar
points, finally surfaces with K ≡ 0 have everywhere the same inner geometry
locally as the Euclidean plane. Now how about a global statement? Things
are quite easy in the real analytic case, but for milder smoothness hypotheses,
the question was settled only in 1959 by Hartman and Nirenberg. They prove
moreover that if M is complete then it has to be a complete cylinder (i.e. the
lines perpendicular to a plane, passing through a plane curve). The starting
idea, which is hard to work out completely and correctly, is that a family of
generatrices will develop singularities if extended far enough unless they are
parallel. See do Carmo 1976 [451], section 5-8 for a very detailed and lucid
exposition. Do not think mathematicians are now completely happy, they
never are; see for example the very recent Fuchs & Tabachnikov 1999 [526].

1.6.8 The Isoperimetric Inequality in E3 à la Gromov

We now follow up our work on the planar case in §1.5. We consider domains
D ⊂ E3 with compact boundary M = ∂D, and we ask

Question 10 What is the best possible dimensionless ratio

Area(M)3

Vol(D)2

for the area of M = ∂D with respect to the volume of D, and which domains
achieve this lower bound?
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The expected answer is that round balls (with sphere as boundary) achieve
the bound, and nothing else does.

Theorem 11 (Isoperimetric inequality in E3) Among all domains D ⊂
E3 with twice continuously differentiable boundary, those which minimize the
ratio

Area(∂D)3

Vol(D)2

are precisely the Euclidean balls.

Note 1.6.8.1 The plane is the only surface where uniqueness is easy to
prove. There is a good reason for this: starting in dimension three, uniqueness
in the isoperimetric problem cannot be true in general. For consider an object
(which will turn out below to be a sphere) achieving the best possible ratio,
and just add “hair” to it, that is to say, curves, etc. Then both the volume
of the domain and the area of the boundary will not change. So uniqueness
can be expected only under an additional hypothesis; the standard ones are
either convexity or smoothness. From these remarks, and from what follows,
one can see why the isoperimetric inequality—an amazing beautiful, useful
and simply stated result—is usually absent from mathematics curricula. �

For a spectacular application of the isoperimetric inequality to convex
bodies and the behavior of functions on spheres of high dimension (namely
Dvoretzky’s theorem and its proof), see the note 7.1.1.2 on page 329 and the
references therein.

isoperimetric inequality on S2 isoperimetric inequality in E3

Fig. 1.75. (a) Isoperimetric inequality on the sphere. (b) Isoperimetric inequality
in E3

In every dimension, the proof by Stokes’ theorem using the Knothe-
Gromov trick, the one using Steiner’s symmetrization and the one using the
Brunn-Minkowski inequality are valid to get the inequality. It is always more
difficult to prove that only spheres achieve equality, i.e. uniqueness. We now
know how to prove the inequality and uniqueness using a technique found by
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Paul Levy in the 1930’s. It remained buried up to 1980 when Gromov used
it at full strength as follows. This proof is the more powerful one (see §1.5
and §§§7.1.2.2) and at the same time the most expensive. This is because it
starts by asserting that there exist optimal domains D and that they have a
boundary which, as a subset M = ∂D of E3, is a smooth surface everywhere.
This is known from geometric measure theory, although the required results
emerged only in the 1960’s (see §§14.7.2). Note that in higher dimensions
everything works the same, with the proviso that geometric measure theory
tells us that the solution in general will have singularities, but at most of
codimension 6, which implies that they are of zero measure, and then the
scheme below applies perfectly. A technical point: using the first variation
equation 1.2 on page 4, we see that the point on M closest to a point of
D will be a point for which the supporting tangent cone is contained in a
half-space: this implies that such a point is regular (see §§§7.1.2.2 and the
references there for more details).

The idea is fill up the inside of D starting from points of M and following
the inner normal straight line. To be brief, we just speak of the normal NmM
to M at m. Every point d ∈ D is on at least one normal, namely take for
m ∈M a point which is as close to d as possible. Then d ∈ NmM .

M

M

M

m

n M

NmM m

d

d

m

not a minimum a minimum (local)

Fig. 1.76. Not a minimum; a local minimum

The infinitesimal volume element at distance t from m along a normal
NmM is easily calculated to be

(1 − k1(m)t) (1 − k2(m)t)

with the effect that

Vol(D) =
∫
M

∫ Cut(m)

0

(1 − k1(m)t) (1 − k2(m)t) dt dm (1.18)

where Cut (m) is the cut value, namely the length of the interval along the
normal to M coming out of m at which we should stop in order to fill up D
completely (see figure 1.77 on the next page).

The minimum property of M , in conjunction with the first variation for-
mula 1.17 on page 67, shows that the mean curvature H is a constant, say
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M
m

d
1 - k2t

1/k2

1/k1
1 - k1t

filling up a domain in the plane with the normals from the boundary

Fig. 1.77. Filling up a domain in the plane with normals from the boundary

h. From the elementary geometric-arithmetic mean inequality

xy ≤ (x+ y)2/4

it follows that the integrand is bounded from above by (1−ht)2. A elementary
geometric trick shows that the value Cut (m) at which we stop integrating
along NmM never exceeds 1/k1(m) if k1(m) ≤ k2(m). This trick is essential
and involves the notion of focal point (see Berger & Gostiaux 1988 [175],
2.7.11 or Gray 1990 [583], 8.1). It will be used at least two times below, in
§§6.5.2 and in §§§7.1.2.2. In conclusion one obtains

Vol(D) ≤ h

3
Area(M = ∂D) (1.19)

The proof is now completed using the fact that Area(∂D)3/Vol(D)2 is also
a minimum. One computes the first variation of that quotient for the normal
variation f = constant. This yields

Vol(D) =
h

3
Area(∂D).

Equality in equation 1.19 is now forced and tracing our steps backwards we
find that k1 = k2 everywhere on M , i.e. all points are umbilics; we have seen
already that this forces M to be a sphere.

1.6.8.1 Notes A first remark is in order for the attentive reader. Putting
together the mean curvature rigidity of the sphere mentioned in §§3.4.2 and
the nonexistence of singularities in dimensions below 6 the above proof seems
useless. But it is not that simple. First, the fact that surfaces of constant
mean curvature are spheres is an extremely difficult one to prove; see §§3.4.2.
Moreover, the above technique extends word for word in every dimension, and
in general Riemannian manifolds with Ricci curvature bounded from below
(see §§§7.1.2.2). So it is extremely powerful.
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The reader might be interested to know that Schmidt 1939 [1105] proved
that there is an isoperimetric inequality for domains of S2, the extremal fig-
ures being the spherical caps. He used symmetrization, but the above tech-
nique works as well. Schmidt proved his inequality in any dimension and not
only for spheres but also for hyperbolic spaces: see §§4.3.2. Note also that
our method “à la Gromov” works on spheres (and in any dimension) with
easy changes in the integrand (the infinitesimal volume element) of 1.18 on
page 75. You can guess which change to make if desired from theorem 111 on
page 338. Steiner symmetrization also works because these spaces admit a lot
of hyperplane symmetries (see theorem 40 on page 228). Also see §§§7.1.1.3.

One can be excused for the incorrect impression that the geometry of
spheres is completely mastered today. Let us mention a famous open question.
Girard’s formula 1.7 on page 38 implies that a spherical triangle all of whose
angles are rational multiples of π has an area which is rational multiple
of the total area of the sphere. Starting in dimension three, i.e. studying
spheres Sd ⊂ Ed+1, the question is to compute the volume of a simplex
(the direct generalization of triangle in higher dimensions) as a function of
the so-called dihedral angles, namely the angles along edges between the
two adjacent faces. Schläfli found a formula in 1858, but one is unable to
deduce from it the same rationality conclusion. The common view is that
this time (in dimensions at least three) rational dihedral angles will not imply
rational volume. But nobody can prove it today. For more on this in a general
setting involving also volumes of simplices in hyperbolic spaces, see the survey
Vinberg 1993 [1222] and the references there, as well as the references quoted
in section 10.6 of Ziegler 1995 [1306].

Fig. 1.78. (a) A tetrahedron in S3 with its six dihedral angles. (b) Tubes around
curves

Finally one can consider the volume of tubes around surfaces in E3 (com-
paring with §1.4 above). For this question, which has a nice answer and is of
historical importance, see Gray 1990 [583], entirely devoted to tubes. With
much less material, see chapter 6 of Berger & Gostiaux 1988 [175]. We will
meet tubes again in §15.7.
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1.7 Generic Surfaces

We want to say that a property of a surface (or more general mathematical
object) is stable if the property continues to hold after small perturbation, and
say it is generic if it always holds after (large or small) random perturbation.
For example, positivity of Gauß curvature is stable, but not generic. Vanishing
of Gauß curvature (inner flatness) is neither stable nor generic. The property
of a parameterized smooth curve being immersed is generic. We will say
that a generic parameterized smooth curve is immersed. Any property of a
surface that can be observed by actual measurements must be stable, since
the measurements will not be perfectly precise. If the property is generic, then
we don’t even have to make a measurement; we can expect it beforehand with
near certainty.

Let us be more precise about these perturbations. Cut a sequence of
points out of a line. Since the line is not countable, there will still be points
left over, not belonging to the sequence. Similarly, if we cut a sequence of
smooth curves out of a surface, there will be points left over. Call a subset
of a topological space skinny if it is closed and nowhere dense. For example,
a curve in a surface. A subset of a topological space is called meager if it is
the union of a sequence of skinny sets, and residual if it is the complement of
a meager set, i.e. the residue left over from cutting out a sequence of skinny
sets. In our example of cutting curves out of a surface, each curve is skinny,
the union of the curves is meager, and the complement residual. A topological
space is said to be fat if it is not a meager subset of itself. A complete metric
space is fat (the first skinny set in a sequence misses some closed ball, and
the next skinny set misses a smaller closed ball inside the previous ball, etc.
converging down to a point or a closed ball of points). In particular, a finite
set is fat. Similarly, a complete Frechet space is fat. A residual subset of a
fat space is fat. A property of elements of a fat topological space is generic
if it holds on a residual subset.

Whitney 1955 [1260] proved that the generic C3 map from a surface to
the plane has only cusp and fold singularities. The fold is the map

(x, y) �→
(
x2, y

)
while the cusp is the map

(x, y) �→
(
x3 + xy, y

)
and to say that these are the singularities of a map means that near any
singular point, there are local coordinates (x, y) on the surface, and (u, v) on
the plane, so that the map is represented in this way. These maps are drawn in
figures 1.79 on page 80 and 1.80 on page 81. In each map, the singular points
form a smooth curve. The image of this curve on the plane forms another
curve, smooth except possibly with corners, the curve of singular values.
One may strengthen this result (only slightly) to examine the preimages of
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singular values: generically, the preimage will contain at most two singular
points, and if there are two, then the two corresponding tangent lines of the
curve of singular points map to distinct tangent lines on the plane. Thus every
compact smooth surface is obtained by stitching together finitely many pieces
of cloth (i.e. regions of the plane) each of which has smooth edges, and finitely
many corners. In effect, the curve of singular values is a sewing pattern for
the surface (as in fashion magazines); compare figure 1.81 on page 82. But
some of the corners of the cloth must be smoothed out (look at the cusp),
while others (corresponding to double singular values) must remain corners
when stitched together. Keep this in mind when we discuss triangulations of
surfaces and the Gauß–Bonnet theorem.

Now consider the Euclidean geometry of a surface in E3. A point of pos-
itive Gauß curvature is called an elliptic point. Near an elliptic point, any
tangent line to the surface will have only first order contact (since there are
no zeros of the second fundamental form). At a point of negative Gauß curva-
ture (called a hyperbolic point) such a line will have first order contact, except
along the two asymptotic directions (null directions of the second fundamen-
tal form), where the tangent line achieves at least second order contact. These
asymptotic directions form the tangents to the asymptotic lines. At points
of vanishing Gauß curvature (parabolic points) we have collision of asymp-
totic directions, forming a single tangent line, acheiving at least second order
contact. The elliptic and hyperbolic points form open sets, and generically
(in the natural topology on smooth surfaces) they are bounded by a smooth
curve of parabolic points. Inside the region of hyperbolic points is a curve
consisting of those points where the asymptotic lines have an inflection. For
a little more detail, see Arnol′d 1992 [63]. For a lot more, especially on the
singularities of wave fronts emanating from the surface, and on the umbilics
of generic surfaces, see Porteous 1994 [1039]. A brief discussion of the same
topics will be found in Berger 2003 [173]. Generic surface geometry has been
applied to the study of retinal imaging and the melting of ice and deforming
of landscapes by wind and rain; see Donati & Stolfi 1997 [460].

1.8 Heat and Wave Analysis in E2

1.8.1 Classical equations of physics for a plane domain

We come back to the physics of a compact domain D in the Euclidean
plane E2, thinking some more about billiard balls. In §§1.2.3 we studied
the classical mechanics of a particle moving inside D. Now we want to study
physics related to continuum and quantum mechanics. Namely, we consider
the equations called respectively the heat equation, the wave equation and
the Schrödinger equation.

These equations can be simply written using the notation
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Fig. 1.79. A fold
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Fig. 1.80. A cusp
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Fig. 1.81. A sewing pattern
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Δf = −∂
2f

∂x2
− ∂2f

∂y2

for a function f : D → R. The operator f �→ Δf is called the Laplacian.
The heat equation describes what happens when you start with a given dis-
tribution of heat on D at a given time, and ask how the heat has spread at a
later time. The heat equation for the function f describing the temperature
f(x, y, t) at time t at the point (x, y) of D is

Δf = −1
ν

∂f

∂t

where ν is the conductivity of the material.
For the wave equation, you consider the cylinder built over D, and pour

a thin layer of water in it. Then you try to describe the motion of the surface
of the water.12 The wave equation for the height f(x, y, t) of the water after
time t at the point (x, y) ∈ D is

Δf = − 1
c2
∂2f

∂t2

where c is the speed of sound in the fluid. The wave equation coincides with
the vibrating membrane equation which describes the normal motions of the
domain D when it is considered as a vibrating membrane, a “drum”. It
should be understood that the solutions of these equations in fact represent
only a first order approximation of the motions under consideration. The
wave equation also describes, in first approximation, the behavior of sounds
in a flat object, see §§1.8.4.

The Schrödinger equation of a free particle uses complex valued functions.
It is written

�2

2m
Δf = i�

∂f

∂t

where i =
√
−1, � is Planck’s constant, and m is the mass of our free particle.

Henceforth, we will take the constants appearing in any of these equations
to be equal to 1. This can be achieved by rescaling the time variable (which
may sound bizarre to an engineer, but is natural to a mathematician).

1.8.1.1 Bibliographical Note The subject of classical continuum physics
and quantum mechanics, even in the plane, is immense, and so is the bibliog-
raphy. We gave many references during our journey, but the reader will find
a commented bibliography at the end of Bérard 1986 [135], unfortunately
dating from 1985.
12 The wave equation is just a first approximation. For better approximations,

one needs to work much harder. For example, see Greenspan 1978 [598]. To our
knowledge, no one has ever considered how to extend Greenspan’s work to curved
surfaces, or to Riemannian geometry.
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1.8.2 Why the Eigenvalue Problem?

We want to solve the equations above, under various conditions on the bound-
ary ∂D of D and on the initial condition at time t = 0. To solve such an
equation depending both on the time t and the point m = (x, y), our first
clue is to use the fact that (roughly by the Stone–Weierstraß approxima-
tion theorem) we need only consider product functions f(m, t) = g(m)h(t).
Subsequently, one constructs series of them (as in Fourier series theory). For
example, look at the heat equation. We find that g and h must satisfy:

Δg

g
= −h

′

h

where h′ is the usual derivative in t.
Since the first fraction depends only on the point m and the second only

on the time t their common value has to be a constant, call it λ. A function
g : D → R such that Δg = λg is called an eigenfunction of D and λ is called
an eigenvalue of D. Of course, one should specify a boundary condition.
Once these eigen-objects are calculated, we are almost done. Just note that
the time dependence will give

h(t) =

⎧⎪⎨⎪⎩
e−λt for the heat equation
eiλt for the Schrödinger equation
eit

√
λ for the wave equation.

Physically, for a vibrating membrane, the product motions g(m)h(t) are the
stationary ones; they are the ones one can observe through stroboscopy.13

For all of these equations, the set of the eigenvalues λ of the Laplacian on
D is an essential piece of data. For simplicity’s sake, we will work only with
the boundary condition f(m, t) = 0 for every m ∈ D and every time t; this is
often called the Dirichlet problem. We will call the set of the corresponding
eigenvalues the spectrum of D (for the Dirichlet problem) and denote it by
Spec (D). It is the analogue for quantum mechanics of the set of lengths of
periodic trajectories in D which we met in §§1.2.3 for classical mechanics.
This set of lengths is sometimes called the length spectrum of D.

The eigenvalues represent—in some sense— the energy levels of the do-
main D, so that the spectrum is of primary importance. We will see that the
spectrum is much better understood that the length spectrum (see §§1.2.3)
because there are systematic tools to address to it. Physicists are extremely
interested in these energy levels: how do they look as a subset of R? The
first and simplest number to estimate is the analogue here of the counting
length function introduced in §§1.2.3 for classical mechanics. Written N(λ),

13 Recall that a stroboscope is an instrument which periodically flashes light, used
for studying periodic motion.
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it is defined to be the number of eigenvalues of Δ (for the Dirichlet problem
on D) which are not larger than λ:

N(λ) = # {λi ≤ λ}

This function, and its vague family resemblance to its cousin CF (L), is far
from understood (see §§1.8.6).

Affinities between these two spectra are still emerging from the shadows.
They provoke curiosity in the mathematician, drawing comparison between a
geometric notion and a notion coming from analysis. Some physicists explore
this topic these days because it is one of the simplest models where one
can test “explicitly” various conjectures on relations between classical and
quantum mechanics.

In the sequel, we will amply revisit this question on compact Riemannian
manifolds: see chapters 9 and 10. Treat our discussion here as an introduction
and a motivation for later. Physicists are also interested in abstract Rieman-
nian manifolds, even though naively they may seem unphysically abstract,
because some of them are much simpler to handle than all but a few bounded
regions of Euclidean space. The simplicity comes from having no boundary,
enabling us to ignore boundary conditions, which are often the source of sub-
tleties. The relations between periodic motions and vibrations (or waves) of
a domain D transcend the similarities in the spectra. In kinematics, we have
trajectories (and not only their length), while in vibrations we have the eigen-
functions, of which we can retain the nodal curves (the points of the domain
where an eigenfunction vanishes). When you vibrate a membrane and cover
it with dust, the dust collects in the nodal curves, because the membrane
stays still at those points—at the first order. For known relations between
spectra, nodal curves and periodic motions, we refer the reader to the recent
book of Sarnak 1995 [1095] and the references therein.

Let us look for the eigenfunctions. As in Fourier series theory, (which
corresponds essentially to D being an interval in the line E1 = R), any rea-
sonable function f vanishing on ∂D can be expressed as a converging series
whose entries are eigenfunctions of the Dirichlet problem for D. Notation:
write the totality of the spectrum as

Spec (D) = {λi}i=1,2,...

and the set of the corresponding eigenfunctions as {φi}i=1,2,... normalized so
that ∫

D

φ2
i = 1

for every i = 1, 2, . . . and ∫
D

φiφj = 0

for i �= j. Beware that eigenvalues can have multiplicity, the multiplicity of
λ being the dimension of the space of eigenfunctions with eigenvalue λ. This
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Fig. 1.83. A nodal set of Bunimovitch’s stadium

dimension is always finite. When writing the spectrum as above, it is gen-
erally understood that multiple eigenvalues are repeated a number of times
equal to their multiplicity. Let us clarify a minor point: not only do the eigen-
functions φi have to be normalized, but they must also be orthogonal to one
another. This is automatic when their eigenvalues are different (exercise for
the reader), but for multiple eigenvalues one needs to choose an orthonormal
basis of a finite dimensional Euclidean vector space.

The Fourier-like decomposition says that every function f vanishing along
D is equal to the following series:

f =
∞∑
i=1

ciφi

where
ci =

∫
D

f(m)φi(m) dm

for each i = 1, 2, . . . . When thinking of a vibrating membrane, the λi will
be the frequencies of vibration, also called the harmonics ; the lowest one is
called the fundamental tone.
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1.8.3 The First Way: the Minimax Technique

One way to hunt down the eigenfunctions is as follows. We get the first one
by the so called Dirichlet principle: among functions vanishing along ∂D one
looks for one minimizing the ratio∫

D ‖gradf(x, y)‖2
dx dy∫

D
f2(x, y) dx dy

where grad f is the gradient of f :

gradf =
(
∂f

∂x
,
∂f

∂y

)
.

This ratio is called the Dirichlet quotient.
Suppose that we have a function f which minimizes this ratio. Computing

the derivative of this ratio with respect to ε for a variation f + εg of the
function f and using Stokes’ theorem together with the Lagrange multiplier
technique, reveals

Δf = λ1f

for some constant λ1, and reveals that this λ1 is the infimum of the Dirichlet
quotient over all nonvanishing functions:

λ1 = inf

{∫
D ‖gradf‖2

dx dy∫
D
f2 dx dy

| f �= 0

}
. (1.20)

This yields the first eigenfunction: φ1 = f , together with the first eigenvalue
(which, by the way, is always of multiplicity one: you can prove it yourself).
To dig up the next eigenvalue and its eigenfunctions, one applies the same
trick, but restricting the set of functions f in consideration, allowing only
functions which are orthogonal to the first eigenfunction:∫

D

f(x, y)φ1(x, y) dx dy = 0.

Proceed in this way, ad infinitum. See more on this in §9.4.
For rigorous proofs of the facts above, and also for facts which we did

not quote explicitly, namely that the spectrum is a discrete, countable subset
of the real line (of course made up entirely of positive numbers) and the
fact that eigenvalues are of finite multiplicity, we refer the reader to Bérard
1986 [135], Chavel 1984 [325], Courant & Hilbert 1953 [406, 407], or any
book on classical continuum physics or quantum mechanics. Note that those
facts were rigorously proven only in the 1920’s. If you look at a proof using
Sobolev inequalities, keep in mind that the best current derivation of those
inequalities uses the isoperimetric inequality.
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There are very few examples where the spectrum or the eigenfunctions
can be determined explicitly. Two old standards are rectangles and disks.
In both cases, separation of variables disentangles the eigenfunctions. Using
again the Stone–Weierstraß theorem, and because the boundary condition
agrees with the separation, on a rectangle one need only look for product
functions f(x, y) = g(x)h(y), and there will be no other eigenfunctions. If
the rectangle has side lengths a and b respectively, then the eigenfunctions
are

sin
πmx

a
sin

πny

b
(1.21)

where m and n are any integers, yielding the set of eigenvalues

λ = π2

(
m2

a2
+
n2

b2

)
.

i.e. to obtain an eigenvalue at most λ we need m and n to be integer points
inside a certain ellipse. We will see below that a simple expression yields
an easy first order approximation of N(λ) when λ → ∞, but the second
order term in λ is related to deep number theory and is still not completely
understood today. It is believed that the number of integers m,n with

m2 + n2 ≤ λ2

is asymptotic to π2λ2 + O
(
λε+1/2

)
as λ → ∞, for any ε > 0, but there is

still no proof. This is called the Gauß circle problem; see §§1.8.5. However, it
is known that π2λ2 +O

(
λ1/2

)
is too small.

Fig. 1.84. The circle problem: find the integer points inside a circle

The eigentheory of the disk is treated by separating the variables using
polar coordinates (ρ, θ) and looking for product functions f(x, y) = g(ρ)h(θ).
One calculates h′′ = −nh where n is any integer, and g(ρ) satisfies the n-th
Bessel equation. Everything is explicit, modulo knowing everything about
Bessel functions; see any textbook in the realm of mathematical methods of
physics, e.g. Morse & Feshbach 1953 [945], Courant & Hilbert 1953 [406, 407].
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Be wary: vibrations of the disk are not easily grasped. Figure 1.85 is
the intensity distribution of an eigenfunction of quite high frequency, taken
from Sarnak 1995 [1095]. The very high concentration near the boundary is
surprising. It explains the famous “whispering gallery effect”. The picture is
less surprising if you know that higher Bessel functions vanish to higher order
at the origin.

Fig. 1.85. Square of a high frequency eigenfunction on the disk

The eigenvalues (harmonics) of a vibrating string are just the integral
multiples of the lowest one. This is never the case for a plane domain. Check
it for yourself on the two above cases. This is why drums are never very
musical, but the player tries when he beats a drum to generate a suitable
mixture of various eigenfunctions, ideally only one. Figure 1.86 on the facing
page (picture and legend) is taken from Balian & Bloch 1970/1971/1972 [97,
98, 99, 100, 101], the pioneering papers which started the search (mentioned
above) for relations between the two spectra. If you see some resemblance
between the figure and certain musical instruments, it is not by chance.

To our knowledge the only other regions of the plane whose eigenfunc-
tions, or even just eigenvalues, are explicitly computable are ellipses and
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Fig. 1.86. From papers of Balian & Bloch

isoceles, rectangular, equilateral and half equilateral triangles. The eigenval-
ues make themselves manifest as follows: for ellipses, separate variables using
homofocal coordinates (see the figures in §§1.8.6 and the books of Courant &
Hilbert 1953 [406, 407] and Morse & Feshbach 1953 [945]). For the triangles,
use reflections on the boundary to extend the functions (vanishing at the
boundary) to a square (for isoceles triangles) or to the whole plane with peri-
odicity (for equilateral or half equilateral triangles). Periodic functions in the
plane can be decomposed in Fourier series, but we will come back at length
to this from the point of view of abstract manifolds. This will be achieved
by replacing lattice-periodic objects in the plane by objects on an abstract
(flat) torus: see §§4.3.3. Fourier analysis of periodic functions on the line or
of functions on a circle are the same subject.

As a shocking example of our ignorance, one knows nothing about regular
hexagons, not even the first eigenvalue. Try to understand why the reflection
method does not work with regular hexagons. For more see Bérard 1980
[134], Pólya & Szegö 1951 [1037]. We did not really justify our use of the
word “minimax;” it will be amply justified in §9.4.

1.8.4 Direct and Inverse Problems: Can One Hear the Shape of a
Drum?

Mathematicians are never trumped when they cannot determine mathemat-
ical objects explicitly. Under their own steam, with aid from physicists, they
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look for various replacements like approximations, estimates of the counting
function N(λ), etc. There are two ways to think of this. Direct problems are
of the type:

Question 12 I know more or less the shape of the domain D; what can I
deduce from that about its spectrum?

Inverse problems work the opposite direction:

Question 13 I know (more or less) the spectrum of a domain; what can I
say about its shape?

These two problems were addressed (more or less explicitly) in the 19th cen-
tury and people have never stopped working on them. This book is an intro-
duction to Riemannian geometry, and we will devote the whole of chapter 9
to these two problems in the Riemannian realm. Therefore, we will treat spec-
tral geometry of Euclidean domains as mere motivation, and we will content
ourselves with giving a few results, ideas and problems.

1.8.4.1 A Few Direct Problems The main direct problem is the asymp-
totic expansion of N(λ) and will be addressed in the next section in some
detail because the technique extends automatically to Riemannian manifolds.
A more naive problem is to consider the first eigenvalue λ1. For a vibrating
membrane, λ1 is called the fundamental tone, for obvious musical reasons. In
the heat equation, λ1 gives the dominant information (together with the first
eigenfunction), i.e. the mode that decays with slowest exponential rate. Ev-
erything else quickly disappears. Controls on λ1 are of practical importance
to avoid “resonances”.

A natural question concerning the first eigenfunction φ1 was open for a
long time. Using Dirichlet’s principle, it is easy to see that the first eigenfunc-
tion of any domain never vanishes, except at the boundary. (After flipping
sign if needed, take it to be positive.) But, as a sort of control, one expects
that the shape of the boundary has some influence on the first eigenfunction,
more precisely on its level curves {f = t} when t runs from 0 to the max-
imum of f . Assume, for example that the domain is convex: is every level
curve convex also? Brascamp & Lieb 1976 [256] proved that this is so. A
similar problem was solved by them in the same paper. We want to know a
little about how λ1 depends on D. They proved that λ1 is a concave function
when one performs Minkowski addition of two domains.14

Other direct problems: to give systematic lower or upper bounds on the λi
depending on the domain. See Bérard 1986 [135], Chavel 1984 [325], Chavel
1993 [326] and §§1.8.5 for examples. We note here that the minimax technique
(explained in equation 1.20 on page 88, see also chapter 9) shows that upper

14 A definition of Minkowski addition is presented in Berger 1994 [167] (11.1.3) or
any book on convexity.
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D

∂D ∂D

D

the level lines are all convex curves

Fig. 1.87. What are the level lines?

(a) A Minkowski sum in the plane

(b) A Minkowski sum in space

Fig. 1.88. Minkowski sums
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bounds are in general quite easy to obtain, because one just exhibits some
suitable function, calculating its Dirichlet quotient. For a lower bound, one
has to show an inequality valid for every function (in particular the eigen-
function under consideration). We will give the basic strategy later in this
section.

Another natural idea when looking at the spectrum is to look at the ratio
of the first two eigenvalues λ1 and λ2. It was conjectured in 1955 by Payne,
Pólya and Weinberger that the ratio λ2/λ1 is strictly smallest on disks. This
was proven only in 1992: see Ashbaugh & Benguria 1994 [72] for this question,
and the recent Ashbaugh & Benguria 1995 [73].

1.8.4.2 The Faber–Krahn Inequality The last direct problem we shall
ponder, but not the least, is the Faber–Krahn inequality: among all domains
with equal area the one with lowest λ1 is the disk:

λ1(D) ≥ λ1(D∗) (1.22)

where D∗ denotes a disk with the same area as D. Musically it is quite
intuitive. For the heat equation, a body with longer boundary should lose
heat to its environment more quickly.

The assertion was stated without proof by Rayleigh in 1877; for history
and earlier results see Rayleigh 1894 [1053] or Pólya & Szegö 1951 [1037].
Faber and Krahn proved it independently in 1920. The proof below extends
with no difficulty to any dimension.

∂D

∂D*

D(t) D*(t)

k k

ΩΩ

FF

area (D (t)) = area (D*(t))

Fig. 1.89. Schwarz symmetrization

The underlying idea of the proof is too beautiful to be concealed. Moreover
it is the archetype for the more general result which will see for Riemannian
manifolds in chapter 9. Therefore, we are going to give a detailed proof. Here,
we will symmetrize functions (as opposed to the geometric symmetrization
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of Steiner in §1.5) called Schwarz symmetrization. It is a kind of transplant-
ing of functions defined on D to functions defined on a disk D∗ such that
Area (D∗) = Area(D). See figure 1.89 on the facing page. Pick up the graph
of some function f : D → R and slice it horizontally. Watch the level curves
f−1(t) when t goes from zero to the maximum of f . We now build up a
function f∗ : D∗ → R by forcing its level curves to be circles centered at
the center of D∗, so that each level curve surrounds a disk whose area is the
same as the area surrounded by the corresponding level curve of f . Perhaps
we can make this clearer: let D(t) = f−1(t, sup f ] and define f∗ by the con-
dition that the disk D∗(t) = (f∗)

−1 (t, sup f ] is centered at the origin and
that AreaD∗(t) = AreaD(t). Note that sup f = sup f∗. By equation 1.20 on
page 88 we only need to prove∫

D
‖grad f‖2 dx dy∫
D
f2 dx dy

≥
∫
D∗

‖grad f∗‖2
dx dy∫

D∗
f2∗ dx dy

.

The basic idea is to replace the double integral in dx dy by an integral first
in dt and then along the level curves f−1(t). Figure 1.90 shows that

dx dy =
ds dt

‖grad f‖ (1.23)

where ds denotes the arc length differential along the level curves. Two basic
tools of the theory of integration are used here: Fubini’s theorem and the
change of variables, giving

|grad f|

|df|

|df|dSt

the variation of area goes as
1

grad(f)

Fig. 1.90. The variation of area across level curves

AreaD(t) =
∫ sup f

t

dt

∫
f−1(t)

ds

‖gradf‖ (1.24)

The same equation applies to f∗ and D∗, and because of the condition on the
areas inside the level curves
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f−1(t)

ds

‖gradf‖ =
∫
f−1
∗ (t)

ds

‖gradf∗‖
.

Applying equation 1.24 on the page before to D∗ and f∗ one gets∫
D

f2 dx dy =
∫
D∗
f2
∗ dx dy.

To prove ∫
D

‖ gradf‖2 dx dy ≥
∫
D∗

‖gradf∗‖2 dx dy

we compute the derivative with respect to t of the integral

G(t) :=
∫
D

‖grad f‖2
dx dy

From equation 1.23 on the preceding page one calculates

G′(t) = −
∫
f−1(t)

‖grad f‖ ds

and the Schwarz inequality reads(∫
f−1(t)

‖grad f‖ ds
)(∫

f−1(t)

ds

‖gradf‖

)
≥
(∫

f−1(t)

ds

)2

=
(
length f−1(t)

)2
(1.25)

The classical isoperimetric inequality applied to both D(t) and D∗(t) and
their boundaries f−1(t) and f−1

∗ (t) give:

length f−1(t) ≥ length f−1
∗ (t)

Write the analogue of 1.25 but for D∗(t). We remark that ‖ gradf∗‖ is con-
stant on the circles by the circular symmetry, so now we have equality in the
Schwarz inequality. This shows that G′(t) ≥ G′

∗(t) for every t so that∫
D

‖grad f‖2
dx dy = G(0) ≥ G∗(0) =

∫
D∗

‖gradf∗‖2
dx dy

since G(sup f) = G∗(sup f∗) = 0, giving the finishing touch.
We hid a technical difficulty: the level curves need not be smooth. This

is not too hard to overcome (see the remarks in Bérard 1986 [135], IV.6).
The Faber–Krahn inequality can also be obtained by Steiner line sym-

metrization (see §1.5); this symmetrization respects the area and diminishes
λ1.

We could ask for more than the asymptotic expansion, namely how does
the subset {λi}i=1,2,... ⊂ R+ look? Physicists are interested in that question.
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They would like a sort of random repartition around Weyl’s asymptotic for-
mula. We will say few words on this in §9.11, see also Sarnak 1995 [1095]. The
spectrum is a mystery even for triangles in the hyperbolic plane. Hyperbolic
triangles are presently the physicists’ favourite specimens, because hyperbolic
geometry (negative curvature) is more realistic than Euclidean geometry for
systems of particles.

1.8.4.3 Inverse Problems The importance of inverse problems cannot be
underestimated. For plane domains they provide the simplest model of de-
termining the structural soundness of an object by listening to its vibrations.
Consider a vibrating object, anything from a space craft to a church bell.
We need to test the strength of this object. Already in the middle ages,
bell makers knew how to detect invisible cracks by sounding a bell (on the
ground, before lifting it up to the belfry). How can one test the resistance
to vibrations of large modern structures by non-destructive assays? This is a
perplexing problem; to our knowledge there is no solid mathematical contri-
bution on the subject. A small crack will not only change the boundary shape
of our domain—one side of the crack will strike the other during vibrations,
invalidating our use of the simple linear wave equation. On the other hand,
presumably heat will not leak out of a thin crack very quickly, so perhaps the
heat equation will still provide a reasonable approximation for a short time,
unless cracks permeate the object, or take up significant volume. The effect
on quantum mechanics is unclear. For references on nondestructive assays,
see Bourguignon 1986 [238]. In the absence of mathematical results, engineers
use both scale models and assays.

The spectrum determines (more or less) the length spectrum (for more
precise statements, see the references). But we saw that periodic billiard
motions are very difficult to study, and in particular recovery of something of
the shape of a domain from its length spectrum is beyond reach today (see
Guillemin & Melrose 1979 [669], from which we extract figure 1.91 on the
following page to help the reader feel the difficulties). There is basically only
one exception: disks are characterized by their spectrum as will be proven
twice in the next section. See also Guillemin & Melrose 1979 [668] for the
spectral geometry of ellipses.

The Faber–Krahn inequality 1.22 on page 94 can also be seen as an in-
verse problem; another one is the following. Let us ask for more than only
Faber–Krahn: their result tells us that in order for a domain to have a low
fundamental tone, it should have large area. But this does not expose the
shape of the domain. For example, consider rectangles where we have the
explicit value λ1 = π2

(
1/a2 + 1/b2

)
for the fundamental tone. Then one sees

that a large area ab with a small a will never yield a low fundamental tone.
What one can feel is that both a and b should be large or, otherwise stated,
the domain should contain in its interior a large disk (see figure 1.92 on the
following page). This was conjectured long ago, but proven only in 1977 by
Hayman. We refer to Osserman 1977 [981] and Croke 1981 [412] for an im-
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1
?

do ? go through (1)
or do you follow

the boundary

a very bad
periodic trajectory

a trajectoryn accumulating by an infinite number of reflections
to a point (this exists in strictly convex domains)

a trajectory

Fig. 1.91. From Guillemin & Melrose, 1979 [669]

provement, and note that the optimal result is still an open question, namely
the optimal constant and the corresponding shapes. In exchange, the mini-
mum principle shows immediately that the fundamental tone of a domain is
never larger than that of the maximal disk included in the domain.

D

a large area need not to produce a low tune nor a large diameter,
 one needs to include a large disk

Fig. 1.92. Neither a large area nor a large diameter suffices to produce a low tone;
one needs to include a large disk

Another long standing conjecture has been solved only recently. Consider
the second eigenfunction φ2 of a bounded plane domain D. What are the
possibilities for its nodal lines? Using the minimax principle, Courant proved
a long time ago that the nodal lines of the k-th eigenfunction φk cannot divide
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D into more than k different domains. Thus we have only two topological
possibilities for φ2, as in figure 1.93.

D

D

D1 D2 D1 D2

φ2
-1(0)

φ2
-1(0)

excluded now

Fig. 1.93. Topology of the nodal lines of φ2

In 1974, Payne conjectured that the only possibility is the one with a
transverse nodal line (check it for yourself on the examples you know). This
has just been proven in Melas 1992 [912], but only for convex domains. It is
interesting that the proof makes an explicit use of Hayman’s result mentioned
above.

We come back to the main question: is the knowledge of the totality of
Spec (D) enough to fix the shape of D? Formally, are two domains D and
D′ for which Spec (D) = Spec (D′) congruent, that is to say, is there an
isometry of the Euclidean plane identifying D with D′? This is exactly the
musical question of the title of this section. It is not absurd to expect that
only a countable sequence of numbers might yield the complete knowledge of
a domain; think for example of a periodic function determined by its Fourier
coefficients. Formulated in 1882 by Schuster, the negative answer was not
uncovered until 1992, in Gordon, Webb, & Wolpert 1992 [579]. The two plane
domains shown in figure 1.94 on the following page have the same spectrum.
Simpler and more general examples have been found in Buser, Conway, Doyle
& Semmler 1994 [294].

You can never clip the wings of a mathematician; deciding the existence
of isospectral domains does not end our inquiry. There is no uniqueness, but
what is then the defect of uniqueness? Are there (up to congruence, of course)
only a finite number of domains with identical spectra? Let us just mention
that today there are compactness results (see Osgood, Phillips, & Sarnak
1988 [978]), but no example is known of a one parameter family of isospec-
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Fig. 1.94. Isospectral planar domains

tral domains (not all congruent). For the theory of isospectral Riemannian
manifolds, see §9.12.

The counterexamples pictured in figure 1.94 are not convex. This question
is addressed in Gordon & Webb 1994 [578] where convex counterexamples
are built in four dimensions. But there are still no planar convex isospectral
domains known.

1.8.5 Second Way: the Heat Equation

Today, one of the simplest tools to study the spectrum and the eigenfunctions
is the heat equation. It is not the most powerful (the wave equation is more
powerful), but the technique is much simpler. Both techniques, incidentally,
extend to Riemannian manifolds with little alteration.

Henceforth, all functions vanish at the boundary ∂D.
We start with the fundamental solution of the heat equation,15 denoted

by K(m,n, t).
K : D ×D × R+ → R.

It gives the solution f(m, t) of the heat equation with given initial condition
f(m, 0) = g(m). The desired formula is the integral
15 Also called the heat kernel.
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f(m, t) =
∫
D

K(m,n, t)g(n) dn

and one can prove (see Bérard 1986 [135], Chavel 1984 [325] and also §9.7)
that

K(m,n, t) =
∞∑
i=1

φi(m)φi(n)e−λit

The reader can check that this ensures that f will satisfy the heat equation,
as long as the above series converges. The series is known to converge, but
that is not so easy to prove.

Another way to write the solution f(m, t) with initial condition

g(m) =
∞∑
i=1

aiφi(m)

is

f(m, t) =
∞∑
i=1

aiφi(m)e−λit.

Our scheme to study the spectrum {λi} is as follows. First, integrate the
trace K(m,m, t) over D, which yields∫

D

K(m,m, t) dm =
∞∑
i=1

e−λit.

It remains to get information on the diagonal values of K. To get some
intuition, the fundamental solution can also be interpreted as follows: consider
a singular initial data of heat at time zero consisting of a Dirac distribution
located at the point m. Then K(m,n, t) is the temperature after time t at
the point n (see figure 1.95 on the following page). In the case of the whole
plane (no boundary D this time) this value is well known:

K0(m,n, t) =
1

4πt
exp

(
−‖m− n‖2

4t

)
. (1.26)

Note first that this implies that heat is diffused instantaneously, say with
infinite speed, from any point (not very intuitive). Now, as Mark Kac says
in Kac 1966 [775], in case there is a boundary ∂D, please do not worry.
Your (correct) intuition is that the particles are not aware of the disaster
that awaits them when they reach the boundary. It can be rigorously proven
that their awareness is really not subtle, at least to the first order. The
mathematical claim is that

K(m,m, t) ∼ 1
4πt

as t→ 0
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∂D D

Fig. 1.95. It is infinitely cold outside; the particles diffusing heat away from the
point m are not aware (at the first order at least) of the disaster that awaits them
when they reach the boundary.

whatever the pointm is. We won’t give a proof of this asymptotic. Integrating
this over D: ∞∑

i=1

e−λit ∼ Area(D)
4πt

as t→ 0

A very easy exercise will tell you that if you know the function

t �→
∞∑
i=1

e−λit

then you know Spec (D). But do not deduce from this that you can easily
estimate the counting function N(λ) when λ→ ∞. Nevertheless, this is pos-
sible, but it is quite a hard theorem called the Hardy–Littlewood–Karamata
Tauberian theorem:

N(λ) ∼ Area(D)
4π

λ

(see Ivrii 1998 [761]).
This asymptotic formula was proven as early as 1911 by Hermann Weyl;

but note that his proof was completely different, not employing the heat
equation. His more intuitive technique can be found in Bérard 1986 [135];
it uses minimax properties. Weyl’s innovation is to approximate the domain
D by an aggregate of squares (of smaller and smaller size, as in figure 1.96
on the next page) and to paste eigenfunctions on these squares. To these
functions we apply the minimax procedure, and can bound the eigenvalues
of D on both sides by a limit argument. This time one does not need any
Tauberian theorem. The first outcome of the minimax procedure is the strict
monotonicity principle:

Proposition 14 Consider two domains D ⊂ D′.

λ1(D) ≥ λ1(D′)

Proof. Take the first eigenfunction φ1 ofD and extend it to be zero onD′−D.
You are done by applying Dirichlet’s principle to D′.
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Fig. 1.96. Approximation by small squares

An immediate corollary is an asymptotic estimate for the eigenvalue λi:

λi ∼
4π

Area(D)
i as i→ ∞

A second immediate corollary of Weyl’s result is that you can hear if a domain
is a disk because the spectrum will tell you the area of D, and then you just
apply the Faber–Krahn inequality 1.22 on page 94.

How about a second order approximation? In 1954, Pleijel got the next
order approximation. In his paper Kac 1966 [775], Kac works quite hard to
get the third term, guessing that the right formula should be:

∞∑
i=1

e−λit ∼ Area(D)
2πt

− length(∂D)√
2πt

+
1
6
(1 − r)

where r is the number of holes inside D. The second term is Pleijel’s. Note
that can one hear the area and the perimeter of D, hence the isoperimetric
inequality yields again the fact that disks are characterized by their spectrum.

Kac could only prove the third term for polygons. It was proven the
next year, 1967, in the very general context of Riemannian manifolds with
boundary by McKean and Singer in their fundamental paper of 1967 [910].
You will read much more about it in chapter 9.

Fig. 1.97. One can hear the number of holes

The Tauberian theorem above shows that the first terms of N(λ) and∑∞
i=1 exp(−λit), can each be acquired from the other. But this does not
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apply to the following terms, so the preceding results say nothing concerning
the second term of N(λ). The second term of N(λ) is still not completely
understood today, even for squares; this is the famous Gauß circle problem in
number theory (see Erdös, Gruber, & Hammer 1989 [491] and the references
there on page 104, and also Bérard 1980 [133] for an introduction to the
subject, and Huxley 1996 [752]). However, some results can be obtained,
but one should use the wave equation instead. The fundamental solution is
trickier than for the heat equation, but once it is understood, one purchases
deeper results. In the case of Riemannian manifolds, optimal results can be
obtained for the second order term. See chapter XXIX of Hörmander 1983
[738] and the very informative Trèves 1980 [1198, 1199], chapter 18. For more
recent results and conjectures, see chapter 9.

1.8.5.1 Eigenfunctions Another important question, having looked at
eigenvalues, is to look at eigenfunctions, in particular where they vanish. The
sets {φi = 0} are called the nodal lines of the domain. Nodal lines have been
the subject of intensive studies on huge computers. They have many physical
interpretations. Cover a vibrating membrane (a drum) with dust. Nodal lines
are the places where the dust concentrates, precisely because (at least at the
first order) in a given vibrating mode associated to an eigenfunction, nodal
lines are the points which do not move. Put your finger at a point m on the
membrane; then the only possible modes occuring in the vibration will be
those whose nodal line contains the point m. Nodal lines very often have a
surprisingly “regular” behavior. This is only partially explained today; see
references in chapter 9. Nodal lines have practical consequence. An example:
when autoworkers attach the motor or the body to the underframe, bolts (or,
more often these days, point solderings) are carefully placed on nodal lines
of the underframe.

1.8.6 Relations Between the Two Spectra

A plane domain D has both a length spectrum (for classical billiards) and
a quantum mechanical spectrum (for quantum billiards). Formulas relating
the two spectra, when they exist, are called Poisson type formulas. We will
see the archetype of them, the classical Poisson formula 9.14 on page 413 for
flat tori. The task of unearthing their mutual relations is that of connecting
classical and quantum mechanics. It is not surprising that physicists pub-
lished the first papers on the subject: Balian & Bloch 1970/1971/1972/1974
[97, 98, 99, 100, 101]. They gave heuristic support to the conjecture that the
spectrum determines the length spectrum. The other way around is more
challenging. This is not surprising, since there are many more ways to ad-
dress the spectrum than to address the length spectrum and the periodic
trajectories. To our knowledge, this implication today is known only in the
“generic” case; see Guillemin & Melrose 1979 [669]. We will not pursue this
further, first because the case with boundary is much harder, and second,
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Fig. 1.98. Nodal lines of ergodic domains have surprisingly regular behaviour

because we will study these relations on general Riemannian manifolds (but
without boundary) in §9.9.

We mention an interesting fact, not well known, and basically the only
result (with its extension in Colin de Verdière 1977 [390] to compact Rie-
mannian manifolds) which goes from the length spectrum to the spectrum.
It is due to V. F. Lazutkin and concerns smooth convex domains D of the
plane. We recall first that the billiard trajectories inside an ellipse behave
almost like those of a circle. A given trajectory remains constantly tangent
to a homofocal ellipse (or hyperbola), as depicted in figure 1.99 on the fol-
lowing page. By the way, it is unknown if only ellipses have this property.
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Back to an arbitrary smooth strictly convex domain: Lazutkin proved the
existence of an infinite number of nested caustics. These are curves which
are the envelopes of trajectories. Then he showed that to every caustic, there
is an infinite sequence of numbers which approximate an infinite number of
elements of the spectrum. The idea is beautiful: every tangent to the caustic
defines an exterior half-plane. One then can perform, in a sense which has
to be made precise, the sum of the waves sent outside from this half-plane.
This sum is called a quasimode and will turn out to yield an approximation
for a lot of eigenvalues. See chapters 9 and 10 for Riemannian manifolds, and
Lazutkin 1993 [852] for a recent reference to Lazutkin’s many results.

Very recently, “visual” relations may have been discovered between peri-
odic motions and nodal lines. The pictures in figure 1.100 on the next page are
quite fascinating; they are taken from Gutzwiller 1990 [673] (a very informa-
tive book). On one hand, Gutzwiller conjectured that there are mathematical
relations underlying the apparent visual relations between the two pictures,
a phenomenon he called scarring. On the other hand, in the so-called arith-
metic case, Sarnak proved in Sarnak 1995 [1095] that there is no scarring;
also see §§§9.13.2.1.

There are some abstract Riemannian manifolds whose periodic geodesics
are easier to track, and from them one can then get information on the
spectrum; see the book Buser 1997 [293] for an exemplary case, and chapter
10.

1.9 Heat and Waves in E3, Ed and on the Sphere

1.9.1 Euclidean Spaces

In E3 or Ed, there is little change from the plane, at the outset of our inves-
tigation. We replace Δ by:

Δ = −
d∑
i=1

∂2

∂x2
i

(1.27)

where {xi}i=1,...,d are Cartesian coordinates on Ed. Stokes’ theorem, used in
the derivation of Dirichlet’s principle, remains valid here:∫

D

〈gradf, grad g〉 =
∫
D

fΔg.

Note here something that we skipped above, namely the intrinsic character
of the Laplacian Δ with respect to the Euclidean geometry of Ed. In the
language of modern analysis, one can say that the symbol of Δ is −‖ ‖2.
And if you add that the subsymbol vanishes, this completely identifies the
Laplacian to an analyst.
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Phenomena including the nature of the spectrum, expansion of a function
as a generalized Fourier series in a basis of eigenfunctions, the expression via
eigenfunctions of the fundamental solution of the heat equation, and Weyl’s
asymptotic formula, are identical but for the obvious changes. For example,
the asymptotic expansion for N(λ) becomes

N(λ) ∼ ωd
λd/2

(2π)d
Vol(D)

where ωd is the volume of the unit ball in Ed. From this one gets immediately

λi ∼
(

(2π)d

ωdVol(D)
i

)d/2
We will look for explicit spectra of some special domains. Parallelipipeds are
left to the reader. Let us now look at balls in E3. We aim to progress as on on
page 89, this time using spherical coordinates (ρ, θ, φ) where ρ is the distance
to the origin, θ the latitude and φ the longitude, as in figure 1.101. Recall
that the change of coordinates is given by:

x = ρ sin θ cosφ
y = ρ sin θ sinφ
z = ρ cos θ.

We will now try to understand Δ on the spheres ρ = ρ0.

1.9.2 Spheres

m

γ2

γ1

how to compute the Laplacian of f on S2

Fig. 1.101. (a) Spherical coordinates. (b) How to compute the Laplacian on the
sphere

It is very instructive to try to write Δ in spherical coordinates. Do not
despair if you are stuck, it is a classical trap. One needs a trick to get out of
it. You will find it, for example, in Berger, Gauduchon, & Mazet 1971 [174]
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(chapter III, G.V), Chavel 1984 [325], Courant & Hilbert 1953 [406], or in
any text treating mathematical methods of physics. Even if you succeed, this
equation looks a mess. You can get out of that mess, but you will not see
the spherical harmonics very clearly. Moreover, you will suffer, because the
representation of the sphere via latitude and longitude is very poor at the
poles; see the pictures in your favourite atlas, or chapter 18 of Berger 1987
[164].

Why are things so complicated conceptually compared to a disk in the
plane, where we separated variables, and looked for vibrations h′′ = −nh (n
an integer)? The disk vibrations were gotten first through standard vibrations
on the circle (and then for the radial directions, we had the Bessel equation).
But the philosophy is that function theory on a circle is the same as for
periodic functions on the real line, solved by Fourier analysis. What can
replace the circle’s Fourier analysis when we are on the sphere?

Approach the intrinsic geometry of the sphere, and consider spherical
coordinates rather in the form (ρ,m) where ρ > 0 and m ∈ S2, and work now
with the inner geometry of S2, ignoring E3. We define the Laplace–Beltrami
operator Δ (more precisely, ΔS2 of S2 if necessary to avoid confusion) for a
function f : S2 → R by:

ΔS2f(m) = − d2 (f ◦ γ1)
dt2

∣∣∣∣
t=0

− d2 (f ◦ γ2)
dt2

∣∣∣∣
t=0

(1.28)

where γ1, γ2 are any two geodesics issuing from m at time t = 0, parame-
terized by arc length, and orthonormal at m. This is easily checked to be
well defined (if you know some analysis, think of the symbol). Analogously,
the reader can define ΔSd . A difficult computation yields, for a function
f : Ed → R

ΔEdf |Sd−1 = ΔSd−1f − ∂2f

∂ρ2
− (d− 1)

∂f

∂ρ

The eigenfunctions Δf = λf which are separated as f(x, y, z) = g(ρ)h(m)
must satisfy ΔS2h = λh, These functions on the sphere have been well known
for a long time, and are called spherical harmonics. They are the subject of
an immense literature, since they are next to the Fourier series for their im-
portance in geometry and physics. They are the first examples of Fourier
analysis on a Riemannian manifold considered abstractly, although this was
not the way people looked at them originally. But we emphasized this as-
pect immediately, since we want to introduce you to Riemannian geometry
and analysis in the general setting. For a spectacular geometric application
of spherical harmonics to the extremely hard problem of balancing a large
number of points evenly around the sphere, see Colin de Verdière 1989 [394]
or the very good book Sarnak 1990 [1094]. For the use of spherical harmonics
to estimate the kissing number (the maximum number of solid nonintersect-
ing unit balls which can touch one given unit ball), see chapter 13 of Conway
& Sloane 1999 [403]. We will meet the kissing number again on on page 610.
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The eigenvalues of Sd are the integers k(d+ k − 1), with the multiplicity

(d+ 2k − 1)(d+ k − 2)!
k!(d+ k − 3)!

where k runs through the integers. References can be Berger, Gauduchon
& Mazet 1971 [174], Chavel 1984 [325]. The miracle is that the harmonic
polynomials in Ed, when restricted to Sd−1, are eigenfunctions of Sd−1 and,
by Stone–Weierstraß, they are numerous enough to prove that there are no
other ones.

In particular, the first eigenfunctions are especially appealing; they are
the restrictions of the linear forms of Ed, and their eigenvalue is λ1 = d.
Interpreted in spherical geometry, they are the cosine of the distance function
to some point. We will use this heavily in §§12.2.5.

Let us finish things quickly by saying that, spherical eigenvalues and eigen-
functions being known, this in turn solves Dirichlet’s problem for the vibra-
tions of balls in E3 through Bessel type equations. Our analysis extends to
any dimension d for balls in Ed via spherical harmonics for the spheres Sd−1.
Again, for extremely few other domains D of Ed can the eigenvalues or the
eigenfunctions be computed explicitly. Ellipsoids can be managed by the use
of confocal quadrics; see Courant & Hilbert 1953 [406, 407], Morse & Fesh-
bach 1953 [945]. And quite a recent result of Pierre Bérard works for a few
very special polyhedra16 known as Weyl type domains, corresponding to Lie
groups; see Bérard 1980 [134]. See also Bérard & Besson 1980 [138].

We will not say much now about spherical harmonics since you are going
to meet them often later on and because they are not our principal concern.
For those who like recent results and open problems (yes, there are some,
even for such old and much belabored subjects) we mention first that Yves
Meyer says among other things the following. We consider the wave equation
on spheres

ΔS2f = −∂
2f

∂t2

as, for example, describing the evolution with time of a thin layer of water
on the sphere. This would describe the motion of the sea, if there were no
continents on the planet. It might not be a bad approximation, since oceans
are the bulk of the Earth’s surface. His first result backs intuition. Disturb
the water with a big shock (a Dirac distribution, if you prefer) somewhere,
say at the north pole. Then you will always find another big shock at the
south pole after a time T which is no larger than 2π. But Meyer’s second se-
ries of results oppose intuition: the big shock can move from the north to the
south pole while remaining extremely small everywhere for all time between
0 and T , as in figure 1.102 on page 113. Worse: some apparently moderate
shocks can, with larger and larger time, be very small almost everywhere and
16 Polyhedra are rather called polytopes starting with dimension d = 4.
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almost all the time, but at some times and some places can be as big as de-
sired (everything there and then will break down). Meyer’s results explained
the following strange observation: quite recently a tidal wave was observed
at Martinique, and came back there later, this being completely unnoticed
everywhere else in between times.

1.9.3 Billiards in Higher Dimensions

The Faber–Krahn inequality extends to any dimension. Again, the proof in-
volves the isoperimetric inequality (in any dimension). Contrarily, billiards
in dimensions larger than two are still to be fully explored. There is one
exception: billiards in concave regions, for which we refer to Katok, Strel-
cyn, Ledrappier & Przytycki 1986 [788]. Such regions have the best possible
ergodic behavior.

But for nonconcave regions, even for polyhedra in three dimensional space,
almost nothing is known concerning periodic motions or ergodicity, except
for rectangular parallelepipeds, balls (of course) and the Bérard examples
mentioned above. There is an unpublished result of Katok asserting that
the length counting function is subexponential. But, even in the simplest
possible cases, things are either not finished, or completely open. Let us
mention only two cases. The first is that of the cube. Dynamics in a cube are
comparable to dynamics in a square: a trajectory is periodic or everywhere
dense. But how quickly a non-periodic trajectory darkens your computer
screen is complicated. It depends on the simultaneous approximation of a pair
of real numbers by rational numbers. This subject is partly open; in particular
one does not know which triples of real numbers give the cubic analogue of
the golden ratio (the trajectory in the square for which your computer screen
gets dark most rapidly). But the coding of the faces successively hit by the
ball is beginning to be unmasked: see Arnoux, Mauduit, Shiokawa, & Tamura
1994 [71]. For the regular tetrahedron, it seems that nobody today has the
foggiest idea whether trajectories are ergodic or more like polygons with
angles rational multiples of π. The fact that there is no guess is surprising:
today no one can program a computer to accurately simulate tetrahedral
billiards. However, there are a few results yielding periodic trajectories in
tetrahedra, based on the geometry of isometries of E3, but they are difficult
to locate; Conway has some unpublished results, and there are published
results of R. Hayward, M. Gardner, and D. Wells.

1.9.4 The Wave Equation Versus the Heat Equation

In any dimension, the wave equation is much harder to study that the heat
equation. The drastic difference of behavior of waves according to the parity
of the dimension of the space where waves propagate was observed long ago.
We will come back to these two equations in chapter 9. Briefly put, the
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heat equation corresponds to the Laplace transform, while the wave equation
corresponds to the more powerful Fourier transform.



2 Transition: The Need for a More General

Framework

Euclidean geometry and the geometry of surfaces in E3 that we looked at in
the preceeding chapter turn out to be quite unsatisfactory for many reasons.
We will review some of them here; they are not all logically related.

The first two problems with Euclidean geometry came to light in the mind
of Gauß. Recall Euclid’s fifth postulate (see Euclid circa 300 B.C.E.[499]):

Postulate 15 If a straight line falling on two straight lines makes two in-
terior angles on the same side with sum less than two right angles, the two
straight lines, if produced indefinitely, meet on that side on which the angles
are less than two right angles.

By the end of the 18th century, Euclidean geometry’s structure was unclear.
Although many people (perhaps Euclid among them) had believed that Eu-
clid’s fifth postulate was a consequence of his four others, possibly with some
additional postulate which would be simpler and more elegant, none had con-
vincingly succeeded in finding a candidate additional postulate, or proving
the redundancy of the fifth.1 Discomfort with the fifth postulate arises from
its complexity, and also because one can not verify it (or even test its ap-
proximate accuracy) by direct physical measurement, since the point where
two lines meet could be very far off of your sheet of graph paper.

By 1817, Gauß had convinced himself that there must be other geometries
satisfying Euclid’s first four postulates (and, of course, satisfying the common
notions), but not the fifth. He did not publish these ideas. One reason for his
reticence is quite plausible: Gauß could not clearly define his new geometry,
and he often described himself in letters to his friends as a “perfectionist”.
That was why he also delayed for years publishing his contributions to the
theory of surfaces, as we will mention shortly.

Various partial constructions of non-Euclidean geometry appeared start-
ing in 1829, in the writings of Lobachevskii, followed by a work of Bolyai.
1 Recall that Euclid introduced ten axioms for his geometry, five of which were

called postulates while the other five were called common notions. The signifi-
cance of this distinction is a matter of conjecture, but the postulates are clearly
geometric, while the common notions are concerned with the nature of equations
and inequalities generally, essentially defining = and <. The common notions are
assumed in any geometry.
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They satisfied the first four postulates, but not the fifth; however, they were
not built on solid mathematics. The proper construction of non-Euclidean
geometry demands abstraction, since (as Hilbert demonstrated much later)
there are no candidates for such a geometry inside Euclidean space; this is
our first motivation for Riemannian geometry; see §§1.6.3 and §§3.4.3.

Even if you understand surfaces in E3 pretty well, there are many reasons
to work in dimensions 3, 4, etc. For example, to treat time as an additional
coordinate, or to investigate the space of lines, the space of circles, the space
of spheres, etc. There is no limit on the number of parameters, i.e. dimensions,
needed to describe sets of geometric objects. Even if there is an elementary
method to put such a geometric set into some Euclidean space En, such
an embedding may not be geometrically equivariant, i.e. symmetries of the
geometric set might not extend to symmetries of Euclidean space.

Consider classical mechanics, starting with the notion of a rigid body.
It has six parameters: three for the location of the center of gravity, and
three to say how it has been rotated around that center. You can avoid
working in a six dimensional space, because the center of gravity lives in
a three dimensional Euclidean space, but what is the set of rotations, as a
three dimensional object? How can one explore geometry on it? The reader
may have struggled over mechanics texts and suffered through Euler angles,
and to such a reader, the question does not appear superfluous. We would
like a general framework, in which the motions of the rigid body will be
geometrically meaningful curves.

More generally, we need to define the set of positions of a mechanical
object, like a multiple pendulum, and see what the trajectories of this object
are, as curves in that set. For a double pendulum, we will see below that the
space of positions is a surface, in fact a torus, but that the motions of the
pendulum are not the geodesics on the torus, for any torus inside E3. They
will be geodesics only for an abstract Riemannian geometry.

In statistical mechanics, physicists consider systems of N particles, with
N large. The space of positions is 3N dimensional, and to carry complete
information about their motions, one needs to know their positions and ve-
locities, so a 6N dimensional phase space. This is not simply E6N , because
of collisions. Thus our third reason for abstraction is that we have already
been manipulating such abstract spaces, and trying to pretend we were not
(i.e. trying to parameterize them).

As we will see in theorem 27 on page 152, abstract Riemannian geom-
etry of surfaces can only be represented locally, and only subject to some
nondegeneracy hypothesis, by surfaces in E3. Moreover, this is special to two
dimensional objects; for example, the geometry of a three dimensional smooth
object in E4 is very special among three dimensional Riemannian geometries.

The program of abstract Riemannian geometry received two decisive
thrusts, the first by Gauß in 1827, and the second by Riemann in 1854.
In essence, Gauß realized the concept of inner metric of a surface in E3, and
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then realized that the first fundamental form of a surface (the Euclidean
inner product restricted to its tangent spaces) and the inner geometry each
determine the other. The length of a curve γ is measured by an integral:∫ √

I(γ̇) dt

and this I is our first fundamental form, so this connects the inner geometry
to a quadratic form I on tangent vectors. With this form, one can calculate
angles, distances, etc., and strenuous algebraic manipulations uncover the
Gauß curvature, as we will see.

Riemann forged two simultaneous innovations: first, he defined (not too
rigorously) a differentiable manifold to be a set of any dimension n, where one
can perform differential calculus, change coordinates, etc. In particular, one
has differentiable curves, tangent vectors (velocities) of those curves, and a
tangent space at each point (i.e. all possible velocities of any curves through
that point). Then he asked that a geometry on a manifold be simply an
arbitrary positive definite quadratic form on each of those tangent spaces,
thought of as the analogue of Gauß’s first fundamental form. One could use
the same expression to define length of curves, look for shortest curves, etc.

We are concerned with the immense program to develop the properties of
such a geometry, looking for invariants generalizing the invariant of Gauß, the
Gauß curvature, and looking for extensions of the results of Gauß. Riemann
managed only to find the right invariant generalizing Gauß curvature, now
called the Riemann curvature tensor. Many mathematicians after Gauß and
Riemann set down the foundations of Riemannian geometry. Technical tools
such as parallel transport and absolute differential calculus were designed at
the end of the 19th century, culminating in the work of the Italian school of
Ricci and Levi-Civita, but the underlying concept of manifold was definitively
understood only by Whitney in 1936.

In the sequel, we will first present the crux of Gauß’s contributions, and
also review more recent results. Gauß’s accomplishment is effectively two
dimensional Riemannian geometry, so that many parts of Gauß’s work are
covered by an exposition of the latter. But we think that developing the sub-
ject quite slowly, using concepts available to Gauß, will help the reader when
we go on to general abstract Riemannian geometry, because two dimensional
objects can be visualized and have technical peculiarities making them more
tractable.

After surfaces, we will turn to general Riemannian manifolds. Our pre-
sentation will be in the following spirit: we will try to remain geometric for as
long as possible, and also state results, including recent ones, not only with-
out proof, but (even worse) hiding the techniques of the proofs. For example,
in the first chapters we will assume that there is a parallel transport operator
allowing us to drag tangent vectors along a curve; we will not even define
these ideas. Nor will we enter into the hornet’s nest of giving a definition of a
Riemannian manifold. We are justified in taking this path: parallel transport



118 2 Transition

and manifold had to wait until around 1900 and 1936 respectively to receive
definitions. You should regard them as expensive.

Later on, as in chapter 1, we will undertake analysis on Riemannian man-
ifolds. This is possible because the basic differential operator in Euclidean
analysis, the Laplace operator, can be defined invariantly on a general Rie-
mannian manifold, following a natural analogy. It is called the Laplace–
Beltrami operator, but we will call it the Laplacian for short. A dramatic
consequence (not mentioned in the written work of Riemann nor by gen-
erations of his successors, though likely in Riemann’s imagination, since he
often worked in mathematics with physics in mind) is that heat, wave and
Schrödinger equations are born, out of pure geometry. This explains the pop-
ularity of Riemannian geometry today in many domains of physics. We will
also see that Riemannian manifolds are the natural worlds in which to study
Hamiltonian mechanics.

Along with introducing the classical perspective, we will treat modern
views of Riemannian geometry. Counter to intuition, to study geometry on
a Riemannian manifold, one has to work not only on the manifold itself, but
to relate its geometry to various larger spaces (fiber bundles).
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3.1 Gauß

3.1.1 Theorema Egregium

This theorem is baffling. Its Latin wording (“excellent theorem”) was forged
by Gauß because he was so excited about it. Gauß studied surfaces for years
before discovering this result. It is the kind of theorem which could have
waited dozens of years more before being discovered by another mathemati-
cian since, unlike so much of intellectual history, it was absolutely not in the
air.

Theorem 16 (Theorema Egregium) The total curvature K = k1k2 of a
surface depends only on its inner metric.
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It is not completely clear how Gauß found this: see the remarkable historical
account of Gauß’s results on surfaces in Dombrowski 1979 [455]. We will say a
few words about this later on. To our knowledge there is no simple geometric
proof of the theorema egregium today. The only geometric argument we know
which is close to this is the one in page 195 of Hilbert & Cohn-Vossen 1952
[713]. The picture is given in figure 3.1.

Fig. 3.1. Ideas from the proof of the theorema egregium

There are many different proofs of the theorema egregium. For them we
refer to the standard texts, as for example: do Carmo 1976 [451], Klingen-
berg 1995 [816], O’Neill 1966 [974], Stoker 1989 [1160], Thorpe 1994 [1188],
Sternberg 1983 [1157], Boothby 1986 [220]. We give two proofs, one of them
rarely presented. The first proof below is the most standard and quite cheap
modulo equation 1.13 on page 61. In case this formula is not assumed, the
second proof we are going to give is no more complicated and as an advantage
is deeper conceptually. Moreover, this second proof yields extra results imme-
diately. It is stems out of Riemann’s fundamental paper, and represents the
gist of Riemann’s generalization of Gauß curvature to any dimension. Since
we will not give Riemann’s proof in general dimensions, instead we offer it
here in our discussion of surfaces.

3.1.1.1 The First Proof of Gauß’s Theorema Egregium; the Con-
cept of ds2 Let us assume equation 1.14 on page 61 and prove that
k1(m)k2(m) depends only on the inner metric of the surface M near the
point m. We first need to express the inner metric of a surface in coordinate
language. In other words, we introduce the device refered to in the jargon as
ds2. Suppose that we have a coordinate system locally describing M :

(u, v) �→ (x = x(u, v), y = y(u, v), z = z(u, v))
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To designate the inner metric is equivalent to designating the lengths of
curves. If a curve is given by

t �→ (u(t), v(t))

then the composition of the two maps will be

c : t �→ (x(t), y(t), z(t))

which is a curve in E3 whose length can be computed as the integral of its
speed:

‖ċ(t)‖ =
√
ẋ(t)2 + ẏ(t)2 + ż(t)2

If we write subscripts for partial derivatives, e.g. xu = ∂x/∂u, then the chain
rule yields: ⎛⎝ẋẏ

ż

⎞⎠ =

⎛⎝xu xvyu yv
zu zv

⎞⎠(
u̇
v̇

)
We collect the terms in ‖ċ(t)‖ in the following way:

‖ċ‖2 = Eu̇2 + 2F u̇v̇ +Gv̇2 (3.1)

where E,F, and G are functions of (u, v), depending only on the chart cho-
sen to parameterize the surface. Today most people prefer to write this in
differential notation:

ds = ‖ċ(t)‖ dt
du = u̇(t) dt
dv = v̇(t) dt

ds2 = E du2 + F du dv +Gdv2 (3.2)

Do not underestimate the next few lines; they are at the root both of Gauß’s
way of thinking and of Riemann’s dramatic reversal. We analyze the mathe-
matical meaning of the above. In order to know the inner metric (in a given
chart) we need only know three functions E,F,G, but more conceptually to
know a quadratic form (depending on two variables). Clearly the quadratic
form determines the inner geometry, since we can use it to calculate inte-
grals giving lengths of curves. The trick is to show that we can recover the
quadratic form from the inner geometry.

The reader should take it as an exercise to prove that any smooth map
between surfaces which preserves the lengths of curves must preserve the
Euclidean inner product on the tangent spaces of the surfaces. This exercise
has several parts: first, define what a smooth map should be between surfaces.
For example, just ask for it to extend smoothly to some neighborhood in the
ambient space. Now, define the derivative of such a map. Recalling the usual
notion of derivative of a smooth map between Euclidean spaces, as a linear
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approximation, one wants to prove that the derivative of a map between
surfaces is well defined as a linear map on tangent planes to the surface.
Also, the reader should produce an example to become convinced that the
derivative is not well defined in any other directions. Acclimatize yourself
with what happens to derivatives when viewed through charts. Finally, if the
map preserves length of curves, one shows (by looking at “small curves”, i.e.
taking a limit) that the derivative map preserves lengths of tangent vectors
to parameterized curves, and so is an isometry. Moreover, now show that any
smooth isometry of the inner metric must have the same property: it preserves
lengths and so its derivative preserves the Euclidean quadratic form. From
the above comments, the reverse is true as well: the Euclidean quadratic form,
ds2, is preserved by a smooth map precisely when the map is an inner metric
isometry. Thus ds2 is just a repackaging of the inner geometry.

One can (should!) quibble here. The isometries we spoke about are as-
sumed smooth. We will simply take this smoothness requirement to be part
of the inner geometry. This is not obviously consistent with our definition of
inner geometry as a pure metric space notion. It is not obvious how to ensure
that all isometries of the inner metric are smooth. The reader is encouraged
to worry about this. The author will not. Proof of smoothness of isometries
requires the Gauß lemma below, and consideration of the trigonometry of
small triangles. For guidance, see Palais 1957 [991].

The idea that E,F,G compose a quadratic form is not surprising, since
a quadratic form (symmetric matrix) in dimension two consists of three in-
dependent matrix elements. In the present case these three elements are in
the basis made up by the two tangent vectors associated to x and y: namely
their square norm and their scalar product. This quadratic form is nothing
but the Euclidean structure of the tangent plane TmM to the surface M un-
der consideration, this Euclidean structure being written in coordinates via
the map (u, v) �→ E3.

We now want to find a Taylor expansion for ds2 at some point m = (0, 0)
in a suitable chart (x, y). If ds2 has the form

ds2 = dx2 + dy2 +O(x2 + y2)

(i.e. if ds2 is Euclidean at the first order) then

K(m) = −12 (Eyy − 2Fxy +Gxx) (3.3)

(here indices represent partial derivatives).
This is the proof, since everything involves only ds2. The assertion is

checked when using a chart as in equation 1.13 on page 61 and taking m =
(0, 0). Then P and Q vanish at m and equation 3.3 follows directly from
equation 1.13.

Note 3.1.1.1 Gauß wanted so much to be sure of his theorem that he
checked equation 3.3 for the most general chart. The explicit formula, which
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(x,y,f(x,y))

Fig. 3.2. Adapting coordinates to see Gauß curvature

took him five pages of computation, is given in Dombrowski 1979 [455]. We
will see below how he might have guessed the result. �

Note 3.1.1.2 Formula 3.3 raises a paradox which is never mentioned in text-
books. The left hand side involves only the second derivatives of the equation
defining the surface while the right hand side involves third derivatives. This
topic is connected with the end of §4.5. Many people worked on this peculiar-
ity, which is of some significance in the study of Riemannian geometry with
minimal smoothness. Consult Weyl 1916 [1255], van Kampen 1938 [1205],
Chern, Hartman, & Wintner 1954 [369], Klotz 1959 [818], and Burago &
Zalgaller 1992 [284] on this point. Van Kampen treats the C2 case. �

3.1.1.2 Second Proof of the Theorema Egregium The chart given by
taking our surface to be the graph of a function avoided some mess, since
it was Euclidean at first order. But the inner metric enables us to define a
canonical chart (locally) near any point. Such charts will turn out to be of
fundamental importance for general Riemannian manifolds, so we will use
the opportunity to introduce them on surfaces. We use a fact met in §§ 1.6.2
on page 38: a geodesic emanates from every point in every direction with any
choice of constant speed. This gives a map from the tangent vectors sticking
out of some point to the surface itself: just follow for a unit of time a constant
speed geodesic with given initial velocity. Fixing any orthonormal basis of the
tangent plane, this gives us a canonical local map from E2 into E3, a canon-
ical chart called normal coordinates, which we write as u, v. Geometrically,
geodesics through a point of the surface are represented by straight lines
through the origin in the chart, and with an arc-length parameterization.

We want to compute ds2 in that chart, up to the second order and for
this we factor it through the graph chart from equation 1.9 on page 41. We
have to find the second order terms of x(u, v), y(u, v), z(u, v). For this we use
the equations 1.10 and 1.11 on page 41 and moreover we rotate the x, y plane
so that S(m) = 0. As in equation 1.14 on page 61

F (x, y) =
1
2
k1x

2 +
1
2
k2y

2 + o
(
x2 + y2

)
with k1 = k1(m) and k2 = k2(m).



124 3 Surfaces from Gauß to Today

v

(u,v)

u m
(x(u,v),y(u,v),z(u,v))

normal coordinates

Fig. 3.3. Normal coordinates

After some pain we find

x = u− 1
24
k1u

(
k1u

2 + k2v
2
)

+ o
(
u2 + v2

)
y = v − 1

24
k2v

(
k1u

2 + k2v
2
)

+ o
(
u2 + v2

)
and substituting yields

ds2 = du2 + dv2 − 1
12
K(m) (u dv − v du)2 + o

(
u2 + v2

)
(3.4)

We now explore consequences of equation 3.4. One sees clearly that K
measures the defect of the inner metric of the surface M to be locally Eu-
clidean (by this we mean isometric locally to E2; we will also use the word
flat instead of locally Euclidean). We can now easily prove a claim we made
in §§ 1.6.7 on page 72: our surface is locally Euclidean if and only if K van-
ishes identically. In general the knowledge of K is not enough to determine
the inner metric of the surface: see §§4.5.1. But if there is a map between
two surfaces which is an isometry for their inner metrics, then their Gauß
curvatures must correspond under this map.

Suppose now that you live in M and want to discover if your geometry
is Euclidean, or more, compute its Gauß curvature K. From the point m at
which you want to compute K(m), you look at the points which are at a
small distance ε. They describe a curve which we can call the circle C(m, ε)
with center m and of radius ε. Calculate its length. Equation 3.4 gives you
the answer:

Theorem 17 (Bertrand & Puiseaux, 1848)

lengthC(m, ε) = 2πε− π

3
K(m)ε3 + o

(
ε3
)

so that you can get K(m) as a limit. Actually, to be precise, we still have to
see that the circles C(m, ε) are represented in normal coordinates precisely
by
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C(m, ε) =
{
u2 + v2 = ε2

}
;

a remarkable coincidence, matching exactly the Euclidean circle of the same
radius in these coordinates. See §§ 3.1.4 on page 130 for this. Please check
this formula directly on the sphere and also check that this confirms what we
saw in §§ 1.6.4 on page 61.

C(m;ε) C(m;ε)

K(m) > 0 : length(C(m;ε) < 2πε K(m) < 0 : length(C(m;ε) > 2πε

Fig. 3.4. Small circles in differently curved surfaces

3.1.2 The Gauß–Bonnet Formula and the Rodrigues–Gauß Map

This is one of the deepest and hardest formulae to prove for surfaces. It will
imply the theorema egregium by a limit argument, and can also be viewed
as an integrated version of the theorema egregium. We refer the reader to
Dombrowski 1979 [455] for what can be said about how Gauß guessed all
of these things. We state the theorem as improved by Bonnet, Gauß having
proved it only for geodesic polygons. There is no simple proof; it is always
expensive and hard to do it correctly. The difficulty is the same as for the
Umlaufsatz in § 1.4 on page 21 with the additional complication of carrying
it out on a surface. One cannot get the formula only using Stokes’ theorem
(directly down on the surface) however tempting it may be (since we have
an equality between an integral in a domain and one on its boundary). For
various types of proof, see the set of references given in §§ 3.1.1 on page 119.

We consider on a surface M a domain D, which is the continuous image
of a Euclidean disk (if you are familiar with a little algebraic topology, this
amounts to asking D to be simply connected). This condition is sufficient
but not necessary. The necessary and sufficient one is the existence on D of
a continuous nowhere vanishing vector field. We ask moreover that D have
as boundary a curve c which is smooth except at a finite number of points
mi. At those points there are well-defined exterior angles which we denote by
αi (see the picture in figure 3.5 on the following page). From remarks made
on page 39 we infer that c has well defined algebraic geodesic curvature kg,
away from the points mi.

Lemma 18 (Local Gauß–Bonnet)
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Fig. 3.5. The Gauß–Bonnet theorem

∫
D

K dA+
∫
c

kg ds+
∑
i

αi = 2π

We did not say what the integral is. On any surface there is a canonical
measure dA. You can find yourself its expression in any chart. In the ds2

jargon of equation 3.2 on page 121 the quantity to integrate is

dA =
√
EG− F 2 du dv.

Check also that the formula can be false if the domain D is not simply
connected. We saw on on page 39 that kg depends only on the inner metric.
So take the limit of smaller and smaller domains. ThenK depends only on the
inner metric. It seems that is the way Gauß guessed the theorema egregium
statement (but it was not the solid proof he wanted).

Let us check first that equation 18 is a generalization of two formulas
we met before. The first for a simple closed curve in the plane: in the plane
K ≡ 0 and, if the curve is smooth everywhere, we get the Umlaufsatz of § 1.4
on page 21. If the curve has corners, we get an extension of the Umlaufsatz.
Assume now we are on the sphere S2 and consider a geodesic triangle. Then
K ≡ 1 and we get Girard’s formula 1.7 on page 38. On a surface where
K ≡ −1 (this will be hyperbolic geometry, see §§ 4.3.2 on page 194 and
equation 4.22 on page 198) as in figure 1.60 on page 58, geodesic triangles T
verify

area(T ) = π −A−B − C.

The proof of the Gauß–Bonnet theorem is never simple; in fact it is subtle
and tricky. By its very essence, it cannot be derived directly using Stokes’
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theorem 34 on page 188, even if that is what you were expecting, since the
formula is a relation between the inside of a domain and its boundary. Various
proofs have been devised; see the many books on Riemannian geometry we
have already mentioned. In 1944, Chern was the first to find a conceptual
proof; the trick is to lift things to the unit tangent bundle (the set of unit
length tangent vectors). One can then cleverly apply Stokes’ theorem. This
is explained with some detail in § 15.7 on page 735. We suggest also that the
reader find counterexamples when D is not simply connected.

The Rodrigues–Gauß map was already introduced in note 1.6.5.1 on
page 66. We fix a continuous choice of a unit normal N along M , form-
ing a map N : M → S2. The Jacobian of N (easy to calculate) is equal to
k1k2. Hence

Proposition 19 If we denote by dσ the canonical measure of S2, then K dA
is the pullback measure:

K dA = N∗dσ .

The choice of the normal is irrelevant since K is invariantly defined. To
develop your intuition, check that this agrees with the sign of K. It seems
that Gauß looked quite carefully at the map N to get his results. He noted
moreover that this map is very natural in astronomy. One can now interpret
the Gauß–Bonnet formula as∫

D

N∗dσ = 2π −
∫
c

kg ds−
∑
i

αi (3.5)

where the left hand integral can be interpreted as the algebraic measure of
the image of D under the Rodrigues–Gauß map.1 The sign of K corresponds
to whether N respects or reverses orientation. The proof of equation 3.5
consists in integrating the infinitesimal equation dN = K ds, the difficulty
being to see what is happening at the boundary, because we need more than
just Stokes’ theorem.

3.1.3 Another Look at the Gauß–Bonnet Formula: Parallel
Transport

We come back to the inner metric and ignore again the outside world. In the
Euclidean plane, if you have a closed curve and pick some vector at one of
its points you can transport it along the curve by just asking the vector to
be constant. And when you come back home, your vector is unchanged. You
probably know that this is not possible on surfaces; think of the sphere. The
various tangent spaces to a surface can not be all at once identified.
1 By algebraic measure, we mean (as we discussed in studying turning numbers)

that we have to count with opposite signs when we are on regions that get
mapped with reversed orientation.
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Fig. 3.6. The Rodrigues–Gauß map is not too easy to visualize, especially when
K < 0. The Rodrigues–Gauß map preserves orientation at an elliptic point, and
reverses it at a hyperbolic point

cuclidean case : one comes back
to the same vector one a sphere you come back

 to a different vector in general

Fig. 3.7. Euclidean case: one comes back to the same vector. On a sphere, you
come back to a different vector in general
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We want to define a notion of parallel transport on a surface depending
only on its inner metric. This will turn out to be possible in the sense that
we will be able to identify the various tangent planes to a given surface, but
only along a given curve. To do this, we reverse the idea of defining curvature
of a plane curve by the rate at which its tangent line turns, as in §§ 1.3.2 on
page 13. Curvature measures the defect of a curve from a straight line (or, on
a surface, defect from a geodesic). So we say that a vector field X(s) along
a given curve c is parallel if, first, it is of constant norm, and second, if one
has for its angle α(s) with c′(s):

α′(s) = −kgc(s) (3.6)

We say that X(s) is the parallel transport of X(0) along c.2

c'(s')

α(s')
x(s')

c'(s)

x(s)

α(s)c

M

S

v p

w
C

Σ
dφp(W)

φ(V)
φ(p)

φ

Fig. 3.8. Parallel transport

This is determined by the inner geometry, because the geodesic curvature
is inner-invariant. Note that the geodesics are exactly the tangent-self-parallel
curves. When you make a journey along a closed curve and follow a parallel
vector field, at the end you will have a discrepancy from what you started
with. The discrepancy (i.e. the angle of rotation) is measured in domains D
parameterizable by a disk, with boundary c = ∂D, exactly by
2 The function kg is the geodesic curvature introduced on page on page 39.
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D

K dA.

If you think of such a curve as a loop, this discrepancy is called the holonomy
of the loop. In more general contexts of mathematics and physics it is an
extremely important notion. See chapter 13 for holonomy.

There is a kinematic way to look at parallel transport. We start with
surface M, a curve c in M, and some initial point m on c. Consider a fixed
plane tangent to M at m, and make the surfaceM roll on this plane along the
curve c, the surface M being considered as a rigid body. The point of contact
in this rolling will describe a curve c∗ in the fixed plane. The curvature of
c∗ is equal to the curvature of c and parallel vector fields X(s) in M along c
correspond to vector fields X∗(s) along c∗ which are just constant as vectors
in the fixed plane.

3.1.4 Inner Geometry

The first result is due to Gauß. It is the exact analogue for surfaces of the first
variation formula 1.2 on page 4. We have a one-parameter family of geodesics
γt along which we pick two moving points c(t) = γt(a(t)), d(t) = γt(b(t)), as
in figure 3.9. Call δ(t) the arc length from a(t) to b(t) along γt. Be aware that
δ(t) is not in general the distance for the inner metric between the points c(t)
and d(t). But it is if δ(t) is small enough (remember equation 1.8 on page 39).

dδ

dt
= d′(t)

∂γ

∂s

∣∣∣∣
s=b(t)

− c′(t)
∂γ

∂s

∣∣∣∣
s=a(t)

(3.7)

∂γ
∂s

(c(t))

∂γ
∂s

(d(t))

M
c

dγ'(a)

Fig. 3.9. Variation through geodesics

A first consequence:

Lemma 20 (Gauß) Geodesics forming a smooth family and connecting two
fixed points must all have the same length.
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This fact was employed for ellipsoids on page 44. A second consequence is
that the circles C(m; ε) of theorem 17 on page 124 have tangent orthogonal to
their radius. This is often called the Gauß lemma. We can use it immediately
as follows. Pick up a normal chart at a point m of a surface M and look at
it in the associated polar coordinates. Then, for ρ small enough,

ds2 = dρ2 + f2(ρ, θ) dθ2 . (3.8)

We will soon relate f to the curvature K. For the moment, we claim that
equation 3.8 implies that the inner distance from m to the point (ρ, θ) is
always equal to ρ. Therefore the Euclidean disk {m | ρ(m) < ρ0} is always,
for some ρ0 > 0, also the metric disk for the intrinsic metric (not the metric
induced by the embedding). The proof is elegant: you draw a curve from m
to a point (ρ, θ). If it stays entirely in the domain of the chart, then it is
obvious from equation 3.8 that its length is larger than or equal to ρ and
that equality occurs only when the curve is the radial line θ = constant. This
is because ρ increases at unit rate along radial lines, and more slowly in other
directions. If the curve goes outside of the domain, it is “obviously” longer,
but to prove it rigorously we have to appeal to the general topology result
called the theorem of the custom passage: the curve must meet the boundary
circle C (m, ρ0) so that its length is larger than ρ0 > ρ.

expρ(ρ,θ)

(ρ,θ)
ρ S

A geodesic
circle

A radial
geodesicTρ(ρ,S)

p

θ L

l

m
(ρ,θ)

C

Fig. 3.10. Radial geodesics

The second result, also due to Gauß, serves for surfaces the task that will
later on be carried out by the notion of Jacobi vector field, and is a basic
tool in Riemannian geometry: see § 6.3 on page 271. It is in some sense an
integrated version of equation 3.4 on page 124. Namely, consider again a
one parameter family of geodesics γ(s, α) where s is the arc length on each
geodesic, and α is the parameter. We want to study the displacement vector
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(ρ,θ)

c

m

ρ0

Fig. 3.11. The custom theorem: the length of c is larger than ρ0

∂γ
∂α . Assume it is orthogonal to the geodesics so that it yields a function f
along a chosen geodesic γ0:

∂γ

∂α
= fn

where n is a unit normal vector field to γ0. The Gauß equation is

f ′′(s) +K (γ (s, α)) f(s) = 0 (3.9)

in short: f ′′ +Kf = 0, where the derivatives are with respect to arclength s.

∂γ
∂α

γ(s;α)

γ

Fig. 3.12. A Jacobi field on the sphere: check that it is always of the form f = a sin s

The Gauß equation is not too hard to prove, and it could have been
expected that it was a second order linear differential equation. This because
geodesics are determined as soon as a starting point and starting velocity are
given. Or, if you prefer, the equations for geodesics (equations 1.10 and 1.11
from page 41) are second order. Differentiation with respect to a parameter
linearizes these equations. What is important is the fact that in some sense
K tells the whole story of geodesic spreading, to first order. This does not
contradict the fact thatK is not enough to know the metric, because equation
3.9 implicitly involves the knowledge of some geodesics. We say again here
that K does not determine the inner metric up to isometry: on a generic
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surface, we can slide along the level sets of K with infinitely many degrees of
freedom, while the metric geometry of a generic surface is absolutely rigid.
We postpone examples to §4.5 because they are much better understood in
the abstract frame of Riemannian manifolds.

If you know K(x, y) in normal coordinates (as on page 123) then you
know the metric completely.

However, there is one case where you need not know the geodesics: when
K is constant. Locally, metrics of constant curvature are all known. Sur-
faces with the same constant curvature are locally isometric. If you use polar
coordinates (ρ, θ), the three cases are

ds2 =

⎧⎪⎪⎨⎪⎪⎩
dρ2 − 1

K sinh2
(
ρ
√
−K

)
dθ2 K < 0

dρ2 + ρ2 dθ2 K = 0

dρ2 + 1
K sin2

(
ρ
√
K
)
dθ2 K > 0

(3.10)

The first is the hyperbolic plane, the second the Euclidean plane, and the
third is the sphere of radius K−1/2. We saw in the pictures in §§ 1.6.3 on
page 53 examples of surfaces with K ≡ −1. Study carefully the remarks made
in §§ 1.6.3 on page 53 and §§ 4.3.2 on page 194.

Gauß’s equation proves quite easily the formulas 1.15 on page 62 and 1.16
on page 62. But we will prove much more in section § 3.3 on page 139. For
the moment we leave to the reader to check, with equation 3.9 that, as in
the pictures in figure 3.13, geodesics which start from the same point will
converge if K > 0 and diverge if K < 0.

ρ  → ρ

π/2

π/2 π/2

π/√K

K > 0

K = -1

ρ → sin h(ρ)

π/2

ρ → sin(√Kρ)/√K

Fig. 3.13. Geodesics on surfaces of constant curvature

Comparing with Euclidean geometry, the third result is new to us (you
can guess why after looking at it). It is called the second variation formula.
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In effect, we will try to pluck a guitar string, on a surface (see figure 3.14).
A second variation formula has substance only when the first variation is
zero, i.e. around geodesics. It has primary importance if you want to look
for shortest geodesics: at least locally you will not want a negative second
derivative. Let c(t, α) be a one parameter family of curves around a geodesic
c(·, 0) = γ parameterized by arc length, and consider the infinitesimal dis-
placement ∂c

∂α (t, α = 0) along γ. If you assume it to be normal to the geodesic
it is then given by a function f, multiplied by a unit normal vector field. As-
suming that the ends of the curves occur at t = a and t = b, and also that
those ends traverse geodesics as we vary α (a particular case is when the
extremities are fixed) then

d2

dα2
length c(·, α)

∣∣∣∣
α=0

=
∫ b

a

((
df

dt

)2

−Kf2

)
dt (3.11)

c(a)
c(t)

f'(t)

f(t)

c(b)

Fig. 3.14. Second variation: plucking a geodesic guitar string

Curves equidistant from a geodesic are concave when K > 0 and convex
when K < 0, as in figure 3.15 on the facing page. We will use this idea inten-
sively in § 3.3 on page 139 when studying whether geodesics are segments.3

A nice application is Bonnet’s theorem 21 on page 140.
If the curves drawn by the two extremities are no longer geodesics, the

formula should be corrected by an “integrated” term which involves only
the geodesic curvature of these two curves, see for example recent references
such as Cheeger & Ebin 1975 [341], Gallot, Hulin, & Lafontaine 1990 [542],
do Carmo 1992 [452], Chavel 1993 [326].

3.2 Alexandrov’s Theorems and Gauß’s Angle
Correction

In §§ 1.6.4 on page 61 we claimed global metric inequalities for surfaces with
K > 0 and other ones with K < 0. With equation 3.9 on page 132 we can
3 Recall that segment is the word for shortest geodesic, that is to say a geodesic

with length equal to the distance between its end points.



3.2 Alexandrov’s Theorems 135

K > 0 K < 0

Fig. 3.15. Concavity/convexity of geodesics

obtain triangle inequalities with δ = inf K and Δ = supK. This was proven
by Alexandrov4 around 1940 and was extended Riemannian manifolds of any
dimension by Rauch and Toponogov; see § 6.4 on page 281. We sketch here
the proof of those inequalities on smooth surfaces, because it is the root of
the later developments.

q
c

r

p
in M

A

p'
in M(δ)

q'

r'A

the transplantation

Fig. 3.16. Transplantation of triangles

We start with the assumption that K ≥ δ everywhere on M . Assume
first that the triangle {p, q, r} under consideration is in the domain of a
normal polar coordinate system like equation 3.8. We claim that if K ≥ δ
everywhere, and if f �= 0 between 0 and ρ, then f(ρ) ≤ fδ(ρ) where fδ is given
by equation 3.10 on page 133 after we plug in K = δ. Once that inequality
is obtained, one uses the following transplantation. Consider in the model
space M(δ) of constant curvature δ a triangle {p′, q′, r′} with equal sides
4 Alexandrov proved it even for surfaces which are not very smooth; Cartan had

already proven it around 1930 for smooth surfaces with Δ = 0
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pq = p′q′, pr = p′r′ and angle A = A′ at p and p′ respectively. One draws the
third side q′r′ and transplants it back to M . This gives a curve c in M from
q to r with

length(c) ≤ dM(δ)(q′, r′).

By the very definition of the inner metric of M one finds

dM (q, r) ≤ dM(δ)(q′, r′) (3.12)

which is the control desired since dM(δ) can be explicitly computed. When
δ = 1 this is formula 1.6 on page 36; for δ = 0 it is formula 1.1 on page 2;
and for δ = −1 see equation 4.21 on page 198.

A more geometrical formulation of equation 3.12, which is in fact equiv-
alent, is just to say that if you built a triangle {p′, q′, r′} with its three sides
equal to those of {p, q, r}, then the angles in M are greater than or equal to
the respective ones in M(δ).

Fig. 3.17. Angles of triangles with equal side lengths

The inequality f ≤ fδ comes from the classical Sturm–Liouville tech-
nique, which applies to equations like 3.9. Mechanically it is intuitive: f and
fδ have identical initial values f(0) = 0, f ′(0) = 1, fδ(0) = 0, f ′

δ(0) = 1. They
represent the motion of a point along a line which is attracted to the origin
with a force K times the distance from the origin. See figure 3.18 on the
facing page. In the motion under Kf , the force is always stronger than for
the motion under δf . Since the initial conditions are the same, it is clear that
the first motion will always be closer to the origin than the second one, at
least before it returns to the origin.

The mathematical proof is very nice. We want to study the ratio f/fδ.
The derivative of this ratio has the same sign as f ′fδ−f ′

δf . We write the two
equations f ′′ +Kf = 0 and f ′′

δ + δfδ = 0 and calculate

d

dt
(f ′fδ − f ′

δf) = (δ −K)ffδ

(since the two terms f ′f ′
δ cancel each other). This is never positive, by as-

sumption. This implies that the function f ′fδ− f ′
δf is never positive, since it
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0

loose spring

0 strong spring

strong spring

Fig. 3.18. Sturm–Liouville theory: springs in motion

starts with value 0 at initial time. So the ratio f/fδ never increases. But it
starts at initial time with value one. So the ratio f/fδ is always smaller than
equal to 1, i.e. f(t) ≤ fδ(t).

f'(0) = fδ'(0) = 1 f'(0) = fΔ'(0) = 1

π/4 π/4

f f

fΔ
0 0π/√δ π/√Δ

Fig. 3.19. Sturm–Liouville theory: Comparing functions

The inequality 3.12 is still valid in the large for any triangle in any com-
plete surface. To see it you cleverly decompose the large triangle into smaller
ones to which the above applies.

For surfaces with K < Δ, we get mutatis mutandis the inequality:

dM (q, r) ≥ dM(Δ)(q′, r′) (3.13)

but only for triangles within a normal chart. The natural conjecture for a
global result is false as already seen in figure 1.67 on page 65. The transplan-
tation is now carried out from the surface under consideration to the model
surface M(Δ).

Note 3.2.0.1 Inequality 3.12, namely Alexandrov’s theorem for a lower
bound on the curvature, has recently been the subject of great attention.
Geometers always like to work on more and more general spaces, both for
theory and applications. But a new concept should not be to general if one
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wants to penetrate its mysteries. It turns out, as discovered by various math-
ematicians, that metric spaces for which there is a fixed δ such that 3.12 holds
have a geometry which is extremely reasonable. See §§ 14.5.5 on page 704 for
these Alexandrov spaces. �

3.2.1 Angle Corrections of Legendre and Gauß in Geodesy

What follows now is a very interesting piece of history of mathematics. We
took it from the fascinating reference Dombrowski 1979 [455], where the
reader can find more details. As we said in chapter 2, Gauß wanted to un-
dertake extremely precise geodesy. Here is a typical example of a geodesy
problem. Assume {p, q, r} is a triangle (not too large) on a surface S, and the
triangle has side lengths a, b, c and angles A,B,C. In the Euclidean plane
E2 draw a triangle {p′, q,′ , r′} with the same side lengths a, b, c and de-
note its angles by A′, B′, C′. The geodesist wants to estimate the differences
A−A′, B−B′, C −C′. In 1787, Legendre succeeded to compute these differ-
ences when the surface is a sphere of radius R, i.e. K = 1/R2, and got the
angle correction formula:

A = A′ +
1
3
σK + o

(
a4 + b4 + c4

)
(3.14)

and idem for B and C where σ denotes the area of the triangle {p, q, r}.
This agrees with our intuition: when K > 0, if you try to wrap a triangle

coming from the Euclidean plane on such a surface you feel that operation
will make the angles larger. We also suggest that you prove formula 3.14.

Our planet is a sphere only in first approximation. In fact it is closer to an
ellipsoid of revolution, having an eccentricity for which one had already quite
a good assessment in Gauß’s time. On such an ellipsoid, Gauß wanted a better
approximation than Legendre’s spherical one. Using all of the machinery he
had developed for the inner geometry of surfaces, and after quite hard labor,
he obtained the following correction valid for any surface:

A = A′ +
σ

12
(2K(p) +K(q) +K(r)) + o

(
a4 + b4 + c4

)
(3.15)

and idem for B,C, where K(p),K(q),K(r) are the total curvatures at these
points.

Gauß immediately compared his correction with Legendre’s where the
surface is no longer a sphere with constant K but an ellipsoid of revolu-
tion, which is the next best approximation to our planet. Note that now the
correction generally depends on the vertex (which was not the case for Leg-
endre’s correction). This means that you have to know the latitude of the
three points. Then, as we mentioned in §§ 1.6.3 on page 53, the curvature is
easily computed. You will notice for example that the correction is smaller
than Legendre’s when closer to the pole. The numerical results are as follows
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Fig. 3.20. Gauß’s angle correction

for a triangle explicitly surveyed by Gauß near Göttingen, and for the values
admitted at that time for the eccentricity of our planet:

Legendre’s common correction 4.95116′′

Gauß’s corrections 4.95104′′, 4.95113′′, 4.95131′′ (3.16)

Gauß’s comment on these in a letter to a friend is worth quoting:

In practice this is of course not at all important, because it is neg-
ligible for the largest triangle on earth that can be measured; however
the dignity of science requires that we understand clearly the nature
of this inequality.

C. W. F. Gauß

Even the accuracy of contemporary measurements does not alter this circum-
stance, since the imprecision of the instruments now available at metrology
labs is of the order of one second; see Berger 2003 [173].

Note 3.2.1.1 In 1820, Gauß was hired as a map maker, (at the behest of
King George III of Britain, who was the Elector of Hannover), so his interest
in geodesy was also driven by an important problem: to survey Hannover
(today a province of Germany) to within an accuracy sufficient to produce
useful maps. To make a map is to capture the shape of a surface up to
a certain accuracy, in other words up to a certain maximum magnitude of
Gauß and mean curvature. �

3.3 Back to Metric Questions: Cut Loci and Injectivity
Radius

We address the basic question: when is a geodesic a segment, i.e. when is its
length equal to the distance between its end points? We saw in §§3.1.4 that
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this always the case when the end points are close enough. But we would like
to control the distance in the large with the curvature. Our first result will
be a negative one:

Theorem 21 (Bonnet, 1855) If K ≥ δ > 0 then no geodesic of length
L > π/

√
δ can be a segment.

Proof. Apply the second variation formula 3.11 on page 134 to the function

f(s) = sin
(πs
L

)
as in figure 3.21 and check that the second derivative in equation 3.11 is
negative. Therefore, nearby that geodesic there are shorter curves with the
same end points.

π
L

sin ⎧⎢⎩
⎧⎢⎩

s

0
L

p qγ

a shorter curve

Fig. 3.21. Bonnet’s theorem: finding a shorter curve

Turn this negative result in a positive one. Assume the surface M is
complete and that K ≥ δ > 0 everywhere. The above result proves that
the diameter of M is smaller than or equal to π/

√
δ, and in particular M is

compact.

Corollary 22 For a surface like the one in figure 3.22 on the facing page,
going to infinity, e.g. an elliptic paraboloid, the curvature gets arbitrarily close
to zero.

Completeness is essential; take as a counterexample:

R × (−π/2, π/2)

endowed with the metric

ds2 = dx2 + cos2xdy2
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Fig. 3.22. A paraboloid
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We now look at surfaces with K < Δ. The reader will prove that for
every geodesic of length smaller than or equal to π/

√
Δ the second variation

(from equation 3.11 on page 134) is never negative. This is called Wirtinger’s
inequality, and nicely proven for example with Fourier series: any f with
f(0) = f

(
π/

√
Δ
)

= 0 (see figure 3.23) satisfies

∫ π/
√
Δ

0

((
df

dt

)2

−Δf2

)
ds ≥ 0

and equality only for f proportional to sin
(
s
√
Δ
)
.

π/√Δ0

f

Fig. 3.23. Wirtinger’s inequality

We recall here the definition of injectivity radius, already met on page 49:

Definition 23 The injectivity radius of a metric space M is the largest num-
ber Inj such that any pair of points {p, q} with d(p, q) < Inj are joined by
exactly one segment.

The Wirtinger inequality, together with the picture, will suggest:

Theorem 24 (Klingenberg, 1959) The injectivity radius of every com-
pact surface is not smaller than the lesser of the two numbers: (1) π/

√
supK

and (2) half the length of the smallest periodic geodesic.

This is the ultimate control for the geometry of a compact surface. The
proof is not simpler for surfaces than for the general dimension, so we refer
the reader to our later discussion in arbitrary dimensions of theorem 89 on
page 296. Note that we can just omit π/

√
supK in the case where we know

that supK ≤ 0. It is very easy to show the optimality of the result. Take
a prolate ellipsoid of revolution to see the need for a curvature assumption
(more on that shortly) and figure 3.24 on the next page for the periodic
geodesic assumption.

We come back to the cut locus, which was introduced in §§ 1.6.2 on page 38
without any detailed definition. We consider it briefly here, because it will be
studied in detail in §§ 6.5.4 on page 302. The cut locus was first considered by
Poincaré in 1905; he named it the “ligne de partage”. We consider a geodesic
γ starting from a given point m = γ(0) and run along it. We know that at
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Fig. 3.24. A thin neck

Fig. 3.25. Along the equator, Gauß curvature is very large, if the ellipsoid is very
thin

the beginning we have d(m, γ(s)) = s, but also that this will not in general
remain valid for every t. The cut point of γ is the last point of M on γ for
which this remains true (it might happen that it is so to speak “rejected to
infinity”). The cut locus of m, denoted by Cut-Locus (m), is the union of the
cut points of the geodesics emanating from m.

cut-point of γ

γ

γ
m m

shorter curve

cut-point of γshorter curve

Fig. 3.26. Cut points

Besides the fact that it is impossible in general to compute geodesics or
distances, the major source of difficulty in studying the cut locus is that
there are two kinds of points on it. Most cut points are connected to m by
two distinct segments. But some can be connected by only one segment. It
can be proven (see later on) that the cut locus is always the closure of the
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points of the first type. For a generic surface, a cut locus will look like a
graph. The ends of that graph are precisely the points with only one segment
joining them to m. Beware that the picture of this graph can be horrible, for
example an infinite graph with ends accumulating at one point. Systematic
bad examples are given in Gluck & Singer 1979 [570] with quite simple sur-
faces, even surfaces of revolution. Cut loci of real analytic surfaces are better
behaved, but in the Riemannian realm objects are essentially only smooth.
See more on the cut locus in §§ 6.5.4 on page 302 for history and details, even
in the case of surfaces.

Let us give a few examples and remark that basically no other ones are
workable. The first is the sphere: the cut locus of every point is the antipodal
point. The next natural surfaces are the quadrics, especially ellipsoids, but we
saw already on page 44 that their cut loci are still not known today. There is
only a conjecture, drawn in figure 3.30 on page 147. Cut loci are intractable
even for ellipsoids of revolution. The pictures are different for prolate and
oblate ones. In both cases we have drawn the conjectured envelope of the
geodesics from some point of the equator: this envelope plays a basic role
in Riemannian geometry. It is called the conjugate locus, and its points the
conjugate points of the point we started from; the conjugate locus will appear
again with a more formal definition 85 on page 292. For the poles, as for the
sphere, the cut locus is reduced to the other pole. The results of Myers 1935
[953] are as follows: for a real analytic, simply connected surface, the cut locus
of every point p is always a tree, and at every point q of the cut locus, the
number of arcs in this tree is always equal to the number of segments between
p and q. Moreover, the ends of the tree are necessarily conjugate points. The
conjecture on ellipsoidal cut loci will follow from the following “statement”
of Jacobi (known as Jacobi’s last “theorem”): the envelope of the geodesics
starting from a nonumbilic point has exactly four cusps. Since the geodesics of
an ellipsoid are algebraic objects (given explicitly by hyperelliptic functions),
one naturally feels that such a statement should be easy to prove, but in fact
it is still unproven; see Arnold 1994 [65].

For generic surfaces, one should expect at least triple points on the cut
locus.

Note 3.3.0.2 The sphere S2 ⊂ E3 has a very special inner metric. The fact
that the cut locus of any point is always reduced to a single point implies
that its diameter is equal to its injectivity radius. The cut value is not only
constant (which can be seen by applying the first variation formula) but as
soon as you attain the cut value you also attained the diameter. In particular,
the diameter is attained for every pair of antipodal points and is attained on
every geodesic. We saw on page 58 that this geometry is characteristic of the
sphere. But for abstract Riemannian manifolds, we will see on page 260 that
there are manifolds other than spheres with the property that their diameter
equals their injectivity radius, and in §§ 6.5.5 on page 310 that it is still
unknown exactly which Riemannian manifolds enjoy this property. �
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Fig. 3.27. Cut locus of the sphere

We will meet the cut locus for general Riemannian manifolds in §§ 6.5.4
on page 302.

3.4 Global Results for Surfaces in E3

3.4.1 Bending Surfaces

We pursue a little bit a topic we touched on page 58. First, the rigidity of
the sphere: a compact surface with K ≡ 1 is a sphere. This was proven by
Liebmann in 1899 and is not too hard. In 1927, Cohn-Vossen proved that
two compact surfaces with positive Gauß curvature which are inner isomet-
ric are in fact congruent, i.e. there is a global isometry of E3 identifying the
two surfaces. Thus, strictly convex surfaces are rigid. Every known proof is
quite tricky. See for example Berger & Gostiaux 1988 [175] 11.14, Burago &
Zalgaller 1992 [284] page 21, and Klingenberg 1995 [816] 6.2.8. Compact sur-
faces without everywhere positive curvature can be isometric without being
congruent, as shown in figure 3.32 on page 148.

Associated to that result and to the picture in figure 3.32 on page 148,
two questions are still open today. Note that the two surfaces shown in the
picture are not real analytic. So the first question is to extend Cohn-Vossen’s
result to any pair of surfaces, provided both are real analytic. Apparently,
there is no one parameter family of inner isometric surfaces connecting these
two surfaces. The following question is also open: assume we have a one
parameter family of surfaces Mα, all inner isometric to one another; such a
family is called a bending. Are they necessarily congruent in E3? Audoly 1999
[89] presents a new approach to rigidity. All nondeformation results known
today are for convex surfaces and noncongruent examples are smooth surfaces
(infinitely differentiable). Locally, it looks obvious that any piece of surface
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Fig. 3.29. Cut locus of the torus: the Dirichlet-Voronoi diagram

p

C(p)

Cutloc (p)

Fig. 3.30. The conjectured cut locus of an ellipsoid

Fig. 3.31. The cut locus of a point located outside and on the equator of a torus
of revolution. The numbers denote the number of connecting segments
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Fig. 3.32. Isometric surfaces which are not congruent

can be deformed (and with a lot of parameters: take a tennis ball with some
piece removed). But in fact constructing such deformations is unbelievably
hard. We refer to the survey in Burago & Zalgaller 1992 [284]. We mention
again that there are pointed surfaces which cannot be deformed no matter
how small the neighborhood of the point.

3.4.1.1 Bending Polyhedra The theory of bending polyhedra has devel-
oped differently from that of smooth surfaces. First, there is an analogue
of the rigidity of convex surfaces, namely the celebrated theorem of Cauchy
(proven when he was 24):

Theorem 25 (Cauchy, 1813) Convex polyhedra are rigid.

Two convex polyhedra which have a point correspondence which is an isome-
try when restricted to every face are necessarily congruent. One has to prove
that the corresponding dihedral angles are equal, and the proof is extremely
subtle; see for example 12.8.6 in Berger 1987 [164], or Stoker 1989 [1160], to
which you might want to add Karcher 1968 [778].

There are examples of continuous deformations (bendings) of nonconvex
polyhedra; see the survey on Rigidity by Robert Connelly, section 1.7 of
Gruber & Wills 1993 [661]. They are not well understood, although Connelly,
Sabitov & Walz 1997 [399] did prove that the volume bound by a polyhedron
remains constant under bending. Our opinion is that the known examples of
bendable polyhedra do not flex very much.

3.4.1.2 Bending and Wrinkling with Little Smoothness Differentia-
bility assumptions are very important in Cohn-Vossen’s rigidity theorem. We
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Fig. 3.33. Mountain and valley folds

stated the result of Cohn-Vossen with the word “curvature”, implicitly im-
plying that our surfaces are at least twice differentiable. And in fact the
result is deadly false without this assumption. A famous result of Nash and
Kuiper (see theorem 47 on page 238) says that any continuously differentiable
embedding of a surface in E3 which reduces distances can be approximated
(in the topological sense, i.e. uniformly) by a continuously differentiable iso-
metric embedding. The same way you can wrinkle (locally) a flat piece of
paper (zero curvature, locally Euclidean metric) into a very finely corrugated
one, preserving the locally Euclidean structure (and the zero curvature), one
can locally wrinkle any piece of surface preserving the metric structure. The
difficulty is to get continuously differentiable objects in the limit (and not
fractals). One has to preserve a good ratio between “amplitude” and “fre-
quency”.

Recently, Bleecker 1997 [207] extended the Nash–Kuiper result to one pa-
rameter continuous deformations of surfaces. As a nice corollary, he got ex-
amples of isometric deformations of compact embedded surfaces in E3 which
are volume increasing. This is to be compared with the Connelly–Sabitov–
Walz result for flexible polyhedra which we met above. Bleecker heuristically
describes the process as “finely corrugated wrinkling”. It is to be compared
with the Lohkamp result on negative Ricci curvature in §§ 12.3.5 on page 640.
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Fig. 3.34. Steffen’s flexible polyhedron. This picture is taken from Berger 1977
[156], and is missing from the English translation Berger 1987 [164]; after Klaus
Steffen, drawing by Benoit Berger

But note also that the C2 assumption can be replaced by convexity. The
corrugation wrinkling process of Nash–Kuiper is typically not convex. We will
just see mean curvature rigidity assuming convexity, a famous result of A.D.
Alexandrov. See the basic reference on the subject: Pogorelov 1973 [1033].
For a viewpoint on nonsmooth bending, see Schlenker 1998 [1104].

3.4.2 Mean Curvature Rigidity of the Sphere

The sphere is also rigid for mean curvature: a compact surface with positive
Gauß curvature and constant mean curvature is necessarily a sphere. There
is a generalization of both mean and Gauß rigidity for the sphere. A surface
M in E3 is called a Weingarten surface if there is some relation between its
two principal curvatures, that is to say, there is a smooth function F of two
variables such that
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F (k1 (m) , k2 (m)) = 0

for everym ∈M . Constant Gauß or mean curvature surfaces are Weingarten.
The classification of Weingarten surfaces is almost completely open today.
The only general result concerning them is:

Proposition 26 If M is a Weingarten surface with positive Gauß curvature,
it is never possible for k1 to have a maximum at the same point where k2 has
a minimum, unless M is a sphere.

For proof, see the short survey in 11.18 of Berger & Gostiaux 1988 [175].
But we know much more about the rigidity of the sphere for mean curva-

ture: in 1950, H. Hopf proved the rigidity of compact constant mean curvature
surfaces without the K > 0 proviso, but still assuming that the surface is a
topological sphere. In 1955, Alexandrov proved it without any topological
restriction. The proof is extremely hard: it is a subtle blending of analysis
and geometry. One can look at do Carmo 1976 [451] page 324 for the case of
the sphere and to the beautiful book of Hopf 1989 [732] for the general case.
From a practical point of view, Hopf’s theorem proves that soap bubbles are
necessarily round spheres. But be cautious on a subtle point which is missing
in many texts: the physics tells us that soap bubbles are local minima for
area among nearby surfaces with the same volume; in particular they have
constant mean curvature, by equation 1.17 on page 67. The physics does not
tell us that soap bubbles are absolute minima, or else theorem 11 on page 74
would suffice to ensure that soap bubbles must be spheres.

A dramatic historical development came in Wente 1986 [1254], where
Wente constructed immersed (but not embedded, by the above) compact
surfaces of constant mean curvature. It opened up an active field of research.
See, for example, Pinkall & Sterling 1989 [1027]. A recent point of view is
Kamberov 1998 [776] where spinors come into the picture, see also Hitchin
1997 [722].

To see surfaces of constant mean curvature of different topologies (non-
compact but with more “ends” than those of revolution seen above), it was
necessary to wait until Kapouleas 1995 [777]. Today there is still no frame-
work in which to complete the classification. The constructions of Kapouleas
are based on fine analysis which makes it possible to make connect sums.
One will find recent results and a bibliography in Mazzeo, Pacard & Pollack
2000 [905]. See many computer drawings in Große-Brauckmann 1997 [641]
and Große-Brauckmann & Polthier 1997 [642].

In higher dimensions, Alexandrov’s theorem is still valid for embedded
hypersurfaces: only round spheres have constant mean curvature. Immersions
are radically different: there are many nonspherical immersed topological
spheres Sd−1 of constant mean curvature in Rd. See chapter VII of Eells &
Ratto 1993 [480] for references; the topic is directly related to harmonic maps,
about which a little bit will be said in § 14.3 on page 700.
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3.4.3 Negatively Curved Surfaces

Theorem 27 (Hilbert, 1901) No complete immersed surface in E3 has
constant negative Gauß curvature.

The proof is hard. If you look at figure 1.62 on page 60 you will see that
the surfaces there with K ≡ −1 are smooth, but if you try to extend them
to be complete, they have singularities like a cusp of revolution. Near that
cusp, this subset of E3 is no longer a manifold. Hilbert’s proof consists in
showing that traveling far enough along a geodesic, one is forced to develop
such a singularity. References are, for example: do Carmo 1976 [451] 5-11,
Stoker 1989 [1160] VIII.16. Hilbert’s theorem is historically important, since
it proves that the hyperbolic plane cannot be constructed as a surface in
E3. See in particular §§ 4.1.2 on page 164. This is very far from exhausting
the subject of complete surfaces of negative curvature. See the recent survey
in chapter II of Burago & Zalgaller 1992 [284]. This result of Hilbert was
generalized in the 1950’s by Efimov in a deep paper; see Milnor 1972 [926]
and Burago & Zalgaller 1992 [284]: there is no immersion in E3 of a complete
surface of Gauß curvature K < K0 < 0 bounded from above by a negative
constant.

Is there any complete, negative Gauß curvature surface in a bounded re-
gion of E3? Some people call the preceding question “Hadamard’s conjecture”
because Hadamard took nonexistence for granted. An analogous conjecture,
of Calabi and Yau, was that there can be no complete minimal surface staying
in a bounded region of E3. In Nadirashvili 1996 [964], both conjectures were
killed. He constructed a surface living in a bounded region, which is both
minimal and of negative Gauß curvature. The tool is the Weierstraß formula
for minimal surfaces.

3.4.4 The Willmore Conjecture

We mentioned the Carathéodory conjecture, a famous and still open problem
about umbilic points, in §§1.6.3. An equal famous open problem is Willmore’s
conjecture: for any torus M immersed in E3, Willmore 1971 [1271] believes
that ∫

M

H2 ≥ 2π2

(where H is the mean curvature) and he has some ideas on which tori should
achieve equality. Among tori of revolution, equality is achieved on precisely
those which are conformally square. The remarkable fact (not hard to prove)
is that this integral, of squared mean curvature, is invariant under not only
rigid motions of E3, but under conformal transformations, such as

x �→ x

‖x‖2
.
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Leon Simon proved that whatever the infimum of total squared mean curva-
ture on immersed tori may be, it is achieved on some (topological) torus. But
the value of the minimum is not known. This is quite atypical of variational
problems; once a guess is available for the minimum, and one knows the ex-
istence of a minimum, then the problem usually solves itself. The conjecture
has been proven among large classes of torus immersions. Recent references
on Willmore’s conjecture: Ammann 1999 [32], Li & Yau 1982 [863]. A strongly
related conjecture is Lawson’s conjecturethat a minimal surface in S3 which
is topologically a torus must be a Clifford torus.

3.4.5 The Global Gauß–Bonnet Theorem for Surfaces

We now prove the global version of the Gauß–Bonnet local formula 18 on
page 125. In all books, except Chavel 1984 [325], it is called the Gauß–
Bonnet “theorem”. One wonders why. This is quite surprising since the no-
tion of characteristic did not exist during Bonnet’s lifetime. See below for
the Euler-Poincaré characteristic of a surface. It seems that there is no de-
tailed historical study of the Gauß–Bonnet theorem. See Chern 1990 [367],
but it has to be completed some day. We just provide a soupçon of informa-
tion. For embedded surfaces in E3, the formula is proven in Dyck 1888 [467],
with crucial help from Kronecker 1869 [835]. But Poisson already remarked
in 1812 that the integral is constant under variation, and in 1815, Rodrigues
used the Rodrigues–Gauß map (not published at that time) to prove the for-
mula in some cases. Karcher & Pinkall 1997 [782] discovered very recently
that the Gauß–Bonnet formula is completely proven, by triangulations (as
it will be here) in Boy 1903 [249]. In the same article, Boy elegantly con-
structed an immersion of the projective plane in Euclidean space E3. The
global Gauß–Bonnet formula appeared partially in Blaschke 1921 [203] page
109 and completely in Blaschke 1930 [205] page 167. But from Blaschke’s
way of writing, it is clear that it was a folk theorem in the twenties. It also
appears in van Kampen 1938 [1205].

Our approach to the theorem can be followed without modification for
abstract Riemannian surfaces (see chapter 4 on page 161) but we will ask
our surface to lie in E3, just because of the title of this chapter. We consider
some compact surface M in E3, and subdivide it into small triangles whose
sides are geodesics. The smallness condition is that every such triangle is
topologically the boundary of a disk (if you prefer, it can filled up without a
hole). For the feasibility of this, see the notes 3.4.5.2 and 3.4.5.3 on page 157.

The idea is now to apply the Gauß–Bonnet formula 18 on page 125 to
every such triangle and sum it over the total decomposition. Let {Ti} be the
collection of triangles, and denote by αij its angle at the vertex mj . (N.B.
we have switched from talking about exterior angles before to interior angles
here.) For any Ti, formula 18 reads:
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Ti

K dA =
∑
j

αij − π

where the sum is over the vertices of the triangle Ti.

Ti Ai

Ti
Ai

j

j
M

i ∈ j

∑
i ∈ j

Aij = 2π

Fig. 3.35. Gauß–Bonnet applied to triangles

We sum over the triangles:∫
M

K dA =
∑
i,j

αij − πF

where F is the number of triangles (faces of the triangulation). Exchanging
the order of summation and noting that∑

i,j

αij = 2π

at every vertex, we finally get∫
M

K dA = 2πV − πF

where V is the number of vertices. Let E be the number of sides (edges of
the triangulation). Because every edge belongs to exactly two faces and every
face has three edges, we finally get∫

M

K dA = 2π(V − E + F ).

We assume that you know Euler’s formula to the effect that V −E+F depends
only on the topology of the surface triangulated as above. It is called the Euler
characteristic and is denoted by χ(M) = V − E + F . It is also equal to the
alternating sum of the Betti numbers
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χ(M) = b0(M,Z) − b1(M,Z) + b2(M,Z) (3.17)

(see §§§4.1.4.2) Pictorially, for an orientable surface, χ(M) is related to the
number γ of “holes,” also called the genus of M (a sphere has no holes, a
torus has one hole) by χ = 2(1− γ). There is a classical theorem in algebraic
topology, the classification of surfaces, which says that every compact surface
in E3 is homeomorphic to one with some number γ of holes as drawn in
figure 3.36. See §§§ 7.2.1.2 on page 353 and §§§ 4.1.4.1 on page 176. The
existence of a triangulation is a connected question; see the notes 3.4.5.2
and 3.4.5.3 on page 157.

S2

γ = 0 γ = 1

γ holes

Fig. 3.36. A surface with γ holes

Finally, we get the

Theorem 28 (Global Gauß–Bonnet theorem)∫
M

K dA = 2πχ(M)

= 4π(1 − γ) if M is orientable.

This formula is fundamental: the totality of the Gauß curvature does not
depend on the way the surface sits in E3. A first consequence is a very weak
form of Hadamard’s theorem 7 on page 65. IfK > 0 then the surface has to be
topologically a sphere, by theorem 28. If our surface is a torus, then theorem
28 says that the set of points where K is positive is exactly compensated
by the set of points where it is negative. You know that the total area of
the sphere is equal to 4π, and this verifies the Gauß–Bonnet theorem on the
sphere. You can also check it for surfaces of revolution, since K is easy to
compute; see §§ 1.6.3 on page 53. Later on in equation 15.9 on page 735,
we will see a third quantity equal to both sides of the Gauß–Bonnet formula.
The formula will certainly be valid for abstract Riemannian surfaces, since we
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only worked with the inner metric. In particular, the Gauß–Bonnet theorem
holds for unorientable compact surfaces (which can never be embedded in E3)
and for negatively curved compact surfaces (which can never be isometrically
immersed in E3).

(a)
∫

K dA = 4π (b)
∫

K dA = 0

(c)
∫

K dA = −4π

Fig. 3.37. Applying the Gauß–Bonnet theorem

Another application is described in the note 6.5.2.4 on page 299.
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Note 3.4.5.1 There are global inequalities regarding curves on surfaces, e.g.
between the area and lengths of periodic geodesics. But they are better
treated in abstraction; see § 7.2 on page 349. �

Note 3.4.5.2 In the proof of global Gauß–Bonnet theorem, the condition
that the sides of the triangulation are geodesics is not really needed. Even
if an edge is not a geodesic, in each of the two triangles it belongs to, the
curvature of an edge will have opposite signs. The integrals of the geodesic
curvature along the edges will cancel each other in the sum. �

Note 3.4.5.3 It seems a naive question whether one can triangulate a sur-
face. But a correct proof is hard. The first was by Radó in 1925; see Stillwell
1993 [1158], Massey 1991 [902] for references, almost the only accessible one
being Ahlfors & Sario 1960 [12]. For recent references on surface triangula-
tions, see Colin de Verdière 1991 [395] and Colin de Verdière & Marin 1990
[398]. However, there is a cheap way to construct a triangulation of any com-
pact surface. It was proposed to us by Hermann Karcher and seems to have
never appeared in the literature. On a compact surface M , choose any Rie-
mannian metric. Then use the results of §§ 6.5.3 on page 302 to get a covering
of M by a finite set of convex balls. Then play with the drawings in figure 3.38
and design the desired geodesic triangulation. �

Fig. 3.38. Building a geodesic triangulation, following Hermann Karcher

3.4.6 The Hopf Index Formula

For surfaces M the characteristic χ(M) can also be computed by Hopf’s
formula for the sum of the indices of a field ξ of tangent vectors on M
vanishing at finitely many points:

χ(M) =
∑
x

indexx(ξ) . (3.18)

The index of such a vector field at one of the points x where it vanishes is
an integer defined as follows. Since there are only finitely many zeros of ξ,
we can draw a circle around x which contains no other zeros of ξ. Then, as
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we travel counterclockwise around this circle, the direction of ξ rotates some
number of times, as in figure 3.39 on the next page. This number of rotations
is our index.

This is a particular case of a formula valid in any dimension: equation 15.9
on page 735. It was used already for the result on umbilics on page 55, and
will be the key for a higher dimensional generalization of the Gauß–Bonnet
theorem.

There is another way to look at theorem 28. Let us use the Rodrigues–
Gauß map N : M → S2, here for the whole compact surface M . Then
Gauß–Bonnet tells us that

1
4π

∫
M

K dA =
1
2
χ(M)

while proposition 19 on page 127 identifies this ratio with∫
M
N∗dσ∫
S2 dσ

.

This quotient expresses the number of times (in total) that M covers S2

through the map N . This is called the degree of the map N . For the general
notion of degree, one can look at Petersen 1997 [1018], or Appendix A.6
of Berger & Gostiaux 1988 [175]. But a classical theorem of Hopf, valid in
fact for any hypersurface Md in Ed+1 (where a generalized Gauß map exists
analogously) says that:

χ(M) = 2 deg(N) (3.19)

and this is again the Gauß–Bonnet theorem. For this see also equation 15.10
on page 738.

Here we bring to an end our study of the global properties of surfaces. Not
that we have run the well dry, but primarily we are interested in the inner
and not in the outer geometry. Secondly, some questions, even for surfaces
in E3, can be considered in the realm of abstract Riemannian surfaces and
thereby in fact better understood. A typical example is the Laplacian; the
definition we gave in equation 1.28 on page 110 for the sphere works word for
word for any surface M in E3. So we can consider heat, wave and Schrödinger
equations on such a surface. But this is better done in the abstract context
because it is much more general. More importantly, some inequalities for the
spectrum and some purely geometric inequalities are valid for surfaces in E3,
but equality is attained only for abstract surfaces, not embeddable in E3.
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4.1 Smooth Manifolds

4.1.1 Introduction

As we said in chapter 2, Riemann’s construction of the Riemannian manifold
consisted first in building the foundation of the smooth manifold. He then
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established on that foundation the concept of a Riemannian metric. In the
first two sections we will present smooth manifolds, and thereafter define
Riemannian metrics. The notion of smooth manifold is at the same time
extremely natural and quite hard to define correctly. This notion started
with Riemann in 1854 and was widely used. Hermann Weyl was the first to
lay down solid foundations for this notion in 1923. The definition became
completely clear in the famous article Whitney 1936 [1259].

A correct definition of smooth manifold is not too difficult today if one
uses modern general topology and differential calculus. For precise definitions,
the reader can consult almost any differential geometry text. Here are some:
Berger & Gostiaux 1988 [175], Bishop & Crittenden 1964 [197], Boothby 1986
[220], do Carmo 1992 [452], Chavel 1993 [326], Gallot, Hulin, & Lafontaine
1990 [542], Hu 1969 [742], Sakai 1996 [1085], Spivak 1979 [1155], Thorpe
1994 [1188], Warner 1983 [1243]. But it still takes time. In 1927, Élie Cartan
published a textbook on Riemannian manifolds. This book was followed in
1946 by a second edition, much enlarged: Cartan 1946 [321], and in English
translation, with comments by R. Hermann: Cartan 1983 [319]. Cartan’s was
the only book on Riemannian geometry up to the 1960’s. Then many books
started to appear. Even in the second printing, Cartan preferred not to define
manifolds precisely. Page 56 of the second edition reads:

La notion générale de variété est assez difficile à définir avec
précision.

[The general notion of manifold is quite difficult to define with
precision.]

Élie Cartan

Only examples and considerations follow. We will take Cartan’s approach,
referring the reader to standard references for a modern exposition of the
notion of smooth manifold. Do not think that Cartan was without a clear
concept of manifold. In the same way, many people, typically Siegel, were
writing with coordinates, matrices, etc. although familiar with abstract vector
spaces, linear maps, etc.

A d dimensional smooth manifold is a topological space (most often con-
nected) which is everywhere locally smoothly equivalent to Ed. These local
equivalences are called charts or coordinate systems, the essential condition
being that when they overlap, two charts are related by a smooth diffeomor-
phism, i.e. a bijection which is a smooth map, as is its inverse. A map is
smooth if it admits derivatives of any order. The pictures in figure 4.1 on the
next page are not manifolds.

We will see below that smooth manifolds admit at every point a tangent
space, which is a d dimensional real vector space. Differential and integral
calculus (of any order) operate on such a manifold. In a sense, one can define
smooth manifolds as the objects where calculus is possible (at least to the
first order, if one wants an intrinsic calculus). We will often omit the word
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these are not manifolds

Fig. 4.1. Not manifolds

“smooth”. It is important to know that in some special cases one has to work
in larger class of manifolds, of tensors, etc. For example the class C1 is the
class in which only continuous first derivatives are demanded; similarly, if we
ask that the derivatives also are continuously differentiable, we are in the class
C2. A typical example: a Riemannian metric need only be C2 to have well
defined curvature. In §§12.4.2 we will meet the class C1,α of metrics for which
one needs the first derivative to satisfy a Lipschitz condition of order α ∈
(0, 1). It is meaningless to ask that Riemannian metric tensors be smoother
than the manifolds they live on. For example, for a metric to be C2, it needs
an underlying manifold of class C3. It will always be understood that we
work in the C∞ class, for manifolds, for tensors, etc. unless explicitly stated.
Manifolds whose coordinate changes belong only to the class C0 of continuous
maps will be called topological manifolds. We will eventually, but briefly, meet
the notions of real analytic manifold, and analytic Riemannian metric; this
means that these things are defined by means of real analytic functions. But,
essentially, the Riemannian realm is that of indefinitely differentiable objects.
A diffeomorphism between two manifolds is a smooth bijective map whose
inverse is also smooth.

Note 4.1.1.1 We mention briefly the two technical points which make the
correct notion of manifold very difficult. It is not too expensive to define
a smooth manifold as a set covered by charts, which are smoothly related
to one another where their domains overlap. But this won’t work. The first
sign of trouble is that such a manifold can be too large, i.e. not countable
at infinity, e.g. the so-called long line or the Prüfer surface, which can be
found in Berger & Gostiaux 1988 [175] or in Spivak 1979 [1155], volume I.
The second problem is that it might fail to be separated i.e. might not be
Hausdorff, as in figure 4.2 on the following page.

So one has to add the two extra conditions of Hausdorffness and countabil-
ity at infinity to prevent these two problems. Then a key theorem of Whitney,
theorem 30 on page 179, says that if we add these two extra conditions to
the definition of manifold, a manifold is the same thing as a submanifold of
some Ed; we will see later on that ultimately this point of view is not very
illuminating. �



164 4 Riemann’s Blueprints

p
(x,0)

(y,1)

IR

IR

a not separated manifold (x,0) = (y,1) for any x = y < 0

Fig. 4.2. A space which isn’t separated: (x, 0) ∼ (x, 1) for any x < 0

4.1.2 The Need for Abstract Manifolds

In chapter 2 we mentioned that one motivation for inventing abstract mani-
folds came from studying sets of geometric objects. Let us examine the sim-
plest such set: the set of all straight lines through the origin of R3. We will
denote this set by RP2 and call it the real projective plane. You might
think of the sphere S2 ⊂ R3 centered at the origin and associate to a line
the points where it meets the sphere. The trouble is that there are two such
points, so that you need to keep only “half” of the sphere. Restrict yourself
to the northern hemisphere. Then there are still two intersection points of
horizontal lines with the hemisphere, on the equator. And if you cut half of
that equator off, you have a total mess. This piece of a sphere is not a nice
surface anymore, at the equatorial points where the missing half of the equa-
tor meets the half still in place. Moreover, the construction is not equivariant;
we have privileged some hemisphere. The original set of lines is acted on by
the group of linear maps in an elementary way, while the chopped up sphere
is not. We will see how to get out of this dilemma.

Examining the set of lines through the origin is not a mathematician’s
luxury. Making a colour involves mixing the three basic colours in correct
proportions, and this is represented by a line through the origin in R3. Colour
mixing is of vital importance for car makers, printers, graphic artists, etc. An
objection could be that, the coefficients being positive, one may look at only
the positive octant of S2. But it turns out that one really needs to work in
RP

2, even if only in a part of it.
Another example of a set of geometric objects described in chapter 2

was the set of positions of a rigid body in E3. As we said before, you can
first restrict consideration to a body rotating around a fixed point. We also
mentioned Euler angles. Not only are the formulas complicated, but as when
using latitude and longitude to describe the sphere, there are positions for
which those angles are not well defined. We will refer to the set of rotations
in R3 around a fixed point as SO (3); of course it is a group, the special
orthogonal group. To define Euler angles, an axis is chosen. But SO (3) should
look the same near any of its points. Hamilton made this homogeneity of
SO (3) manifest by applying the quaternions he had just discovered. Recall
that the quaternions are H = R ⊕ R3 with multiplication
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S2 → IR P2

IR P1 is identical to S1 IR P2 is the set of lines through 0

x

- x

red

a color

blue

yellow

Fig. 4.3. (a) RP1 is identical to S1. (b) RP2 is the set of lines through 0. (c)
Colour mixing

(x0, x) · (y0, y) = (x0y0 − 〈x, y〉 , x0y + y0x+ x× y) .

where × is the cross product and 〈, 〉 is the scalar product on R3. If X =
(x0, x) then let X̄ = (x0,−x). Identify R3 = 0 ⊕ R3 with the imaginary
quaternions x0 = 0. Unit length quaternions Y = (y0, y) act on imaginary
quaternions X = (0, x) by

X �→ Y XȲ .

This gets the unit sphere S3 ⊂ H to rotate R3. Just as for RP2, although the
set of unit length quaternions form a three dimensional sphere S3, there are
two unit length quaternions ±Y giving the same rotation. The geometry will
be clarified by the notion of covering space which we will soon consider.

Let us look at robots. The set describing the limb postures and locations of
a robot is typically described by an abstract manifold. For the robot’s moves
to be graceful, not abrupt, the space of its states has to be a smooth manifold.
In a similar story, previously we mentioned that in statistical mechanics, one
has to work with the set made up by the positions of a large collection of
particles. Because of collisions, this set is (not much) worse than a manifold:
it has corners.

Finally, in classical mechanics, the space of configurations of a mechanical
system is a manifold. In all but the simplest problems, it will have a boundary,
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etc. But the first thing to do for mastering the general situation is to start
with problems in which the configurations form a manifold. We saw above the
rigid body. A very simple example is the double pendulum. The configuration
space is a two dimensional torus T 2, a surface we will see more of in the next
section. You should really think of it abstractly, and not as embedded in R3:
see §§§4.3.3.2. To sum up, let us quote

There is no notion of acceleration on manifolds without a Rie-
mannian structure.

Vladimir I. Arnol′d

More on this in §15.5.

a  k-pendulum

ζ1

ζ2

ζ3

a robot : 9 parameters

movable

fixed basis

1

2

1

2 1

2

Fig. 4.4. A k-pendulum; A robot whose configurations depend on nine parameters.
The number 1 on the three lines indicates a one-parameter gliding, while the number
2 at the base points indicates that the direction of the gliding bars depends on two
parameters.

As we have said before, Hilbert’s theorem 27 on page 152 gives a math-
ematical motivation for abstract geometry. We have complete surfaces in E3

with K ≡ 1 and with K ≡ 0. By Hilbert’s theorem there is no complete
surface with K ≡ −1. For many reasons it is extremely desirable to have a
complete metric space everywhere locally isometric to a surface with K ≡ −1.
We could ask for more: compact “surfaces” with K ≡ 0 or with K ≡ −1.
They certainly do not exist in E3, because compact surfaces in E3 must have
positively curved parts. For more about these important abstract constant
curvature surfaces, called space forms, see §§6.3.2 and the note 4.1.4.1 on
page 176. Note that the theory of space forms draws heavily on that of Lie
groups; see §§§4.1.3.3.



4.1 Smooth Manifolds 167

A recent motivation for thinking of manifolds as a collection of charts
arose in General Relativity. Even if our solar system can be covered by a
single chart (since it pretty much lives in a three dimensional affine space),
relativity specialists cover it by various charts (with laws for how to relate
views of the same physical phenomena from different charts), typically with
a global chart centered at a suitable place, a chart centered on the sun, and
a chart centered on each planet; see Damour, Soffel & Xu 1991 [427].

4.1.3 Examples

Our first tool to construct examples of manifolds can be viewed two ways:
discrete quotienting of a previously built manifold down to a smaller quotient
manifold, or the unraveling of a smaller manifold into a larger covering man-
ifold. The whole story is a straightforward generalization of the identification
of the circle with the real numbers modulo 2π (or modulo anything else). The
downward trip sees the circle as the quotient of the real numbers under the
identification x = x+ 2π. Going upward, we look at some map

R → S1

given, for example, by
t �→ (cos t, sin t) .

Such a map should be a covering map, which demands what is pictured in
figure 4.5 on the following page. One of the essential properties of a covering
is that one can lift a continuous map T → S1 of a simply connected space1

T into a map T → R. This property has been used on pages 14 and 22 when
studying the global properties of the curvature of plane curves.

We will be a little more specific. First one defines when a map p : M → N
between two manifolds is a covering map. The condition is that the base N
is covered by open sets U so that for each of these U the set p−1(U) is
diffeomorphic to the product of U with a discrete set. Then one defines the
deck transformations of a covering map p : M → N to be the maps M →
M commuting with p. The deck transformations form a discrete subgroup
of the group of all diffeomorphisms of M (acting moreover with no fixed
point). We call M a covering space of N . In our example, R → S1, the deck
transformations are the translations

x→ x+ 2πk

for any integer k. Conversely a discrete group G of diffeomorphisms of a
manifoldM gives rise to a quotient setM/G and, if the action is well behaved,
the quotient M/G will be a manifold and the quotient map M → M/G will
be a covering map. If G is a finite group, then the number of points in any
1 See page 168 for the definition of simple connectivity.
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M

N

p

lifting a curve upstairs

Fig. 4.5. Lifting a curve upstairs

stalk p−1(m) is constant, called the number of sheets of the covering. See for
example Berger & Gostiaux 1988 [175] 2.4. We just note here that compact
manifolds are easier to handle. Be careful: a succession of covering maps can
be subtle. The so-called normal coverings fit together well, but otherwise all
bets are off. This point is most often omitted in books on algebraic topology.
The only places we found it were in chapter 4, §19 page 163 of Dubrovin,
Novikov & Fomenko 1985 [464], and in an exercise in Greenberg 1967 [587].

Any reasonable topological space, for example any manifold, has a univer-
sal covering which is uniquely determined by the condition that it is simply
connected. Simple connectivity means that any loop is contractible to a point.
Any connected covering of a simply connected manifold is a diffeomorphism
(has only one sheet). We used this fact in the proof of Hadamard’s theorem 7
on page 65. Finally, the group of deck transformations of the universal cover-
ing M̃ →M of any manifold M is naturally identified with the fundamental
group π1(M) of M which is the group made up by the set of loops traveling
away from and returning to some chosen point, under continuous deformation
keeping the point fixed. The specific choice of fixed point is inessential.

A typical example: quotient the sphere Sd by the antipodal map. We saw
in §§4.1.2 (in dimension d = 2) that the quotient is the set of straight lines
through the origin in Rd+1. It will be called in the sequel real projective space,
denoted by RPd. For example, RP3 and SO (3) are the same manifold, as we
have seen via quaternions.

Another basic example is the higher dimensional generalization of R →
S1. This is the frame for Fourier series. We want to consider Fourier series in
d variables. Consider functions on Rd which are periodic in every variable. So
we have to quotient Rd by the group generated by the d translations moving
one unit along each coordinate axis. The quotient is called the d dimensional
torus and is denoted by T d. As in the one dimensional case, its tremendous
advantage over Rd is its compactness. The d dimensional torus can be viewed
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a contractible loop

non contractible loops

Fig. 4.6. (a) A contractible loop. (b) Noncontractible loops

also as the product of d circles. It can also be seen as the unit cube with the
opposite faces identified in an obvious manner. The two dimensional case is
pictured in figure 4.7 and explains the name “torus”.

1

1

1

1

11

1
2 2

2 2 2

2

2

not a covering

Fig. 4.7. (a) A torus (b) Not a covering

Beware that a map f : M → N between two manifolds of the same dimen-
sion, which is everywhere of maximal rank (hence a local diffeomorphism),
need not be a covering map as seen in figure 4.7. It is a covering map when
both M andN are compact (see e.g. 4.1.5 in Berger & Gostiaux 1988 [175]) or
when both are complete Riemannian manifolds: see corollary 55 on page 250.

4.1.3.1 Submanifolds A submanifold of a manifold is just another mani-
fold living inside it, but the notion is subtle (just as in Euclidean space) since
we can insist that the submanifold be embedded, or can allow it to cross it-
self, etc. (called an immersed submanifold). The relevant technical points are
addressed in any differential geometry text. A submanifold of codimension
one (one dimension less than the ambient manifold) is called a hypersurface.

4.1.3.2 Products The simplest tool to make new manifolds from old is the
product. If M and N are manifolds, the product set M × N is a manifold
whose dimension is the sum of the dimensions of the original manifolds. The
product of a line and a circle is an infinite cylinder. The product S2 × S2
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is more complicated, and geometrically extremely interesting; see the Grass-
mannian Grass (2, 4) just below. And we will see (on page 606) that it remains
a mystery for Riemannian geometers.

You can take the product of a manifold with a set, e.g. finite, which
you can think of as a zero dimensional manifold. This just means taking a
certain number of copies of the initial manifold. The result is never connected.
Remember that we defined a covering p : M → N by the condition that
locally on N , the inverse image p−1(N) is a product by a discrete set. The
lifting property then appears to be quite natural.

4.1.3.3 Lie Groups Lie groups are, by definition, the groups which are
manifolds and for which the group operations are differentiable. The group
operations are then automatically C∞. They are pervasive not only in geom-
etry but also in almost all fields of mathematics and of mathematical physics.
The reason is simple: Lie groups are at the same time geometric objects and
algebraic ones, so they promise a rich interplay.

The Platonic Lie group is GL (n,R) . Many of the subgroups of GL (n,R)
are Lie groups too. Indeed all closed or path connected subgroups of a Lie
group are Lie groups. For example

O (n) ,SO (n) ,O (p, q) ,SO (p, q) ,U (p, q) ,SU (p, q)

and the torus T n = Rn/Zn. Covering spaces of Lie groups are Lie groups,
e.g. Spin (p, q) → SO (p, q) . We have seen the circle S1 and the 3-sphere
Spin (3) = S3 ⊂ H clothed as Lie groups. The beautiful group G2 is the
symmetry group of the algebra of Cayley numbers; see the definition of
Cayley numbers on page 172. Symmetry groups of differential equations and
geometric structures on manifolds are usually (not always!) Lie groups. The
abelian subgroup Q ⊂ R is not a Lie group.

Some Lie groups are not subgroups of GL (n,R), for any n, but they are
rarely encountered. For example, the universal cover G̃L (n,R) → GL (n,R)
is not a subgroup of GL (N,R) for any N .

4.1.3.4 Homogeneous Spaces Many geometric objects appear, not as a
Lie group, but as a quotient of a Lie group by a subgroup. Such objects are
called homogeneous spaces. Consider for example the set of all k dimensional
vector subspaces of Rd. We denote this set by Grass (k, d) and call it a Grass-
mann manifold or Grassmannian. It is also a quotient of Lie groups. Introduce
the orthogonal group O (d) of all linear isometries of Rd. The Grassmannian
Grass (k, d) is the quotient of the orthogonal group O (d) by the subgroup
O (k)×O (d− k) of the isometries which preserve the k-plane Rk ⊂ Rd (and
consequently preserve the orthogonal complement of this plane); i.e.

Grass (k, d) = O (d) /O (k) × O (d− k) .

Recall that a quotient of groups is not itself a group unless the subgroup
which is the denominator of the quotient is a normal subgroup.
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The name “homogeneous space” expresses their fundamental property:
they look the same everywhere, since the numerator group acts transitively
on them. The orthogonal group O (d) consists of matrices whose rows are
mutually orthonormal. How do we describe them? Pick the first row out
of the unit sphere, then the second out of the part of the sphere which is
perpendicular to the first, and so on. You see that there are d− 1 degrees of
freedom for the first choice, d− 2 for the second, etc. Therefore

dim O (d) = (d− 1) + (d− 2) + · · · + 2 + 1 =
d(d − 1)

2
.

The Grassmannian Grass (k, d) is a manifold of dimension k(d− k) because

dim Grass (k, d) = dim O (d) − dimO (k) − dim O (d− k)

=
d(d− 1)

2
− k(k − 1)

2
− (d− k)(d− k − 1)

2
= k(d− k).

In case d = 4 and k = 2 (this was our starting example) the result is a
manifold of dimension 2 × 2 = 4. It can be shown that it is the same (as a
manifold) as the quotient of S2 ×S2 by the double antipody. The product of
spheres S2 × S2 is diffeomorphic to the set of oriented 2 dimensional vector
subspaces of R2: see Singer & Thorpe 1969 [1145].

So we need to define quotients of manifolds by equivalence relations whose
equivalence classes are not discrete but instead have a positive dimension.
The quotient will still be a manifold if the equivalence relation is not too
wild. In the case G/H of a Lie group G divided by some subgroup H the
manifoldness of the quotient is guaranteed as soon as the subgroup H is
closed in G. Compact subgroups H will produce Riemannian geometry on
the quotient; see §§4.3.4 and §§§4.4.3.4.

4.1.3.5 Grassmannians over Various Algebras We finish our examples
with a case you should progressively learn to visualize, so we had better
introduce it now. We want to extend the notion of Grassmannian to complex
geometry, that is to say, to study the set denoted by GrassC (k, n), made up
of all k dimensional complex vector subspaces of Cn. It is called the complex
Grassmannian. You will not be surprised that its complex dimension is
k(n − k) and that its ordinary (real) manifold dimension is then 2k(n− k).
The case k = 1 is the analogue of real projective space; we naturally denote
it by CP

n−1 and name it complex projective space: its real dimension is
2(n−1). The same construction can be performed over the quaternions H and
we get the quaternionic Grassmannian GrassH (k, n) and the quaternionic
projective space HP

n−1. Guess the dimensions. These projective spaces will
recur frequently throughout this book.
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The Cayley numbers2 Ca give birth to only one space, called the Cayley
plane and denoted by CaP2; its (real) dimension is 16. A Cayley space of
three or more dimensions cannot exist: three dimensions provide room to
prove the Desargues theorem which in turn implies associativity of the base
field: see 4.8.3 in Berger 1994 [167] for a set of references. Any Grassmannian,
and in particular any projective space, can be written as a quotient of Lie
groups for which we use the notation:

KP
n = UK (n+ 1) /UK (n) , K = R,C,H,Ca (4.1)

The letter U stands for “unitary” which means here the group of linear
transformations of the spaces Cn, Hn, Ca3 which respects the Euclidean
structure of each of these spaces. But to write CaP2one needs the exceptional
Lie group F4, namely

CaP2 = F4/ Spin (9) .

The Cayley projective plane CaP2is beautiful. In the Riemannian zoo, we
like to call it the panda. The projective lines are eight dimensional spheres
and verify the axioms of the projective plane. Cartan suspected its projective
structure in Cartan 1939 [317], page 354. Freudenthal in 1951 made the first

2 Recall that the Cayley numbers form an eight dimensional nonassociative al-
gebra. We define them following Robert Bryant: let V be a seven dimensional
real vector space, and φ ∈ Λ3 (V ∗) a 3-form. Write v φ for φ(v, ·, ·). Define the
symmetric pairing

(x, y) = (x φ) ∧ (y φ) ∧ φ

for x, y ∈ V , so that
(, ) : Sym2 (V ) → Λ7 (V ∗) .

Call φ positive if (x, x) �= 0 for all x ∈ V . Any two positive 3-forms can be
identified by a linear transformation. This pairing has a determinant (the reader
should define this); it is not a number but:

det(, ) ∈ Sym9
(
Λ7 (V ∗)

)
.

There is a unique volume form for which this determinant is 1, call it Ω, and
define an inner product on V by 〈, 〉 = (,)

Ω
and define P : Λ2 (V ) → V by

〈P (x, y), z〉 = φ(x, y, z) .

The Cayley numbers are Ca = R ⊕ V with

(x,X) · (y, Y ) = (xy − 〈X, Y 〉 , xY + yX + P (X, Y )) .

For example, suppose that V = R7 with coordinates xi. Write dxijk for dxi ∧
dxj ∧ dxk. The 3-form

φ = dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356

is positive.
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proper projective construction of CaP2, which was never published. For the
intricate history of the panda, see chapter 3 of Besse 1978 [182].

We made the space RP
d by quotienting the sphere Sd with the antipody.

Instead of viewing CP
n as a Grassmannian, we can use the same tack. We

identify Cn+1 with R2n+2 and look where a given complex line pierces the
unit sphere S2n+1 ⊂ R2n+2. The intersection this time is no longer a pair
of points but a circle, because the ambiguity is now exactly the set of com-
plex numbers of norm one. This presents an important map called the Hopf
fibration, pictured in figure 4.8.

Fig. 4.8. Two views of the S3 → S2 Hopf fibration. The sphere S3 has one point
deleted, which is now the point at infinity of R3. The various two dimensional tori
are associated to circles in S2 with two exceptions for the degenerate tori (circles)
which are associated to the two poles of S2.

The inverse image of every point in CPn is a great circle sitting in S2n+1.
You can also see this as the quotient of this sphere by the action of the
circle, treating the circle as the group of complex numbers of norm 1 (under
multiplication). The case n = 1 is famous; CP1 is the sphere S2 (the Riemann
sphere): see 4.3.7 and 18.9 in Berger 1994 [167], Berger 1987 [164] for more
about this map S3 → S2. Finally, associated to the quaternionic projective
spaces, one constructs a fibration of S4n+3 by a family of 3 dimensional
subspheres. The Cayley plane is much more subtle: for n = 1 we unearth
a fibration S15 → S8 of S15 by 7 dimensional subspheres. But it can be
proven that there is no well tempered map S23 → CaP2. This reflects failure
of associativity of Cayley numbers, but the proof is still one of the deepest
theorems in algebraic topology: see Husemoller 1994 [751], chapters 14 and
15.

4.1.3.6 Gluing There is a completely different manifold manufacturing
method: gluing. We glued when building the torus by gluing opposite faces
of a cube. The pictures in figure 4.10 on page 175 show quite a variety of
gluing. We will meet them again in §§4.3.7.

Beware that gluing in higher dimension is subtle. For example if you glue
two hemispheres of dimension 7 by using a clever trick to attach one equator
to the other, then you can get smooth manifolds which are topologically but
not smoothly identical to the usual S7 ⊂ E8, as in figure 4.10 on page 175.
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S1
S2n+1

S1
fiber

S7

S3

S4

CPn IH Pn

S3
S4n+3

S3
fiber

S7

S15

S4

S8= CaP1

Fig. 4.9. Various Hopf fibrations

Such exotic spheres were obtained for the first time by Milnor in 1956. More
terrible animals appeared soon after: in 1961, Kervaire found a topological
manifold, in the sense of having continuous charts, which cannot be given
any smooth structure.

You should get used to looking at a manifold as an abstract object and
also up to diffeomorphisms. For example, S2 is considered as not necessarily
the round sphere, and moreover up to diffeomorphism.3

Note 4.1.3.1 Gluing is a very particular case of a extremely important tech-
nique to build new manifolds from old ones. This technique, called surgery,
will be presented in §§4.3.7. Surgery will enter naturally in studying mani-
folds with positive scalar curvature in §§12.3.3 and in our analysis of negative
pinching in §§12.2.4; surgery for space forms will be considered in §§6.6.2 and
will also enter in our study of systolic inequalities in §§7.2.3. �

4.1.4 The Classification of Manifolds

This book, above all in chapter 12, will make free use of the foundations of
algebraic and differential topology. It is very hard to give references which
will cover everything needed, or even a large part. A general picture, in a
historical context, is given in Dieudonné 1989 [448]; there is also the recent
survey Novikov 1996 [970]. We will say a few words on the subject, in a simple
minded manner, but in the spirit needed for the present book.
3 The group of diffeomorphisms of S2, or of any other manifold, is a very large

group.
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Fig. 4.10. (a) Two hexagons make a pair of pants (b) Two pairs of pants make
a surface of genus γ = 2. (c) Six hexagons can build a surface of genus γ = 4 (c)
Gluing an exotic sphere.
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4.1.4.1 Surfaces The classification of compact surfaces is a milestone. It
says that the only compact surfaces with boundary, up to topological equiva-
lence, are the ones depicted in figure 4.11, and their unorientable analogues.
For example, no boundary curves and no holes gives the sphere, one hole
gives the torus, etc. Topological equivalence of surfaces implies differentiable
equivalence, a phenomenon which is exceptional to two dimensions. This
classification is old, going back to Jordan and Möbius in the 1860’s. But a
complete proof had to wait for Kerékjártó in 1923. It is still quite lengthy to
prove in complete detail, and for that reason is absent from most textbooks
on algebraic topology. One can use Morse theory (a new idea) to simplify
the job. References can be Gauld 1982 [552], Hirsch 1994 [715], Massey 1991
[902], Moise 1977 [932], Seifert & Threlfall 1980 [1119], Stillwell 1993 [1158],
Wallace 1969 [1230].

Another major and very natural theorem is the existence of a triangu-
lation of any surface. This looks obvious, but is not. A classical reference is
Seifert & Threlfall 1980 [1119]. For more and more recent references, see the
notes 3.4.5.2 on page 157 and 3.4.5.3 on page 157.

. . . .

. . . . 

Fig. 4.11. An orientable surface with some holes and some boundary curves

Note 4.1.4.1 (Riemann surfaces) Let us temporarily borrow in advance
some notions of Riemannian geometry to be introduced shortly. The Rieman-
nian geometer needs to know that every compact surface admits a metric
of constant curvature: positively curved on the sphere or projective plane,
vanishing curvature (a flat metric) on the torus, and negatively curved on
anything else. A surface with such a metric is called a Riemann surface as
opposed to a mere Riemannian surface, i.e. surface with arbitrary Rieman-
nian metric. We will keep company with these Riemann surfaces in §§6.6.1.
Every negatively curved Riemann surface can be sewn out of right angled
hexagons of the hyperbolic plane, as depicted in figure 4.10 on the page
before. Riemann surfaces appear naturally in the theory of one complex vari-
able, and as algebraic curves. The first central problem concerning Riemann
surfaces was to associate a Riemann surface to each complex curve. It was
solved around 1900, and is called the fundamental theorem of conformal rep-
resentation (theorem 70 on page 277). The complex geometry on the curve
enables angle measurements, but not distance measurements. One needs to
find a Riemann surface structure with matching angle measurements. It is
easy to find a Riemannian metric that does this, so then we have only to
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deform it to have constant curvature. Angle preserving deformations of Rie-
mannian metrics (called conformal) are given precisely by multiplying the
original metric by a positive function. The constant curvature requirement
imposes an elliptic differential equation on that function. See §§11.4.7. �

4.1.4.2 Higher Dimensions A fundamental open problem of differentiable
topology is to classify compact differentiable manifolds. No book covers ev-
erything known about this problem. There are prominent difficulties in the
low dimensions 3 and 4; there is some hope that the Riemannian geometry
will help to provide the classification in precisely these dimensions. We will
now present four levels of ever finer classification, levels which coincide only
for surfaces.

The first level is homology (and cohomology). One can define (simplicial)
homology groups over any field by simplicial chains. This works for suitable
topological spaces; here compact manifolds (differentiability is not necessary).
The notations for homology and cohomology are Hp (M,F) and Hp (M,F)
for the p dimensional homology and cohomology, where F is the coefficient
field. The associated Betti numbers are

bp (M,F) = dimFHp (M,F) .

The de Rham theorem 32 on page 186 describes the cohomology of differ-
entiable manifolds over the field F = R. In particular, with differential forms
one can obtain the Euler–Poincaré characteristic which by definition is the
alternating sum

χ(M) =
d∑
p=0

(−1)pbp (M,R) .

As revenge, Morse theory (to be seen below in §§10.3.2) and Gromov’s the-
orem in §§§12.3.1.2 for positive curvature both work over any field. One can
also define homology and cohomology over the ring of integers Z, instead
of over fields. We just remark that to know the Betti numbers, even over
all fields, is far from enough to know the manifold, even if the manifold is
simply connected. The homology groups carry many other operations, like
the cap-product, Massey triple products, Steenrod operations, etc. There are
many other numbers attached to manifolds; the classical ones are the char-
acteristic numbers (see a little bit about them in §15.7), the Euler-Poincaré
characteristic being the simplest. They interest the Riemannian geometer be-
cause some of them can be computed with the curvature, via a far reaching
generalization of the Gauß–Bonnet theorem 28, see §15.7.

The fundamental group π1(M) is only reflected in homology by its
Abelianization:

H1 (M,Z) ∼= π1(M)/ [π1(M), π1(M)]

For example, there are many homology spheres, i.e. compact manifolds hav-
ing the same homology groups as the standard sphere, but different topolog-
ically. This story is not finished today, most prominently at the π1 level; a
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long standing conjecture of Novikov is proven every year for more and more
groups, but not definitively for every possible group. It might well be false,
and random groups may be employed to provide a counterexample; see the
very end of Gromov 1999 [633].

The second level is the homotopy type: you consider two manifolds M
and N homotopy equivalent if there exist two maps f : M → N and g :
N → M so that both f ◦ g and g ◦ f are continuously deformable into
respectively the identity map on M and on N (we say they are homotopic to
the identity). In particular, the homotopy groups πk(M) of a manifold play
the role at the homotopy level that the homology group played above. The
“ratio” homotopy/homology is infinite: in any dimension larger than 2, there
are infinitely many manifolds having the same homology but not homotopy
equivalent. It is important to mention that with only differential forms, their
exterior product, and the d operator between them, one can bring to light
much more information than the real Betti numbers given by the de Rham
theorem. This basic discovery was made in Sullivan 1977 [1166], to the effect
that the weaker notion of rational homotopy, the set of πk(M) ⊗ Q, can be
recovered completely from the analysis of differential forms. We will meet this
notion from the perspective of Riemannian geometry in the note 12.3.1.2 on
page 619 and in §13.6. A book treatment of the subject is Bott & Tu 1982
[229].

The third level is homeomorphy: two manifolds M and N are homeomor-
phic if there is a bijective map f : M → N such that f and f−1 are both
continuous maps. The diffeomorphy class was already defined above. The ra-
tio homeomorphy/homotopy is also infinite in every dimension except two.
For manifolds which are not simply connected, there are already homotopic,
nonhomeomorphic examples among three dimensional lens spaces, i.e. the fi-
nite quotients of the three dimensional sphere. This is a little more subtle.
The theory of characteristic classes is an ideal tool for examining these lens
spaces; Milnor & Stasheff 1974 [925] give an extremely lucid exposition; we
will give short shrift to characteristic classes in §15.7. Examples of manifolds
differing in homeomorphy but not homotopy arise already among S3 bundles
over S4.

The fourth level is diffeomorphy. The problem is to classify the possible
differentiable structures on a given topological manifold. The first discovery
was that of unusual differentiable structures on spheres, called exotic spheres.
We note here that, from the point of view of Riemannian geometry, namely
what sort of curvature they can bear, these exotic spheres are not at all un-
derstood today; see §§12.2.2. However, the ratio diffeomorphy/homeomorphy
is very satisfying when the dimension is larger than 4: it was a wonderful
achievement of the 1970s that this ratio is always finite in dimensions above
5; basic texts are Hirsch & Mazur 1974 [716], Kirby & Siebenmann 1977 [805].
Moreover, these finite numbers can be computed explicitly using topological
information on the manifold. Dimension 4 is an exception; counterexamples
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can even be taken among complex algebraic surfaces. See chapter 10 of Don-
aldson & Kronheimer 1990 [457]. For compact simply connected and oriented
4-manifolds, Poincaré duality shows that the entire homology is contained in
the structure of H2 (M,Z) (which is isomorphic to H2 (M,Z)) if one knows
moreover the type (the signature) of the quadratic form

H2 (M,Z) ×H2 (M,Z) → Z

given by

ω0, ω1 �→
∫
M

ω0 ∧ ω1 .

Definitive progress was made recently: see Donaldson & Kronheimer 1990
[457]. The problem is to find which such quadratic forms occur and who the
corresponding manifolds are.

For dimensions 3 and 4, see §14.4; there is hope that Riemannian geometry
will help pure topologists in this query in dimensions 3 and 4. We already
gave some references for low dimensions: a very informative sketch is found
in Hansen 1993 [681], Wall 1999 [1229], and Donaldson & Thomas 1990 [458,
459], Donaldson & Kronheimer 1990 [457], Morgan 1996 [939], Seiberg &
Witten 1994 [1118], and for the link with Riemannian geometry: Anderson
1997 [47].

4.1.4.3 Embedding Manifolds in Euclidean Space A natural question:

Question 29 Are there more abstract manifolds than just the submanifolds
of En?

Theorem 30 (Whitney 1936 [1259]) Any manifold of dimension d can
be embedded in E2d+1.

An elementary proof for compact manifolds, and references, appear in 1.133
of Gallot, Hulin & Lafontaine 1990 [542].

Theorem 31 (Nash & Tognoli) Any smooth compact manifold is diffeo-
morphic to a smooth real algebraic submanifold of some En, i.e. to the set of
solutions of a system of polynomial equations.

For a modern proof see chapter 14 of Bochnak, Coste, & Coste-Roy 1998
[209].

4.2 Calculus on Manifolds

In short: on smooth manifolds, just as in Ed, one can perform an intrinsic
differential calculus of first order. If you are worried about calculus of higher
order, which exists certainly in a vague sense since our manifolds are C∞,
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one of the privileges of Riemannian geometry is that it permits an “absolute
(or intrinsic) calculus” of any order. We will come back to absolute calculus
later on in §15.5.

The simple reason behind the intrinsic first order calculus is that changes
of coordinates are smooth by definition. The chain rule for the derivative of
a differentiable function of many variables insures the invariance of objects
of the first order:

(h ◦ g)′ (m) = h′ (g (m)) g′(m) (4.2)

But at the second order everything breaks down:

(h ◦ g)′′(m) = h′′(g(m))(g′(m), g′(m)) + h′(g(m))g′′(m) (4.3)

because of the extra quadratic term.
For example, a function f : M → R will have a differential df as in Rd,

but not a second differential d2f , which we would like to be a symmetric bi-
linear form. A curve will have a tangent vector (its velocity), but no intrinsic
acceleration: it has an acceleration in every chart, but there is no invariance
property. The marvel of the absolute calculus found by the Italian geometers
at the turn of the century is that a Riemannian metric will give rise auto-
matically and canonically to such a d2f (see for example the definition of the
Laplacian in §§9.3.1). A curve will have an acceleration (so that kinematics
will make sense) and more: a calculus of any order; see §15.5.

M

f g-1 g

the matching map  g-1  of should be smooth

g h

h o g

g' h'

(h o g)'

Fig. 4.12. The matching map g−1 ◦ h should be smooth

4.2.1 Tangent Spaces and the Tangent Bundle

Let us be more explicit about calculus on manifolds. Since our manifolds
are abstract objects, a priori they do not have natural tangent spaces, as
submanifolds of En do. Nonetheless, at any point m of a manifold M , one
can attach in a canonical but abstract fashion its tangent space atm, denoted
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by TmM , and its elements are called tangent vectors. The tangent vector is
so fundamental that it is worth giving various equivalent definitions of it.
First, just take equivalence classes of vectors (a1, . . . , ad) under the chain
rule 4.2 on the preceding page. Second: a smooth parameterized curve in a
manifold M is a smooth map from some interval of R into M (the notion of
smooth maps being defined through charts), as pictured in figure 4.13. Take
the equivalence classes of smooth parameterized curves in M passing through
m at time t = 0 under the equivalence relation of having the same velocity
at m in some (hence any) chart. By the chain rule, we find that the velocity
is a tangent vector.

c

M

c
d

e

e
d

c

c'(0) = d'(0) 
        = e'(0)

coordinate charts three curves with 
the same tangent vector

Fig. 4.13. (a) Coordinate charts. (b) Three curves with the same tangent vector

There is more than one way to employ the chain rule. Assume a curve c
has velocity ξ = c′(0) at m = c(0). Then, for any function f : M → R, the
chain rule says

df(ξ) = (f ◦ c)′(0) . (4.4)

Analysts and physicists like functions (observables) so we give now a defi-
nition of tangent vectors using only functions. Call a linear operation ξ a
derivation at m ∈M if ξ takes smooth functions on M to real numbers, and
satisfies Leibnitz’s rule

ξ(fg) = g(m)ξ(f) + f(m)ξ(g) .

for any smooth functions f, g : M → R. A tangent vector ξ to a manifold M
at a point m is just the same as a derivation at m. This abstract definition
is quite new; it seems to have appeared in the literature only in the 1960’s.

On Rd, all of the tangent spaces TmRd are essentially the same, namely Rd.
If we form a quotient torus T d = Rd/Λ, then we still have an identification of
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all of the tangent spaces of the torus with Rd. For a general manifold, there is
no way to compare the tangent spaces at different points. See figure 4.14. This
was already the case in a somewhat restricted sense for a surface M ⊂ E3:
compare with §§3.1.3, where tangent vectors could be compared but only
along a given curve in the surface. In an abstract manifold this is impossible
without some additional structure. A Riemannian metric will (partly) do it.

m

n

TmM

TnM

M

R2

IR 2

Tc

in general TmM and TnN
are not comparable

for a torus all tangent 
spaces are identifiable

0m 0n 0p

m
c

n
p

the tangent bundle 
to a curve (d = 1)

Fig. 4.14. In general, TmM and TnM are not comparable. For a torus, all tangent
spaces are identifiable. The tangent bundle to a curve.

We cannot compare different tangent spaces to a manifold, but we can
put them together into a bigger manifold, called the tangent bundle to M and
denoted by TM . As a set, the tangent bundle is just the union of the tangent
spaces TmM, and the manifold structure is not too hard to get; see any of
the texts quoted above. There is a canonical projection map p : TM → M
which attaches to every tangent vector the point it sticks out of (its foot).

The notion of a smooth map f : M → N between two manifolds is just
defined by pairs of charts, the coherence of the notion being insured by the
definition of a manifold, and again the chain rule. The basic point is that such
a map also has a derivative (sometimes called the differential). It has many
possible notations: f ′, df, T f. At every point, it can be defined in the same
three ways that tangent spaces were defined: by curves, by functions and by
charts. It gives rise to an elegant commutative diagram, drawn in figure 4.15
on the facing page.
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Fig. 4.15. Taking the first derivative

We say that a smooth map f : M → N is an immersion if dfm : TmM →
Tf(m)N is an injective for all m ∈ M , and a submersion if dfm is surjective
for all m ∈ M . The rank of f : M → N is defined to be the rank of dfm,
assuming that this is constant. The preimage of a submanifold S ⊂ N viewed
through a submersion f : M → N is a submanifold f−1S ⊂M . The preimage
of a point under a constant rank map is also a submanifold, but the preimage
of a submanifold might not be a submanifold. (Find an example.)

An important special case: when the target manifold is R, in which case
df is at every point m ∈M a linear map

dfm : TmM → R

i.e. an element of the dual space T ∗
mM of the vector space TmM. Again, the

union of these dual spaces, for m running through M, makes up a mani-
fold called the cotangent bundle T ∗M of M. For technical details, see your
favourite text book of differential geometry. Note that the tangent and the
cotangent bundles are different objects. In Riemannian geometry, they can
be identified because there will be an additional Euclidean structure yielding
a canonical duality between each tangent space and its dual space.

We do not introduce here a fundamental notion in differential geometry,
that of vector field, this in order to remain geometric as long as possible; see
§15.1 for this notion and its developments.

Just two examples: for a product manifold M × N the tangent space
T(m,n) (M ×N) is canonically identified with the product TmM × TnN. For
a Lie group G, the tangent space TeG at the identity element e ∈ G is called
the Lie algebra of G and very often denoted by the corresponding Gothic
letter g. Multiplication on the group G is reflected on g in the quadratic
terms of a Taylor expansion for the multiplication map G × G → G. These
quadratic terms yield an operation on g, the Lie bracket

x, y ∈ g �→ [x, y] ∈ g .
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This bracket is the value [X,Y ](e) at e ∈ G of the two vector fields X
and Y on G obtained by transporting x and y all over G by left translations.
The Lie bracket is an antisymmetric map

g × g → g

satisfying the Jacobi identity:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

for every triple of elements x, y, z ∈ g. More precisely, one can first define one
parameter subgroups in G, as smooth group homomorphisms

g : R → G .

Such a homomorphism, thought of as a curve, is determined by its velocity
at the identity element: x = g′(0). Define the exponential map

exp : g → G

by asking that
expx = g(1)

where g(t) is the one parameter subgroup with initial velocity equal to x.
The inverse of the exponential map is a natural system of local coordinates
near e ∈ G. Moreover, left translating these coordinates around, we produce
nice charts around every point, so that the transition functions are real ana-
lytic. Thus Lie groups are real analytic objects, and their multiplication and
homomorphisms are real analytic.

The Lie bracket [x, y] is the infinitesimal defect of commuting in G, calcu-
lated by taking the commutator g(t)h(t)g−1(t)h−1(t) of two one parameter
subgroups, and computing its second derivative at t = 0 where g(t) and h(t)
are the one parameter subgroups whose velocities at t = 0 are x and y. Fi-
nally one can completely reconstruct the group structure of G (assuming that
G is simply connected), out of the Lie algebra structure of g. If needed, see
§15.1 for the definition of bracket of vector fields. Warner 1983 [1243] gives a
very lucid exposition of the basics of Lie groups, but of course one can also
look at the other references we will give at various places, e.g. when studying
symmetric spaces in §§4.3.5.

4.2.2 Differential Forms and Exterior Calculus

The exterior differential calculus on Ed extends without difficulty to mani-
folds, because it only involves first derivatives (the exterior derivative). We
briefly summarize here elementary exterior calculus on (smooth) manifolds.
We assume the reader is familiar with exterior algebra on vector spaces and
the exterior calculus for differential forms on Ed. We just recall that exterior
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algebra on a vector space of dimension d exists only in degree from 0 to d
and that in dimension 0 and d the exterior product is itself a one dimensional
vector space.

So on any manifold M, we first introduce the p-exterior tangent bundle
Λp (T ∗M) which is the collection

Λp (T ∗M) =
⋃
m

Λp (T ∗
mM)

with the obvious projection map. This can be made into a manifold as usual.
A p-differential form α on M is a section (smooth) of that bundle, namely a
collection {α(m)}m∈M of α(m) ∈ Λp (T ∗

mM) , required to be smooth, which
means for example that, transferred by any chart to Ed it is a smooth ordinary
differential form. The set of these p-differential forms on M is denoted by
Ωp (M) . Three operations defined on differential forms on Ed transfer to
those defined on M :

1. exterior product (a.k.a wedge product):

α ∧ β = (−1)pqβ ∧ α

where α is a p-form and β a q-form,
2. inverse image (a.k.a. pullback): f∗α of a p-form α on a manifold N by a

smooth map f : M → N , giving a p-form f∗α on M, and
3. exterior derivative: dα, which is a (p+ 1)-form, when α is a p-form. Just

as in Ed, d ◦ d = 0.

The exterior derivative gives rise to the sequence:

0 �� R �� Ω0 (M) d �� Ω1 (M) d �� Ω2 (M) d �� . . .

. . . d �� Ωp (M) d ��

d◦d=0

��
Ωp+1 (M) d �� Ωp+2 (M) d �� . . .

. . . d �� Ωd−1 (M)
d−1 �� Ωd (M) d �� 0.

The elements of Ω0 (M) are just the functions f : M → R and on them
the exterior derivative d is nothing but the differential df of f. The functions
with df = 0 are precisely those which are constant on each component of M .
And of course d(d(f)) = 0. But how about the converse? A differential form
α is said to be closed if dα = 0. Consider a closed 1-form α. Is there some
function f such that df = α? Such a function f need not exist. It must exist
on spheres Sd when d ≥ 2 but generally such a function will not exist on
the circle. Any constant coefficient 1-form α on Ed will descend to the torus
T d, but if for example α = dx1 on Ed, the function x1 does not descend. In
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such a situation, mathematicians examine the failure for f to exist as follows.
Introduce:

Zp (M) = {α ∈ Ωp (M) | dα = 0} (4.5)
Bp (M) =

{
dβ |β ∈ Ωp−1 (M)

}
= dΩp−1 (M) .

(4.6)

The forms in Z∗ (M) are called closed, while those in B∗ (M) are called
exact. The defect of exactness of a closed form occurs in the quotient space:

Hp
dR (M) =

Zp (M)
Bp (M)

(4.7)

called the p-th de Rham cohomology group of M .
If the manifold is connected, then clearly

H0
dR (M) = R .

Please find H0
dR (M) for manifolds which are not connected. There is no gen-

eral description of the de Rham cohomology groups, except for the celebrated:

Theorem 32 (de Rham) For any compact manifold Md and any 0 ≤ p ≤
d, the de Rham groups Hp

dR (M) are isomorphic to the real cohomology groups
Hp

(
Md,R

)
.

Such a theorem is plausible if one thinks of Stokes’ theorem 34 on page 188.
The cohomology groups H∗ (M,R) are, by definition, the dual vector spaces
of the homology groups H∗ (M,R) . We can get differential forms ω to eat
compact submanifolds S ⊂M by

S �→
∫
S

ω

(defined to be 0 if the degree of ω is not the dimension of S). We have only to
check that this integration operation is defined on the quotient H∗

dR (M) =
Z∗ (M) /B∗ (M) and that if S0 and S1 are homologous, then∫

S0

ω =
∫
S1

ω .

Both of these are direct consequences of Stokes’ theorem. This is not a proof,
since homology classes are not in general occupied by submanifolds; it is
just a hint. The de Rham theorem is proven in many books; one very lucid
presentation is in Warner 1983 [1243], and see also the recent Jost 2002 [768].
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It is natural to ask if by chance there is a way to realize by a canonical
choice of differential forms the elements of the Hp

dR (M), which appear so far
only as equivalence classes. We are looking for a canonical section

Hp
dR (M) → Ωp (M) .

Such a section is not canonically determined on a manifold without any ad-
ditional structure. Again one of the miracles of Riemannian analysis, the
Hodge–de Rham theorem, will provide us with such a canonical section at-
tached to each Riemannian metric on M. The corresponding forms are called
harmonic; see theorem 405 on page 691 and §15.6 for more on this.

The top dimension p = d is a little more complicated than p = 0, but not
too much. It is linked with orientation as follows. A manifold is orientable
when one can define a continuous choice of orientations for its various tangent
spaces, or equivalently cover it with an atlas of coordinate charts such that
all the coordinate transforms have positive determinant. Assume that the
manifold M is orientable. Since orientation is connected to determinants and
because d-forms transform like determinants, we can always build a d-form ω
on M, vanishing nowhere. Such a form is called a volume form. The converse
is also true. An unorientable manifold admits a unique two-sheet covering
which is orientable. Canonical examples are the Möbius band and the real
projective spaces RPd when d is even. From this observation, one deduces
without too much pain that for a connected manifold M the top cohomology
is Hd

dR (M) = R when M is orientable and Hd
dR (M) = 0 otherwise. See for

example Berger & Gostiaux 1988 [175], 7.2.1.
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Fig. 4.16. The Möbius band is not orientable; its tangent bundle is not a product

The top dimensional cohomology is extremely important because as soon
as M is oriented the integral

∫
M α of any d-form α is defined. One can call

it the volume of M for α. In particular, a volume form will define a measure
on M, since any two d-forms are proportional by a function, due to the
fact that the exterior power Λd

(
Rd

)
in top dimension is one dimensional.

The above integral transforms accordingly when taking inverse images under
diffeomorphisms f : M → N.
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M

f∗β =
∫
N

β, β ∈ Ωd (N) . (4.8)

There is an interesting theorem about volume forms, simple to state but
proven only recently. It says in essence that the structure given by a volume
form is so weak that is has only one invariant: the above integral. More
precisely

Theorem 33 (Moser 1965) Let M be a compact manifold and α, β two
volume forms. Then there exists a diffeomorphism

f : M →M

such that f∗α = β if and only if∫
M

α =
∫
M

β .

For a proof, one can look at Berger & Gostiaux 1988 [175] 7.2.3. An oriented
Riemannian manifold will have a canonical volume form.

The crowning result in the exterior differential calculus is Stokes’ theorem.
It relates the exterior differential, a concept from analysis, with a concept of
geometry: the boundary of a domain. Most differential geometry books cover
Stokes’ theorem; Berger & Gostiaux 1988 [175] try to give a large number
of its applications. If you know some algebraic topology, then cohomology
groups are related to homology groups and these are defined using special
cases of domains and their boundaries. So Stokes’ theorem is the first ev-
idence for the de Rham theorem, but the complete proof had to wait for
de Rham in 1929. The proof waited quite a long time to be written neatly. A
good reference for the proof is Warner 1983 [1243]. Remember that Stokes’
theorem 34 yields an interesting proof of the isoperimetric inequality; see
Berger 1987 [164] 12.11 or Berger & Gostiaux 1988 [175] 6.6.9 for details.

Stokes’ theorem operates on a compact domain D in a manifold M. The
domain should have a smooth boundary, which means that every pointm ∈ D
is of two possible types. Either m is an interior point, or there is a smooth
function x1 defined on a neighborhood U of m having a nonzero differential
dx1 such that

D ∩ U = {m ∈ U |x1(m) ≤ 0} .
This makes ∂D a smooth submanifold of M, of codimension 1, i.e. of dimen-
sion one less than that of M .

Theorem 34 (Kelvin–Stokes)∫
D

dα =
∫
∂D

i∗α

for every α ∈ Ωd−1(M), where i : ∂D → M denotes the canonical injection.
(More prosaically, one says that i∗α is the restriction of α to ∂D.)
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x1 ≤ 0

x2

x1

M

D
∂D

m

chart

Fig. 4.17. A chart for a domain with smooth boundary

The attentive reader should have been worrying: both integrals above
need some orientation to be defined. So we should add that the manifold M
is oriented (or at least has a chosen local orientation covering at least D).
Then the basic remark is that ∂D inherits a canonical orientation from that
of M, given geometrically by the inner side of D, and analytically by asking
that dx1 (locally) be used to orient the normal directions to ∂D, which will
fit together with only one orientation of ∂D to produce the given orientation
of M.

inner normal

domains with reasonable singularities

Fig. 4.18. Inner normal; Domains with reasonable singularities

Note 4.2.2.1 Thinking for example of the Gauß–Bonnet theorem 18 on
page 125, domains with smooth boundary are too restrictive for many geomet-
rical situations. Many important domains have corners. There are extensions
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of Stokes’ theorem to domains with worse and worse boundary singularities.
Some references: Dieudonné 1969 [446] chapter XXIV.14 or the very last sec-
tion of Lang 1993 [846]. Think also of the isoperimetric inequality in §1.5. The
ultimate goal is to define a notion for which the exterior derivative and the
boundary of a domain are defined by asking Stokes’ theorem to be true for
them; this is a starting point in geometric measure theory. See 4.2 of Morgan
2000 [937] and the references there. �

Note 4.2.2.2 In the many classical applications of Stokes’ theorem to anal-
ysis or physics in two or three dimensional Euclidean space (e.g. the Green’s,
Ostrogradski’s, etc. formulas) a systematic use is made of the duality between
forms and vectors, exterior products, etc. For example, the differential of a
function can be identified with its gradient, and more generally a 1-form or
2-form with a vector field. The exterior product becomes the cross product,
and the operation d then corresponds to div, grad or curl depending on what
you apply it to. �

4.3 Examples of Riemann’s Definition of a Geometric
Object

4.3.1 Riemann’s Definition

Gauß was interested in the inner geometry of a surface embedded in E3 and
made profound use of the determination of the inner geometry by the collec-
tion of Euclidean structures on its tangent planes. In coordinate language,
we wrote this Euclidean structure as ds2. Riemann made a dramatic reversal:
he defined a geometry as a ds2 on an abstract manifold, i.e. as a collection of
Euclidean structures on its abstract tangent spaces. Analytically, this is given
by various ds2 in various charts, but they have of course to match where the
domains of two charts overlap.

You can think of such a Riemannian object as a field of ellipsoids: the
ellipsoids built up by the vectors of norm equal to one. It is interesting to
think about this with some care. Understand that it is, as it stands, too
difficult a notion to work with directly. One can also consider a Riemannian
object as a manifold which is everywhere infinitesimally Euclidean. Note also
that an ellipsoid—in an affine space—has no privileged directions (of course,
you should realize that is the case because we consider ellipsoids in affine, not
in Euclidean spaces). Ellipsoids are all the same. For example, in the affine
plane (do not put any Euclidean structure), a Riemannian structure is a field
of ellipses, as in figure 4.19 on the next page. You will see immediately how
hard it is to make any sense out of it.

This dramatic reversal was very innovative. Riemann lectured his new
theory of geometry in 1854 in front of Gauß. After the lecture, Gauß was
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walking home with a friend and told him: “This lecture surpassed all my
expectations, I am greatly astonished.” Moreover these comments were made
with the greatest appreciation and with an excitement rare for him. To be
fair, it should be mentioned that in 1868 Helmholtz arrived at the same defi-
nition of a geometric object, though without being aware of Riemann’s 1854
contribution, for the good reason that Riemann’s work was only published in
1868 (after Riemann died in 1866).

A typical example is to consider the sphere S2 (abstract or embedded, that
is not the question) and put on every TmS2 some Euclidean structure, as in
figure 4.19. Here, as in all the above, this collection should depend smoothly
on the point m varying through S2. The new geometry has in general nothing
to do with the standard one on the sphere. A natural question is to ask if such
a geometry can always be identified with one coming from a (probably wild)
embedding of S2 in E3 (not necessarily a “round” sphere). We will address
this question below in §4.6.

an abstract ds2 on S2 a field of ellipses in the plane

Fig. 4.19. An abstract ds2 on S2; A field of ellipses in the plane

The first new example of Riemann, namely the first solid construction of
hyperbolic geometry, is so important that we will devote the next section to
it. We now make precise a few immediate details. First, about notation. The
Riemannian ds2 will in general be denoted by g. It is a collection of positive
definite quadratic forms g(m) on TmM for m running through M. The total
object will be denoted by (M, g) where M is the underlying manifold (the
clay for our sculpture). If we write Md this means that d is the dimension
of M. In a coordinate chart (x1, . . . , xd) , the standard notation in general
dimension (replacing the E,F,G in dimension 2, as in 3.1 on page 121) is:

ds2 = g =
d∑
i=1

gijdx
idxj (4.9)

where the gij are functions

gij = gij (x1, . . . , xd)
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In this expression for g, the gij are the scalar products of the vector fields
∂
∂xj

associated to the coordinate chart:

gij = g

(
∂

∂xi
,
∂

∂xj

)
(4.10)

Write for yourself how the gij behave under changes of charts.
The notation will imitate Euclidean geometry:

‖v‖ =
√
g(v, v) for the norm

v · w = 〈v, w〉
= g(v, w) for the scalar product

(4.11)

when there is no need to mention g explicitly. In particular there is a well-
defined angle sitting in [0, π] for every pair {v, w} of nonzero tangent vectors
to M sticking out of the same point. The definition of an orthonormal tangent
frame at a single point is now clear.

Riemann’s idea is that a ds2 gives a geometry as follows: we just ditto
the inner geometry of surfaces (or even of Euclidean space). The length of a
curve c : [a, b] →M is by definition:

length(c) =
∫ b

a

‖c′(t)‖ dt (4.12)

and the distance between two points p, q of M is (cf. 1.5 on page 34):

d (p, q) = inf
c
{length(c) | c is a curve from p to q} (4.13)

as in figure 4.20.

p

q
c

p

q

c'(t)

Fig. 4.20. Measuring length

This seems to yield trivially a metric on M as for surfaces in §§1.6.1. The
two first axioms for a metric space are obvious: d (p, q) is clearly symmetric
and

d (p, q) + d (q, r) ≥ d (p, r)

clearly, by gluing paths together, and employing the infimum in the definition
of distance. The big and dangerous trap is the axiom
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d (p, q) = 0 implies p = q .

Here one uses the Hausdorff (separated) nature of manifolds. The proof of
this third axiom will be given in §§6.1.1. Oppositely, in the non-Hausdorff one
dimensional example on page 163, the two end points are at zero distance
from each other in any Riemannian metric.

Theorem 35 (Palais 1957 [991]) The metric of a Riemannian manifold
determines its structure as a manifold (the smooth charts) and its ds2.

We will henceforth call g = ds2 on a manifold M a Riemannian metric
on M, or sometimes just a metric (employing Palais’ result to ensure that
there is little ambiguity), and the couple (M, g) will be called a Riemannian
manifold. Maps between Riemannian manifolds preserving their metrics are
called isometries. Also see §14.5 for generalized Riemannian manifolds.

In only extremely special cases will we be able to compute the metric
explicitly, i.e. find distances between points. One reason is that it is given by
an infimum definition. It is not an algebraic object you can compute from
the ds2. On the other hand, the curvature invariants we are going to meet
soon are eminently computable.

Isometries are of a different kind from general diffeomorphisms, in the
sense that, for example, an isometry is completely determined as soon as two
points and two orthogonal frames are asked to correspond under it, as in
figure 4.21. A nice consequence is that the group of all isometries of a given
Riemannian metric, which we will write

Isom (M) ,

is always a Lie group, see 2.34 in Gallot, Hulin & Lafontaine 1990 [542]. Also
chapter II of Kobayashi 1995 [826] and section III.6 of Sakai 1996 [1085].

e2

e1

f2

f1m
n

f

an isometric f is given as soon as

 n = f(m), f(e1) = f(e2) = f2 are imposed

Fig. 4.21. An isometry f of a surface is uniquely determined as soon as equations
n = f(m), f1 = f ′(m) · e1 and f2 = f ′(m) · e2 are imposed.

We are interested only in the geometric “structure” of a Riemannian
manifold, which is to say in a Riemannian metric up to isometries. What we
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will call a Riemannian structure on a given manifold M is an element of the
quotient of of the set of all possible Riemannian metrics on M by the group
of all diffeomorphisms of M. Let Diff (M) be the group of diffeomorphisms.
For the total sets we will use the notations RM (M) and RS (M):

RM (M) = {Riemannian metrics on M} (4.14a)
RS (M) = {Riemannian structures on M}

= RM (M) /Diff (M) (4.14b)

f

(M;f*g)  is the same as  (M;g)

equivalence under
diffeomorphisms

Fig. 4.22. Equivalence under diffeomorphisms: (M, f∗g) is the same as (M, g)

4.3.2 The Most Famous Example: Hyperbolic Geometry

One of the driving forces in mathematics has been to get rid of Euclid’s fifth
axiom. In the early 19th century, Gauß realized that there were other ge-
ometries than Euclidean ones verifying the first four axioms but not the fifth
one. In the 1820’s, Lobachevskii and Bolyai came to the same conclusion and
started building a “new geometry”. But what they developed was properly
defined only locally (see page 58).

In his 1854 lecture, Riemann enlarged the reservoir of mathematical mod-
els and concepts, and used the new objects to solve a pending problem. He
pointed out that the sphere of radius ρ has, in appropriate coordinates: 4

ds2 =
dx2

1 + · · · + dx2
n(

1 + K
4 (x2

1 + · · · + x2
n)
)2 (4.15)

where
4 The coordinates are, for y ∈ En+1 with |y| = ρ:

x =

(
y1

ρ − yn+1
, . . . ,

y1

ρ − yn+1

)
.
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K =
1
ρ2

.

He then said explicitly that the geometry everybody was looking for, the
hyperbolic geometry, is just the one defined by the same ds2, but with K < 0
a negative constant, defined on the open ball

x2
1 + · · · + x2

n <
4
|K| .

It could hardly be simpler. The interpretation of the negative constant K
will be clarified hereafter.

This simple statement is dangerously misleading. Note for K > 0, i.e.
on the sphere, the x coordinates are not defined at exactly one point of
the sphere. So the sphere is not fully described by these coordinates. What
Riemann is asserting is that for K < 0, this metric in these coordinates is
complete (with the coordinates defined up for |x|2 < 4

|K|) so we aren’t missing
anything—we have parameterized the entire hyperbolic space.

This expression for the metric doesn’t make clear the properties of the
geometry, above all that the resulting Riemannian geometry is the most sym-
metrical one. Moreover, this representation renders obscure the fact that for
positive K the above ds2 is that of a sphere (with one point deleted). A word
about the phrase “most symmetrical”. Euclid’s first four axioms were used to
derive the congruence properties of Euclidean spaces: we have enough isome-
tries of such a geometry to transform any pair of triangles one into the other
as soon as they have three equal sides or two equal sides with an equal angle
between them. It amounts to the same to ask for a formula generalizing 1.1
on page 2 and 1.6 on page 36. The essence of such a formula is to give the
distance d (q, r) as a function of d (p, r) , d (p, q) and the angle at p between
the two segments (shortest connections) from p to q and p to r: look also at
§§6.3.2. Those segments should exist by the axioms: there is one and only
one line through two given points. This prevented people (before Felix Klein
at the end of the 19th century) from realizing that the quotient of the sphere
by the antipodal map places an extremely simple geometry on RP

2 verify-
ing Euclid’s first four axioms but not the fifth one. Another reason for this
realization coming so slowly is that it is natural to consider that in a good
geometry looking roughly Euclidean, straight lines should be infinite.

When K < 0, the geometric space given by formula 4.15 is called the
hyperbolic space of dimension d and of curvature K. We will denote it by
Hypd (K). These spaces are pervasive in almost every field of mathematics:
algebraic geometry, number theory, differential geometry, complex variables,
dynamical systems and in physics (ergodic theory, string theory, semiclassical
asymptotics, etc.). For this reason we will now present three other models of
hyperbolic space;5 for simplicity’s sake we only describe these models for the
hyperbolic plane, with curvature K = −1. Let us write Hypd = Hypd (−1) .
5 and even a fifth model in §§4.3.4
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References for hyperbolic geometry: Vinberg 1993 [1221] section I, Benedetti
& Petronio 1992 [129], Berger 1987 [164] chapter 19 if you like, Ratcliffe 1994
[1049] and for the hyperbolic plane only: Buser 1992 [292].

The simplest representation of the hyperbolic plane, from the Riemannian
geometry viewpoint, is as one sheet of a two-sheeted hyperboloid. We consider
in R3 the two-sheet hyperboloid

z2 = 1 + x2 + y2

as in figure 4.23, and let M be the sheet on which z > 0. Every tangent
plane TmM to M has a positive definite quadratic form, given by restricting
x2 +y2−z2 to it. So this construction induces on M an abstract Riemannian
metric. The construction is invariant under the group of linear transforma-
tions which preserve the quadratic form x2 + y2 − z2. It is easy to see that
this group acts transitively on M and also transitively on pairs of tangent
vectors to M making a given angle.

M

M  is  z2 = 1 + x2 + y2

TmM
(1,0,0)

m

z

y

x

x2 + y2 + z2  restricted
to this plane is positive

definite

plane sections
yield geodesics

Fig. 4.23. A hyperboloid of two sheets as a model of the hyperbolic plane

There is a preferred chart for M :

(u, v) �→ (cosu sinh v, sinu sinh v, cosh v) (4.16)

in which:
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ds2 = dx2 + dy2 − dz2

= dv2 + sinh2 v du2 (4.17)

But this is exactly equation 3.10 on page 133 so that this mysterious formula
is now explained.

The Klein model is a direct metric representation where the manifold M
is the open unit disk x2 + y2 < 0. The metric d (p, q) is defined in terms of
the two points r and s where the (Euclidean) straight line through p and q
meets the boundary circle of the disk:

d (p, q) =
1
2
|log[p, q, r, s]| (4.18)

where [p, q, r, s] denotes the cross ratio.
The third model is Poincaré’s and also defined in the open unit disk.

There is only one (Euclidean) circle containing two given points p and q of
the disk, and striking the boundary of the unit disk at right angles, as drawn
in figure 4.24. This circle strikes the boundary of the unit disk at two points,
say r and s. Set

d (p, q) =
∣∣∣∣log

(
pr

ps
· qs
qr

)∣∣∣∣ (4.19)

Sn-1

in Klein's model geodesics are straight lines

in Poincaré disk model geodesics
are circles orthogonal 
to the boundary

Poincaré half plane

Parallels to 
γ through ρ

r
p q

s

r
p q

s

r

p

q
s

Fig. 4.24. In Klein’s model, geodesics are straight lines; Poincaré half plane; In
the Poincaré disk model, geodesics are circles orthogonal to the boundary

The fourth and last model is Poincaré’s half-plane y > 0 in R2 with metric
defined in the style of Riemann:
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ds2 =
dx2 + dy2

y
(4.20)

Needless to say, these four geometries are all isometric. Most books give
fewer models (some give only one!). According the type of problem, there is
always a more adapted model for the geometry or the computations you have
to do.

There is one and only one shortest path between any two points p and q.
In the hyperboloid model, it is given by the intersection of the sheet with var-
ious Euclidean planes through the origin. In Klein’s model, geodesics are just
exactly straight lines. In Poincaré’s disk, the geodesics are the Euclidean cir-
cles orthogonal to the boundary. In the upper half plane model, the geodesics
are the circles orthogonal to the x-axis. So in the first two models, “straight
lines” coincide with ordinary straight lines. This is not the case in the last
two, but in exchange, the last two models have hyperbolic angles the same as
Euclidean angles. A correspondence preserving angles, extremely important
in various domains (not only in cartography), is called conformal.

The universal formula for triangles {p, q, r} with side lengths a, b, c and
angles α, β, γ is

cosha = cosh b cosh c− cosα sinh b sinh c (4.21)

The defect of angles in triangles is given by:

area{p, q, r} = π − α− β − γ (4.22)

The above formula is of course to be compared with the Harriot-Girard for-
mula 1.7 on page 38.

Note 4.3.2.1 The geometry of hyperbolic spaces takes time to master. We
just give a few hints. In contrast to Euclidean spaces, hyperbolic spaces of a
given dimension are not all isometric to each other; they depend on a param-
eter K, the curvature. This should be compared with the fact that Euclidean
spaces admit homothetic self-mappings (scalings). Hyperbolic spaces do not.
Put the other way around, Euclidean spaces can be characterized by Euclid’s
first four axioms and the presence of these self-similarities. �

Note 4.3.2.2 Hyperbolic spaces have a lot of symmetries. They have totally
geodesic subspaces of every dimension (analogous to lines, planes, etc. in Eu-
clidean geometry), which are themselves hyperbolic spaces. Those of one less
dimension we will call hyperplanes. For each hyperplane, there is a symme-
try of the space fixing exactly that plane, a hyperplane reflection. Therefore
an isoperimetric inequality is valid in hyperbolic spaces just as in Euclidean
spaces and on spheres; see 10.2 of Burago & Zalgaller 1988 [283]. One may
use a proof à la Steiner ; see §1.5. But a proof à la Gromov will also work:
see §§1.6.8 and §§§7.1.1.3. �
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Fig. 4.25. How to pass from the Klein model to the Poincaré model
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b
a

c
α

S'

C

x
z

y

the defect of a triangle 
in the Poincaré conformal model

Fig. 4.26. The defect of a triangle in the Poincaré conformal model

S'

C

triangles are thin (compute 
the maximum in finction of K)

Fig. 4.27. An ideal triangle; Triangles are thin (compute the maximum as a func-
tion of K)

the isoperimetric inequality 
is still valid in  Hypd

Fig. 4.28. The isoperimetric inequality is still valid in Hypd (K)

Formulas like 4.21 on page 198 or 3.10 on page 133 show that for a triangle
with a fixed vertex p and moving vertices q and r going to infinity, d (q, r) be-
comes larger and larger. But (in contrast to Euclidean geometry) the straight
line from q to r does not go to infinity—it stays at finite distance. Even the
three vertices can go to infinity; these are called ideal triangles. Every trian-
gle is universally thin, i.e. there is a fixed real number h such that, for every
triangle, any point on any side is at a distance less than h from one of the
other two sides. This is more and more important in contemporary geometry:
see the very end of §§12.3.2 and Abresch & Gromoll 1990 [5] for Riemannian
geometry and Gromov 1987 [622] for a completely different context.
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Hyperbolic trigonometry can be quite subtle, but is a prerequisite to study
Riemann surfaces. A very complete set of formulas and properties is presented
in Buser 1992 [292]. Particularly important are the formulas for right angled
hexagons. To test his force, the reader can try to prove the meeting property
of the figure 4.29, valid for any right angle hexagon.

Fig. 4.29. A right angled hexagon in the hyperbolic plane and its three colliding
codiagonals

The volume of any simplex in Hypd is no larger than a universal constant,
denoted by VRS (d); this is obvious in view of equation 4.22 and VRS (2) = π.
This value is attained for any ideal triangle. In higher dimensions, that there
is such a bound is not too hard to prove. What was discovered only in the late
1970s is that, when d > 2, this value is attained only for ideal and regular
simplices; see references and proof in Benedetti & Petronio 1992 [129] or
Ratcliffe 1994 [1049]. A simplex is said to be regular (think of Euclidean
spaces, say E3) if any permutation of its vertices can be obtained by an
isometry of the whole space. In the present case, the simplex may extend to
infinity, since the isometries extend to the ideal boundary S (∞) = Sd−1 and
moreover are determined by this extension. The isometry group of Hypd is
called the Möbius group, and its action on Sd−1 consists entirely of conformal
transformations. The basic difference between the dimension d = 2 and the
dimensions larger is that any diffeomorphism of the circle S1 is conformal,
and the Möbius group is a finite dimensional subgroup of the diffeomorphism
group of the circle. For d > 2, the Möbius group (i.e. the action of the
isometry group of hyperbolic space on the Sd−1 sphere) is exactly the group
of conformal transformations of the sphere Sd−1. This is the key to Gromov’s
proof of the Mostow rigidity theorem; see page 318, and see Ratcliffe 1994
[1049] for a detailed exposition. The ideal regular simplices appear also in
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theorem 273 on page 545. There is a subtle intertwining of asymptotics: in
Hypd when you go to infinity some things go to the infinite exponentially (like
the divergence of point based geodesics), but some others remain bounded
(like the volume of simplices). Volumes of tetrahedra in Hyp3 are still under
study. The problem is to write down explicit formulas; see Cho & Kim 1999
[375].

Note 4.3.2.3 (Space forms again) We come back now to the subject of
note 1.6.1.1 on page 38. Formula 4.21 is like formulas 1.1 on page 2 and 1.6
on page 36: it tells us that the distance between two points at given distances
from a point m and seen at a given angle is some universal function of those
two distances and the angle. We will see in §§6.3.2 a partial classification of
all spaces with this property. �

Note 4.3.2.4 The end of this section will be devoted to various examples
of Riemannian manifolds, some of which will be described in more detail
later on. One important feature of the recent contributions in Riemannian
geometry is the construction of various examples. These examples can be
very sophisticated and profound. They serve very often as counterexamples
to see which results can be expected and why some others can not. Otherwise
stated, they serve to show that some theorems are the best possible. We will
not present such sophisticated examples here, because there are too many of
them, and because they need techniques not explained thus far in our story,
and finally because we think they will be better appreciated in the various
contexts in which they are used. Therefore they will appear progressively as
the chapters go on. �

Any manifold carries some Riemannian metric. The two provisos of being
Hausdorff and countable at infinity are necessary, as metric spaces always
verify them. It is classical that they are sufficient, using partitions of unity;
see most references on Riemannian geometry. Note that such au hasard Rie-
mannian metrics are in some sense as common as functions. Finding special
metrics on a given manifold is a natural task and will be the topic of chapter
11.

4.3.3 Products, Coverings and Quotients

4.3.3.1 Products The product (M×N, g×h) of two Riemannian manifolds
(M, g) and (N, h) is exactly like the product of two Euclidean spaces. We
define the metric g × h by the Pythagorean theorem: for a tangent vector to
M ×N, say (v, w), we should have

‖(v, w)‖2 = ‖v‖2
M + ‖w‖2

N .

The v and w components are often referred to as horizontal and vertical. One
of the simplest examples is S2 × S2. As an abstract manifold, it carries with
it an open problem; see §12.1 and §§§12.3.1.1.
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S2

m

n

(m,n)

S2

(m,n)

w

v

(v,w)

T(m,n)N

T(m,n)M

Fig. 4.30. A product of spheres; Riemannian metric of a product

When it is a product a Riemannian manifold is said to be reducible. This
notion also exists locally. Theorem 56 on page 251 will pass from local to
global reducibility (another de Rham theorem). We will see in theorem 394
on page 668 a canonical product decomposition into irreducible pieces.

4.3.3.2 Coverings We return to the ideas we pursued in §§4.1.3 on cover-
ings and quotients and mix it up with Riemannian metrics. When you have
a Riemannian manifold (N, h) and a covering p : M → N then M inher-
its a Riemannian metric p∗h = g by asking p to be a local isometry (or
using the pull-back notion p∗ for differential forms—the forms need not be
exterior). This situation can be called a Riemannian covering. In particular,
any Riemannian manifold has a well-defined universal Riemannian covering
(necessarily simply connected; see page 168). The deck transformations are
isometries. A Riemannian covering will inherit the curvature properties of
the base. We will apply this idea many times, in particular in chapter 12.
Conversely, given a covering map p : M → N where (M, g) is a Riemannian
manifold and where all the deck transformations are isometries, there is a
quotient Riemannian metric h = g/p down on N such that p is everywhere
a local isometry. This comes from the following general nonsense: in a quo-
tient situation you can always take the quotient down of a structure upstairs
provided this latter is invariant by the action giving the quotient.

Let us have examples of Riemannian coverings. The first is p : Sd → RPd

where p is the antipodal map. The antipodal map preserves the canonical
Riemannian metric of Sd, so that we have now a canonical Riemannian metric
on RP

d. Check that distance in this metric is measured as follows: let D and
E be two straight lines in Rd+1 through the origin and v and w two unit
vectors on them. Then the distance in our metric is

d (D,E) = arccos | 〈v, w〉 |
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M

p

N

f(m)

f(m')
m

m' N

M

local isometries deck transformations
are isometries of (M.g)

Fig. 4.31. Local isometries; deck transformations are isometries of (M, g)

or, if you prefer, the angle between D and E which belongs to [0, π/2].
Consider the example in §§4.1.3 of tori T d, but extend it slightly by mak-

ing the quotient of Rd not by the translations

xi → xi + 1 i = 1, . . . , d

but a set of translations

v → v + ei i = 1, . . . , d

where {ei}i=1,...,d is any basis of Rd. Equivalently, one can speak of a lattice
Λ of Rd. Any translation is an isometry of the canonical Euclidean structure
of Rd. On the manifold T d we get a Riemannian metric g. It is always locally
Euclidean; that is why the resulting Riemannian manifold is called a flat
torus. N.B. in general two different bases (or lattices) can give nonisometric
Riemannian structures on T d. This is clear if you draw the fundamental
domain made up of the points closer to 0 than to any ei, as in figure 4.32 on
the facing page.

Recall that the fundamental domain is the closure of the set of points of
the space which are closer to the origin than to any other point of the lattice.
It is drawn by drawing all of the mediating hyperplanes of the pairs (0, λ)
where λ runs through the nonzero points of Λ.

The most symmetrical (T 2, g) we come up with via this construction is
not the standard one (the square) but the one corresponding to the regular
hexagon, which will be met again later on in §§§7.2.1.1. The regular hexagon
is obtained for
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the square lattice the regular hexagonal lattice

the classifying domain
for flat 2-dimensional tori

a general lattice

(1,0)

(1,0)

√31
2 2

 ⎧⎢⎩
⎧⎢⎩

,

√31
2 2

 ⎧⎢⎩
⎧⎢⎩

,

Fig. 4.32. The square lattice; the regular hexagon lattice; a general lattice; the
classifying domain for flat two dimensional tori

e1 = (1, 0) and e2 =

(
1
2
,

√
3

2

)
.

We said above that hyperbolic geometry is encountered in many fields
of mathematics and physics. In fact the most commonly studied objects are
not regions of Hyp2 but its compact quotients. There are many ways to find
covering maps p : Hyp2 → N (as a manifold, Hyp2 is the same as R2) whereN
is a smooth manifold. The arithmetic approach consists in finding a discrete
group of isometries of Hyp2 which operates nicely enough. It is difficult to
do but very important for applications. We refer for this to §§6.6.2 and the
references there, in particular to the fine recent survey constituting section
II of Vinberg 1993 [1221]. One can also look at the short survey Berger 1996
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[168]. Soon below we will get such compact quotients by geometry using
gluing. See also Ratcliffe 1994 [1049].

4.3.4 Homogeneous Spaces

We saw in §§§4.1.3.3 that Lie groups are manifolds (by definition). Assume
G is any Lie group and consider the left translation map

λh : G→ G

g �→ hg .

as in figure 4.33. It is a diffeomorphism, so its differential dλh is a linear
isomorphism between the two vector spaces TgG and ThgG. Use this remark as
follows: pick any Euclidean structure (any positive definite quadratic form) on
g = TeG (the tangent space to G at the identity element e) and transport it to
ThG by demanding that dλh be an isometry. Doing this for every h ∈ G, one
gets a Riemannian metric on G which is invariant under left multiplication,
called left invariant. In general it will not be right invariant, unless the adjoint
representation leaves the initial quadratic form on TeG invariant. When G is
compact such a bi-invariant Riemannian metric always exists and these are
important examples of Riemannian manifolds: see §§4.4.3.

dλh ThG
G

TeGe

h

g
hg

Fig. 4.33. Left translation

After real vector spaces, the simplest example of a Lie group is the Lie
group structure onG = S3, established by writing this sphere is the set of unit
quaternions. Then the adjoint representation admits an invariant quadratic
form at TeG and you will not be surprised that by translations (left or right,
one gets the same thing) one gets the standard “round” Riemannian metric
on S3. Now let q be any positive definite quadratic form on TeG and diag-
onalize it with respect to the standard one; call a ≥ b ≥ c the values of its
principal axis. For various ratios between these three numbers one has on S3

different left invariant metrics. In the case a > b > c its geometry is still not
understood; see note 6.5.4.1 on page 305.

One obtains quotient metrics from the preceding ones on RP3 = SO (3) ,
which is the quotient of S3 by the antipodal map. The metrics thus derived
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are the ones whose geodesics describe the motions of a rigid body around its
center of gravity, the coefficients a, b, c being directly related to the ellipsoid
of inertia of the body. These motions are called Poinsot motions ; see the
beautiful rolling interpretation in the note 6.5.4.1 on page 305 and on page
220 in §§4.3.8.

We saw in §§§4.1.3.4 that homogeneous spaces G/H are essential in geom-
etry, being typical examples of the proper setting for sets of geometric objects
of a given type. Assume one has a Riemannian metric g on G and that one
wants to push it down to the quotient G/H . By the general nonsense quoted
above, one needs g to be invariant under the action of H. More precisely, H is
called the isotropy group of G/H and its action is to be considered on TeG by
the differentials of the right translations associated to the h ∈ H. A Lie group
acting faithfully on a real vector space can leave invariant a positive definite
quadratic form if and only if it is compact. So we are sure that homogeneous
spaces G/H have invariant (homogeneous) Riemannian metrics as soon as
H is compact. As examples, all the Grassmann manifolds of §§§4.1.3.5, and
in particular the KPn. Contrarily, if H is not compact there is no G invari-
ant metric. The simplest example is the set of all plane straight lines. Try
by hand to define on it a metric (i.e. a distance between two straight lines)
invariant under Euclidean isometries, as in figure 4.34. Convince yourself it
is hopeless. The deep reason for this phenomenon is that the subgroup of
Euclidean isometries leaving a given straight line invariant is not compact.

try to define a good distance

 for straight lines

Fig. 4.34. Try to define a good distance for straight lines

The examples above are homogeneous spaces G/H with the extra prop-
erty that the action of H on TeG is irreducible. This implies that a quadratic
form on TeG invariant under adjoint action by H is unique up to a scalar
(just use diagonalization of quadratics forms). Consequently the G invariant
Riemannian metrics on these spaces are unique (up to a scalar) and we will
use the word canonical for them. It is also in that way that one can get a fifth
model for Hypd (see §§4.3.2) by defining it as a quotient space. Denote by
SO (d, 1) the group of linear transformations of Rd+1 which leave invariant
the quadratic form
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G e g gh

ρh

G/H

p(e) p(q) = p(gh)

λh

λgh

Tp(e)(G/H)

p(e)
p(g) = p(gh)

Tp(g)(G/H)

Fig. 4.35. For every h ∈ H the derivative dρh should preserve the ds2 on
Tρ(e)(G/H)

x2
1 + · · · + x2

d − x2
d+1

and have positive determinant. Then

Hypd = SO (d, 1) /SO (d)

where SO (d) is included in SO (d, 1) in the obvious way.
Even though there are plenty of them, homogeneous spaces do not consti-

tute a deluge. I would not dare to say “classified”, but there is a classification
of maximal subgroups of the so-called simple Lie groups, at least at the Lie
algebra level; see Dynkin 1952 [468, 469]. Also see Onishchik 1994 [977] and
Gorbatsevich, Onishchik & Vinberg 1999 [574]. Let g (resp. h) be the Lie
algebra of G (resp. H); then the isotropy property of H reads: there is a
direct sum decomposition g = h ⊕ m with the bracket condition [h,m] ⊂ m
and note that m can be seen as the tangent space to G/H at the origin
m0 = the neutral element coset eH . One is left (at least at the Lie algebra
level) to look at the isotropy representation and its decomposition into ir-
reducible pieces. To pass from Lie algebras to Lie groups is only a matter
of finding discrete quotients. But practically the job of studying these ho-
mogeneous metrics is immensely more difficult than naively expected. We
refer to §§15.8.1 for the formulas for their curvature and to §§§11.4.2.2 to see
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that even the Einstein homogeneous metrics are still far from being classified.
Chapter 7 of Besse 1987 [183] is a good reference.

4.3.5 Symmetric Spaces

Between hyperbolic spaces and spheres on one hand and general homogeneous
spaces on the other, there is an intermediate extremely important category,
that of symmetric spaces, introduced by Élie Cartan in the late 20’s. Their
complete theory, including the classification, all due to Élie Cartan, is quite
long in complete detail. The bible is Helgason 1978 [701]; see also Loos 1969
[878, 879]. Symmetric spaces are more or less completely treated in various
Riemannian geometry books: section IV.6 of Sakai 1996 [1085], section 2.2
of Klingenberg 1995 [816], section 7.G of Besse 1987 [183], Eschenburg 1997
[495]. Besse 1987 [183], which is oriented toward Riemannian geometry, has
complete and explicit tables giving various invariants. We now give a brief
sketch of the theory, following the extremely efficient presentation of Cheeger
& Ebin 1975 [341].

We define locally symmetric spaces as the Riemannian manifolds for which
the local geodesic symmetry around any point is a local isometry. This sym-
metry around m, denoted by Im, is defined as the map changing γ(t) into
γ(−t) for every geodesic γ through m = γ(0), depicted in figure 4.36. If the
manifold is complete, then one can define (thanks to the Hopf–Rinow the-
orem 52 on page 249) a global symmetry Im : M → M and the manifold
M is then called symmetric if all of the Im are isometries. One says that
(M, g) is a symmetric space. One can also say that Im is the conjugate, via
the exponential map, of the trivial symmetry x �→ −x of TmM.

σm(q)

σm(p)

m

p

q

Fig. 4.36. The geodesic symmetry of a symmetric space

As is true of most interesting mathematical objects, symmetric spaces
can be defined by equivalent definitions not at all apparently related; here
we have three equivalent properties. Let us settle everything in:

Theorem 36 (Élie Cartan) Let M be a Riemannian manifold.
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1. M is locally symmetric if and only DR = 0 where DR is the covariant
derivative of the curvature tensor (see §15.5), i.e. the curvature is in-
variant under parallel transport. Every locally symmetric space is locally
a part of a symmetric space.

2. If M is symmetric and simply connected then M is homogeneous: M =
G/H where G is a Lie group and H the isotropy group of some point
m0 ∈M .

3. For a homogeneous symmetric space G/H, denote by I the symmetry
around the origin eH. Then the map

σ : G→ G

g �→ I ◦ g ◦ I

is an involutive group automorphism: σ2 = IdG. The fixed point set H ′

of σ in G is closed, contained in H and H and H ′ have the same identity
component.

4. Conversely, let σ be an involutive automorphism of a Lie group G with
fixed point subgroup H. Then σ induces a diffeomorphism I0 of G/H. If
there exists a left invariant metric on G/H which is invariant under I0,
then G/H is symmetric.

The first part of property 1 is seen as follows: at every point m ∈M the
tensor DR(m) is of order 5 and the isometry Im transforms it into

(−1)5DR(m) = −DR(m) .

Since Im is an isometry, DR(m) = −DR(m) = 0. The converse comes from
the Cartan philosophy on page 272. The metric around a point m ∈ M is
locally given by the solution of a Jacobi field with initial condition as in
proposition 67 on page 272. But DR = 0 says exactly that the Jacobi field
equation is an ordinary differential equation with constant coefficients, the
constant value being the curvature tensor R(m). The symmetry Im around
m just reverses the initial conditions, so that the solutions at time t have
opposite values, hence the same norm. And this norm yields the metric:
again see proposition 67 on page 272.

Keep in mind a two dimensional sphere with two points (or two disks)
deleted. This is locally symmetric, as is its universal cover, a kind of snail
shell of constant curvature (or onion peel), as in figure 4.37 on the facing
page. But the snail shell is not isometric to a subset of the sphere. Indeed the
snail shell has infinite diameter. Yet the sphere is the only complete surface of
constant positive curvature. A similar phenomenon happens with a cone with
the sharp point deleted. Therefore, locally symmetric spaces (even simply
connected ones) are not always contained in symmetric spaces, or even in
complete Riemannian manifolds.

Assertion 2 will come from the obvious local homogeneity; because this
classification is essentially using only the Lie algebra properties of symmetric
spaces, properties which are obtained from a local condition.



4.3 Examples of Riemann’s Definition 211

Fig. 4.37. Onion peel

n

n"
m'

n'

m

m"

composing symmetries
carries you everywhere

Fig. 4.38. Composing symmetries carries you everywhere

Composing various symmetries demonstrates local, and even global, ho-
mogeneity: one can reach every point from a given one. The claim 3 is trivial,
the relation between H and H ′ coming from the fact that m is a isolated
point of Im. For 4 just define the symmetry around the coset m = gH to be
given by

Im = λgσλ
−1
g

where λ denotes left translation in G.

4.3.5.1 Classification Who are those spaces? Are they many of them; are
they fewer than arbitrary homogeneous spaces? The amazing fact discovered
by Élie Cartan is that symmetric spaces are very rare: we describe now this
classification. In theorem 36 above one does not see the Lie algebras appear-
ing. We now use the language of decompositions we introduced on page 208.
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The presence of an involutive automorphism σ of G (with fixed point set H)
says that the pair of Lie algebras g, h satisfies the very strong conditions

[h,m] ⊂ m and [m,m] ⊂ h

for the direct sum
g = h ⊕ m

of the total Lie algebra g associated to the eigenvalues +1 and −1 of our
involution. Note that m corresponds bijectively to the tangent space of G/H
at the base point eH . This strong Lie algebra condition enabled Cartan to get
a complete classification of such pairs g, h, and thereafter a classification of
the Riemannian symmetric spaces themselves. One assumes now simple con-
nectivity and the global symmetry property. First one shows that symmetric
spaces are uniquely decomposed as Riemannian products (see §§§4.3.3.1)

M = M1 × · · · ×Mk

of irreducible symmetric spaces Mi = Gi/Hi, where the groups Gi are simple,
plus the special case seen below of the groups themselves, plus an eventual
Euclidean factor. The second basic fact is that, in the irreducible case, sym-
metric spaces occur in pairs (G/H,G′/H), where the space G/H is compact
and of nonnegative curvature, and the other space G′/H of the pair is of non-
positive curvature; technically G′ is a noncompact real form of the complex
Lie group associated to G and H is one of its maximal compact subgroups
(these maximal compact subgroups being all conjugate, we can just write
down any of them). So that finally one has to look for the involutive auto-
morphisms of the various simple Lie groups. But Cartan realized that the
above duality reduces the problem to finding the real forms of simple Lie
groups, a job he already done in Cartan 1914 [312]. One has just to add the
compact simple Lie groups G and their negative correspondents GC/G where
GC is the complex form of G.

The final list of irreducible symmetric spaces is surprisingly small, show-
ing finally that the geodesic symmetric condition is an extremely strong one.
One finds first the various real simple Lie groups G which are symmetric
spaces for themselves, written as (G×G)/G where the involution of G×G is
the exchange of factors and the denominator G is the diagonal. In the non-
negative curvature category are the spheres, the Grassmann manifolds over
the various fields R,C,H and add CaP2. There are in addition only four other
infinite series of spaces as well as finite exceptions in low dimensions. Those
infinite series are all of interest, not only for themselves, but for various ge-
ometric situations e.g. symplectic geometry, Kähler geometry, since they are
essentially the set of complex structures, the set of symplectic structures, the
set of quadratic forms and the set of Hermitian forms on a vector space. We
will meet them again in the future: first in §6.6 and then in §§§12.3.1.1. There
are also nonpositive curvature symmetric spaces associated to the above list
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by the pairing described before, among them the various hyperbolic spaces
HypnK .

For tables giving the classification, with moreover geometric interpreta-
tion, one can consult books on symmetric spaces, especially the tables 7.H
and 10.K of Besse 1987 [183].

4.3.5.2 Rank A basic notion for symmetric spaces is that of rank. One
proves that, in a symmetric space G/H , there are flat totally geodesic sub-
manifolds (see §§6.1.4), and that those of maximal dimension are all conjugate
under the action of G, and that any tangent vector is contained in at least one
such submanifold. Their common dimension is called the rank of the symmet-
ric space. At the Lie algebra level, they are not mysterious; the corresponding
linear subspaces t ⊂ m are those on which the bracket vanishes identically:
[t, t] = 0 . In symmetric spaces of nonnegative curvature, these subspaces are
tori. In simply connected, nonpositively curved symmetric spaces, they are
Euclidean spaces. This completely solves the geodesic behavior of symmet-
ric spaces: on compact symmetric spaces we have every geodesic sitting as
a geodesic inside a flat torus. Thus every geodesic (continued indefinitely) is
periodic or is everywhere dense in a totally geodesic flat torus. The compact
symmetric spaces of rank equal to 1 are exactly the spheres and the KP

n.
This is how Élie Cartan discovered that all of their geodesics are periodic and
of same length. This notion of rank will reappear later on in various places.

In some sense, every question you can ask about symmetric spaces is
answered. For example, computing the curvature, analyzing the geodesic be-
haviour in the small and in the large. This is exceptional in Riemannian
geometry. A heuristic way to present symmetric spaces is to say that, in the
hierarchy of geometries developed in §6.6, starting with Euclidean geometry,
Riemannian symmetric spaces (and their associated generalized space forms)
come just after hyperbolic and elliptic geometries, ranked by the quality of
our understanding.

4.3.6 Riemannian Submersions

A Riemannian submersion is an often encountered generalization of the too
strict notion of product seen in §§4.3.3. It consists in a map

p : (M, g) → (N, h)

between two Riemannian manifolds which is infinitesimally a product along
every fibre, as in figure 4.39 on the next page. Let us make this more math-
ematical. Every point n ∈ N admits a neighborhood U such that p−1(U)
is a product manifold. Now at every point m ∈ p−1(n) we have the vertical
tangent space, which is the tangent space VmM at m to the fiber p−1(n). But
the Euclidean structure g(m) provides us with a horizontal tangent space,
namely the orthogonal complement HmM of VmM. The differential dp of p
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restricted to HmM is a vector space isomorphism between HmM and TnN
by construction. But both HmM and TnN are equipped with Euclidean inner
products. We say that p : (M, g) → (N, h) is a Riemannian submersion when
for every n ∈ N , and every m ∈ p−1(n), this vector space isomorphism is a
Euclidean isomorphism.

T
p-1(x)

M = VmM

HmMm

p-1(x)

p

n

TnN

dp : HmM → TnN
should be an isometry

a horizontal lift has the same length
and the projection is non incresing

for lengths

Fig. 4.39. Should be an isometry; A horizontal lift has the same length and the
projection does not increase lengths

Remark that when the fiber is discrete (say of dimension 0) then we have
nothing but a Riemannian covering as in §§§4.3.3.2. The case of a Riemannian
product is also a very peculiar case, highly atypical. A surface of revolution
provides a Riemannian submersion: the submersion goes from the surface to
any meridian (check it). One can define objects of revolution in any dimension
d; they have the spherical symmetry given by an action of the orthogonal
group O (d− 1), namely

M = I × Sd−1

where I is any interval of the real line. The base is still one dimensional. The
metric can be written

g = dt2 + φ2(t) ds2d−1

where ds2d−1 designates the standard metric of the sphere Sd−1.
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Note 4.3.6.1 (Warped products) We will not use it explicitly, but the
notion of warped product is important in various Riemannian situations, see
also §§15.8.2. Keep in mind that the definition varies according to authors. In
Petersen 1997 [1018] the term is reserved for the objects of revolution above,
and the notion extended moreover to double warped products

M = I × Sp × Sq .

In Sakai 1996 [1085] a warped product is defined on any Riemannian product
manifold (M × N, g × h) by a numerical function f : M → R forcing the
modification of the metric g × h into

‖(v, w)‖2 = ‖v‖2
M + f‖w‖2

N .

�

Other examples of Riemannian submersions are the fibrations of §§§4.1.3.5:

S2n+1 → CPn

and

S4n+3 → HPn .

Basic examples are the tangent bundle TM and the unit tangent bundle
UM of any Riemannian manifold. This metric on the unit tangent bundle
will be very significant in chapter 10. First, we need to define the canonical
Riemannian metric on TM and UM . One approach to the canonical Levi-
Civita connection (see §15.3), generates a canonical horizontal subspace in
the tangent space to TM at each point. Take the obvious inner product on the
vertical space (the space tangent to the fiber). On the horizontal space, take
the lift of the metric on M by the differential of the projection TM → M.
Define the metric on TM to be the Euclidean product, at every point, of these
inner products. This is now a Riemannian submersion by the very definition.
There is no substantial difference in constructing a Riemannian geometry for
UM .

Among the most interesting Riemannian submersions are those all of
whose fibers are totally geodesic (see §§6.1.4 for this notion). Then the fibers
are mutually isometric, and the horizontal trajectories yield those isometries
(see figure 4.40 on the following page). In this special situation, the formu-
las 15.17 on page 747 for computing the curvature simply greatly. For a new
viewpoint on Riemannian submersions, see Karcher 1999 [781].

4.3.7 Gluing and Surgery

Let us now consider gluing (see §§§4.1.3.6). There are two points here. First
one should endow the pieces to be glued with a Riemannian metric: this
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non isometric fibers isometric fibers)
(totally geodesics)

Fig. 4.40. Nonisometric fibers; Isometric fibers (totally geodesic)

requires a definition of Riemannian manifold with boundary, which we will
not supply, allowing the interested reader to supply a rigorous definition. The
second point is that the object constructed in the gluing operation should be
a smooth manifold.

4.3.7.1 Gluing of Hyperbolic Surfaces We consider only gluing of sur-
faces, for simplicity, and look at the pictures in figure 4.41 on the facing page.
Assume that the pieces shown are domains of the hyperbolic plane Hyp2.
Trouble in matching arises first along the sides and then at the vertices.
Along the sides: as a curve in a domain, each side has a geodesic curvature.
Sides glued together should have the same geodesic curvature, but with op-
posite signs. The simple thing to do is to require that the geodesic curvature
of each side be everywhere zero i.e. all sides are geodesics. And that turns
out out to be enough in Hyp2, because the isometry group of Hyp2 contains
a reflection with respect to any given straight line. At the vertices one needs
only that the sum of the angles of the matching pieces add up to 2π.

For example, it is an nice exercise in hyperbolic plane geometry to prove
that there are (many) hexagons all of whose sides are straight lines and
all of whose vertex angles are equal to π/2. With a pair of pants one can
glue together (abstract) compact surfaces of any genus greater than one,
to the effect that on any such orientable surface there exists at least one
metric everywhere locally isometric to Hyp2 (see figure 4.10 on page 175).
Equivalently: the universal covering of any one of them, endowed with the
metric pulled up by the covering, is isometric to Hyp2. Note that this is
weaker than the conformal representation theorem 70 on page 277. We will
see how many such structures exist on a given surface in §§6.6.2. These results
are extremely important, for example for physicists in the recently developed
string theory whose starting point is to replace particles with curves. Instead
of a path of a particle, this curve as time evolves will traverse a surface.
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the geodesic curvature
should be zero

θ2

θ1 θr
θrθ1

θ2 p

FS1 ∪ … ∪ S2

Fig. 4.41. The geodesic curvature should be zero

Any complex structure on a surface of genus greater than one is Hermitian
for a unique Riemannian metric locally isometric to the hyperbolic plane.
Geometrically this means that we are given an operator J on tangent vectors,
determining a rotation, so that J2 = −1 and we want the metric to measure
the angle of the rotation to be π/2, and moreover to be locally isometric to
Hyp2.

Other examples are made from tilings of Hyp2, typically with triangles
with angles equal to π/p, π/q, π/r where p, q, r are integers, or with regular
n-sided polygons with vertex angle equal to 2π/n. In both these cases the
tiling is obtained by reflexions along the sides.

We will come back to these space forms in §§6.3.2 and §6.6, but also in
§§10.2.4 and in the first part of chapter 12. Even more important than the
existence of a constant curvature metric on any surface is the fundamental
theorem of conformal representation theorem 70 on page 277 to the effect
that one can find, for any metric g on a compact surface, a new one of the
form fg (f a numerical function) which is of constant curvature.

4.3.7.2 Higher Dimensional Gluing In higher dimension, gluing is now
also possible along hypersurfaces. But the condition for such hypersurfaces
is extremely strong: since the flip (the symmetry) around the hypersurface
should be a local isometry, the hypersurface under consideration should be
totally geodesic to be sure to have no singularity in the metric. As to be seen
in §§6.1.4, totally geodesic submanifolds of dimension larger than one (those
of dimension one are just geodesics) do not exist in generic Riemannian man-
ifolds. Notable exceptions are space forms (manifolds of constant curvature,
see §6.6); applications of such gluings will be seen there and in §§12.2.4.
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π/q

π/p

π/r
2π/r

r

r

Fig. 4.42. In Hyp2 there are n-gons which are tiling, this for every n; When r → ∞,
the angle goes to zero, so that for some r it attains the value 2π/n

If one allows local modifications of the metrics around the hypersur-
faces, then gluing is possible in great generality. Let us consider first the
trivial surgery, namely the connected sum M#N of two Riemannian man-
ifolds (M, g) and (N, h) of the same dimension. Pick up points p and q in
M and N respectively and consider small balls B and B′ around them. The
connected sum consists in identifying the boundary spheres ∂B and ∂B′ by
some diffeomorphism. Pictorially, one thinks more of a cylinder. Then it is
clear that, using bump functions, one can put on M#N a Riemannian metric
which coincides with g on M\B and on N\B′. This kind of construction is
obviously possible for any surgery of a manifold along any submanifold.

p

B B'

q

M N

identifying

cylinder

∂B ∂B'

Fig. 4.43. Connected sum

The challenge, later on, will be to do the above smoothing in order to
preserve some given condition on the Riemannian structures, typically con-
ditions on their curvature. Examples will occur in §§§12.3.1.1 and §§§12.3.3.2.
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4.3.8 Classical Mechanics

The last source of Riemannian geometry we will consider is classical me-
chanics. We follow the route initiated in §§4.1.2. Start with the configuration
space. The first object is the kinetic energy of the physical system. It is a
quadratic positive definite form on velocity vectors, so this exactly a Rieman-
nian metric. For the double pendulum it is:

ds2 = r21 dφ
2
1 + 2r1r2 cos (φ1 − φ2) dφ1 dφ2 + r22 dφ

2
2 (4.23)

where φ1 and φ2 are the two angles defining the position and r1 and r2 are

φ1

φ2

the torus
(not with the metric induced by the embedding in E3)

Fig. 4.44. The torus (not with the metric induced by the embedding in E3)

the lengths of the links. How now if there is gravity or more generally some
potential energy field V on the pendulum? What we say now is in fact valid
for any configuration space. Fix an initial value E for the energy, and then
the motions of the system will be the geodesics of the metric

dσ2 = (E − V )ds2 (4.24)

where ds2 is the kinetic energy. You need to start with quite a large E if
you want E − V to remain positive during the motion. For the double pen-
dulum, you have to start with large speed if you want both pendulums to
turn around completely. If not, you will meet some “boundary” and return
to the domain you just left. Riemannian geometry represents the classical
mechanics of excited systems, while for near equilibrium systems, the kinetic
energy is overwhelmed by potential energy, so that a different approach is
required. This explains why economists rarely learn Riemannian geometry:
economics is a total enigma away from equilibrium.

The above is completely general. For example, it applies to the motions of
a rigid body, described above by the manifold SO (3). If there is a potential,
one has only to modify the Riemannian metric by 4.24. Practically, the result
is a left invariant metric of the following nature: SO (3) has at the origin a
canonical Euclidean structure given by the adjoint representation. By left
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transport this will yield the standard “round” Riemannian metric on the
special orthogonal group SO (3) (i.e. the group of Euclidean 3-space rotations
around a fixed point). This is the case for motions of a body whose ellipsoid of
inertia is a sphere. In the general case, the metric to use is a general quadratic
form, say with eigenvalues {a < b < c} with respect to the canonical one,
and then left transport it. This is called le mouvement à la Poinsot and
we cannot resist giving Poinsot’s geometric description of these moves, from
Poinsot 1842 [1035]. The move of the rigid body is the same as if, fixed at
its center, the ellipsoid of inertia is rolling without friction on a plane, the
distance of the plane to the center depending on the initial conditions; see
figure 6.62 on page 307. For a proof, see Appell & Lacour 1922 [57] tome II,
page 219.

Conversely one can say that on a given Riemannian manifold a mass
particle which is submitted to no force moves along geodesics. See chapter 10
for the global long term behavior of geodesics. For applications of Riemannian
geometry to the two cases above, see the note 6.5.4.1 on page 305 as well as
the book Arnol′d 1996 [66].

4.4 The Riemann Curvature Tensor

4.4.1 Discovery and Definition

Let (M, g) be a Riemannian manifold. The first thing to do is to look for seg-
ments i.e. for shortest connecting curves between two given points. We already
studied segments for surfaces M2 ⊂ E3, and we succeeded in a disguised way,
essentially using the embedding to define the geodesic curvature and then
proving by the calculus of variations that the shortest had to be geodesics,
i.e. curves with vanishing geodesic curvature. To be a geodesic turned out
to be a curve satisfying a differential equation of the second order (cf. 1.10
on page 41) in some chart. There is a similar story for abstract Riemannian
manifolds, but it needs some quite hidden machinery, so we postpone it to the
technical chapter 15 and only apply the main result: the shortest paths have
to be chosen among geodesics, these being the curves which are solutions in
any chart of a second order differential equation which can be written in a
vector notation:

c′′ = F (c, c′) (4.25)

where F is quadratic in c′

We recall that the major difficulty here is that this has to be written in
a chart (at least now) because in a manifold curves have well defined speed
c′ but no well defined acceleration c′′. If this is puzzling you, let me add that
what we said is that the equation 4.25 transforms when changing charts in a
funny way. But that equation is invariantly attached to the ds2 (which also
transforms in a funny way) so that geodesics are well defined curves, not
depending on the choice of a chart but really attached to (M, g).
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This is a real difficulty. Evidence of this—a posteriori—is that it needed
half a century to become clear. In 1869, Christoffel made a major contribution
to clarify this matter, before the final touch by the Italian geometers at the
beginning of the 20th century.

From equation 4.25 we retain that, for every pointm ∈M and any tangent
vector v ∈ TmM, there is one and only one geodesic c with c(0) = m and
c′(0) = v. Beware that this geodesic may be defined only for a small interval
of time t containing 0. Geodesics enjoy the property that their speed ‖c′(t)‖
is constant. Most often in the sequel we will parameterize them by unit speed
without mentioning it. Due to the compactness of the unit sphere in TmM,
there is a positive number t such that all the geodesics emanating from a
given point m ∈M are defined at least in [−t, t].

t t

t
t

t

t

Fig. 4.45. Geodesics defined for time at least t

We now follow the route of the proof of the formula 3.3 on page 122. The
above property of geodesics implies that near any point m of a Riemannian
manifold, there are normal coordinates centered at m i.e. charts with domain
in Rd centered at (0, . . . , 0) and such that the image under the chart of
every straight line through (0, . . . , 0) is a geodesic of (M, g) through m. The
second major contribution of Riemann in his 1854 address was to show that
in normal coordinates centered at some point m ∈M, ds2 has an expansion
which necessarily takes the form:

ds2 = dx2
1 + · · · + dx2

d (4.26)

+
1
12

∑
i,j,k,h

Rijkh(m) (xi dxj − xj dxi) (xk dxh − xh dxk)

+ o
(
x2

1 + · · · + x2
d

)
Of course the hard work consists in showing that the second order terms are
not made up by general quadratic terms but that they can be written in a
expression involving only the various
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(xi dxj − xj dxi) (xk dxh − xh dxk)

products.6 The 1/12 factor is written not only to match when d = 2 with
formula 3.3 but is in fact forced when we identify the curvature tensor with
other definitions of the curvature tensor below in proposition 413 on page 726.
Important note: we match formula 3.3 but only up to sign. In the literature
some authors use also R with the opposite sign: this is conceptually not
important, but be careful not to trip over signs.

Formula 4.26 can be interpreted by saying that a Riemannian metric is
Euclidean at the zeroth order, which is obvious, but more: intrinsically it
is also Euclidean to the first order, which is more surprising. One can also
consider that a Riemannian metric does not have tensor invariants of the first
order but only invariants starting at the second order, the second order one
being precisely the curvature tensor. (The Levi-Civita connection, described
in chapter 15, is a first order invariant but not a tensor.)

There are many other conclusions we can derive from equation 4.26. The
first is in dimension 2: the Gauß curvature is defined for abstract surfaces
with Riemannian metrics, even without embedding in E3. We will now refer
to the Gauß curvature as simply the curvature of (M, g): it is a function
K : M → R. For example in any two dimensional Riemannian manifold the
Bertrand–Puiseaux formula 17 is still valid and gives a very geometric way
to feel about K.

The second is that there is an extension of the curvature (function) for
Riemannian manifolds of any dimension but that notion is quite compli-
cated. In fact it is so complicated that some of its aspects are still not un-
derstood today. The object which comes into the picture is a 4-tensor R,
called the Riemann curvature tensor. This means that it is a smooth collec-
tion of quadrilinear forms R(m) on the tangent spaces TmM when m runs
through M . This quadrilinear form can be defined intrinsically through co-
ordinate changes but also by extending by linearity the object whose values
on the basis {ei = ∂/∂xi}i=1,...,d are the R (ei, ej, ek, eh) = Rijkh. Then
one will write R(x, y, z, t) applying the curvature tensor to tangent vectors
x, y, z, t ∈ TmM. By formula 4.26, the Riemann curvature tensor is invariant
under isometries.

Third: the curvature appears as the “acceleration” of the metric, for ex-
ample at the center of normal coordinates:

∂i∂jgkh =
1
6

(Rikhj +Rihjk) . (4.27)

One might hope to control the metric completely, as in dynamics where
you know the motion if you know the force applied to a particle. In fact
things are more subtle: there are things which can be completely recovered,
6 See Spivak 1979 [1155], volume 2, for a guess as to how Riemann achieved this—

he did not give any detailed computation in his text.
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but some which cannot, see more on this in §4.5. Even so-called constant
curvature metrics hold some mysteries: see §6.6.

A important remark is in order: many people think that the curvature
and its derivatives are the only Riemannian invariants. This is true and clas-
sical when looking for algebraic invariants which stem from the connection,
see page 165 of Schouten 1954 [1111] and the references there. But things are
dramatically different if one asks only for tensors which are invariant under
isometries (called natural). Then there is no hope to get any kind of classi-
fication, as explained in Epstein 1975 [490]. For more see Muñoz & Valdés
1996 [951].

Formula 4.26 shows that R is exactly the infinitesimal defect of our ds2

to be locally Euclidean. How about globally? We saw in equation 3.10 on
page 133 that for surfaces, K ≡ 0 implies flatness (i.e. local isometry with
E2). We will soon show that this extends easily to any dimension: R ≡ 0
implies flatness: see theorem 69 on page 275.

Note that the Riemann tensor will be recovered from other points of
view: see the golden triangle in §15.3 for the parallel transport point of view,
where the curvature tensor expresses exactly the infinitesimal defect along
small loops of the parallel transport to be the identity, and see chapter 15,
where the curvature tensor expresses the defect of higher order derivatives of
functions to be symmetric.

Another conclusion is that Riemannian geometry cannot be very simple,
especially in dimension 3 or more. This because quadrilinear forms are com-
plicated objects, not much encountered in mathematical literature. But at
least R is not a completely general quadrilinear form. From 4.26 it follows
that R has the following symmetry properties: R is antisymmetric both in
the two first entries and the two last, R is symmetric when one exchanges the
first two with the last two entries and finally it satisfies the Bianchi identity,
which says that the sum of the three first entries under circular permutations
vanishes:

R(x, y, z, t) = R(z, t, x, y) = −R(x, y, t, z)
R(x, y, z, t) = −R(y, x, z, t) (4.28)
R(x, y, z, t) +R(y, z, x, t) +R(z, x, y, t) = 0 First Bianchi identity

the above relations being valid for any tangent vectors x, y, z, t at any point.
The first “two by two” symmetry identity is deduced from the second and
third ones by elementary combinatorics. But a geometer will appreciate the
trick called Milnor’s octahedron in Milnor 1963 [921], drawn in figure 4.46 on
the next page.

The relations 4.28 are the only ones satisfied by R. To prove this, just
take any set of real numbers Rijkh satisfying these relations, and define (lo-
cally) a Riemannian metric by 4.26 stopping at the second order, i.e. take
o
(
x2

1 + · · · + x2
d

)
to be identically zero.
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Fig. 4.46. Milnor’s octahedron

Another question for an algebraic mind: in the real vector space of all
quadrilinear forms on Rd, what is the dimension of the subspace made up by
the ones satisfying the relations 4.28? Call them curvature type.

Proposition 37 The dimension of the vector space made up by the curvature
type quadrilinear forms is d2(d2 − 1)/12.

Do not despair if the curvature tensor does not appeal to you. It is fright-
ening for everybody. We hope that after a while you will enjoy it a little.

A paradox: it might appear to you from formula 4.27 (as opposed to equa-
tion 37) that since the metric depends on d(d+1)/2 parameters and its second
derivatives (which are symmetric) on also d(d+1)/2, the curvature should de-
pend on (d(d+1)/2)2 parameters, a number much larger than d2(d2 −1)/12.
However, choosing normal coordinates involves using the geodesics, and this
forces extra relations between the ∂i∂jgkh. See more in §4.5.

4.4.2 The Sectional Curvature

To make a bilinear form more palatable, we plug in two equal vectors to
obtain a quadratic form. Similarly, with the curvature tensor R(x, y, z, t), we
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can plug in equal vectors. By the antisymmetry this can be done only at some
places, or else we get zero. Moreover the symmetry relations show that, up to
sign, there is only one possibility, namely to put z = x: R(x, y, x, t). But we
want a number, so again we set y = t and consider R(x, y, x, y). Since we have
on TmM the Euclidean form g(m) we can moreover normalize R(x, y, x, y)
as:

K(x, y) = − R(x, y, x, y)
‖x‖2‖y‖2 − 〈x, y〉2

(4.29)

where the denominator can be replaced by ‖x∧y‖2 if you like exterior algebra.

K

G2M

m

IR

Fig. 4.47. The sectional curvature as a real valued function on Grass (2, TM)

Here we changed sign in order to ensure that K agrees when d = 2 with
Gauß curvature. Formula 4.29 makes sense only when x and y are linearly
independent i.e. define a tangent plane to M. Note also that we can avoid
the normalization by asking the pair {x, y} to be orthonormal. And finally
the symmetry relations 4.28 imply immediately that in fact K(x, y) depends
only on the plane P spanned by x and y. It is called the sectional curvature
of P.

To sum up, we came up with a real valued map K defined on the Grass-
mann manifold Grass (2, TM). Recall that this is the manifold consisting of
all the two dimensional tangent planes to M :

K : Grass (2, TM) → R. (4.30)

When d = 2, K coincides with Gauß curvature, hence the coincidence
of names. We have again a Bertrand–Puiseaux formula as follows. Let P ∈
Grass (2, TmM) be a 2-plane at a point m ∈ M , and draw all the geodesics
starting from the point m with unit speed, and with velocity belonging to P,
as in figure 4.48 on the following page. For a small ε, draw the circle C(P, ε)
made up by drawing these geodesics for time ε. Then (cf. theorem 17 on
page 124 and equation 4.26 on page 221):
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K(P ) = lim
ε→0

3
π

2πε− lengthC(P, ε)
ε3

. (4.31)

In coordinates (notations as above):

K (ei, ej) = −Rijij (4.32)

for a coordinate plane.

P ⊂ TmM

C(P;ε)
ε

ε ε

Fig. 4.48. Geodesic disks

Warning: you might have hoped that the quadrilinear form R could be
diagonalized with respect to the Riemann positive quadratic form g as is the
case for quadratic forms. Namely there would exist a nice basis {ei}i=1,...,d

such that only the components Rijij of R are nonzero. This is hopeless for a
generic Riemannian metric except in dimensions 2 and 3. For 2 it is obvious,
for 3 work it out yourself. In dimension d = 4 one can kill quite a few of the
components of the type R1213 but there is no way to avoid the ones of R1234

type: see Singer & Thorpe 1969 [1145] and an application of this “killing
technique” in the note 12.3.1.1 on page 607.

Now let us recall that a bilinear symmetric form P can be recovered from
the quadratic form Q it generates by:

P (x, y) =
1
2

(Q(x+ y) −Q(x) −Q(y)) (4.33)

You will enjoy performing the same kind of computations with K(x, y)
and using the formulas 4.27. The explicit result is complicated, but one is
soon convinced that:

Proposition 38 From K one can recover R, so that the knowledge of K is
equivalent to that of R.
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The relations in equation 4.28 on page 223 are necessary and sufficient, as
we saw. In some sense one can say that R is well understood. Contrarily, as a
function on the Grassmannian—say at one point m— the sectional curvature

K(m) : Grass (2, TmM) → R

is not well understood starting in dimension 4. For example, one does not un-
derstand the set made up by the planes which are critical for K, in particular
where is the maximum and where the minimum. This is a drawback. For ex-
ample, see §§11.3.1 for the functional called the minimal volume. Recall that
a critical point of a smooth map is by definition a point where its differential
vanishes. Critical points are a natural generalization for smooth functions
of maxima and minima, we will meet them again for periodic geodesics in
chapter 10. Returning to the curvature, to our knowledge only one case is un-
derstood: when d = 4 and moreover the Riemannian metric is Einstein. This
condition (see Besse 1987 [183] and §§11.4.1 for the definition) implies imme-
diately in dimension four that K(P ) = K(P⊥) for every P ∈ Grass (2, TM) ,
where P⊥ denotes the orthogonal complement of P in the tangent space.
Then the structure of the curvature is completely understood; see Singer &
Thorpe 1969 [1145] for details. Historically, it seems that Churchill 1932 [380]
was the first to consider the question, unsuccessfully.

There are other notions of curvature, e.g. Ricci curvature which will show
up naturally in §6.2. For a hierarchy of these other notions of curvature, see
§§12.1.2.

4.4.3 Curvature of Some Standard Examples

We will only give a list of basic examples, to provide the reader with a first
feeling about curvature. Many more examples will appear all over the book.

Note 4.4.3.1 Before inspecting any examples, it helps to know how R and
K behave under scaling: if one replace the Riemannian metric g by λg:

Kλg = λ−1Kg (4.34)
Rλg = λ−1Rg (4.35)

Beware that the above λ scaling replaces the metric d (·, ·)g by

d (p, q)λg =
√
λ d (p, q)g

For the sectional curvature, 4.34 and 4.35 agree with 4.31. �

4.4.3.1 Constant Sectional Curvature After Euclidean space, for which
K ≡ 0 and R ≡ 0, the next simplest cases are the spheres Sd and hyperbolic
spaces Hypd. We claim that K ≡ 1 on spheres, and K ≡ −1 on hyperbolic
spaces. The reason is that the group of isometries of any of those spaces acts
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transitively on Grass (2, TM) and by its very definition K is invariant under
isometries. Changing the radius of the spheres and considering the spaces
Hypd (K) (cf. §§4.3.2)

Theorem 39 For every real number k there exists a complete simply con-
nected Riemannian manifold with K ≡ k. It is denoted by Sd (k) .

The space referred to in theorem 39 is unique, of course up to isometries
or, if you prefer, uniqueness of Riemannian structures. This will be easily
proven in §§6.3.2.

Written in an orthonormal coordinate system, this is equivalent to: all the
Rijkh are zero except (up to obvious permutations) the Rijij = −k for every
i �= j. Conformally flat manifolds are those which are flat after rescaling the
metric by a scalar function; for example, constant sectional curvature mani-
folds are conformally flat. Conformal flatness is equivalent to the vanishing of
the Weyl conformal curvature tensor (in dimension 4 or more). This is an in-
teresting subject, because there are many other examples of conformally flat
manifolds besides those of constant curvature, and because of its applications
to theoretical physics. The present state of the entire subject is treated in
the book Matsumoto 1992 [903]; also see the more specialized Burstall, Ferus,
Leschke, Pedit & Pinkall 2002 [289].

Theorem 40 (Symmetries of Sd (k)) There is a unique totally geodesic
hypersurface of Sd (k) tangent to every hyperplane in every tangent space, as
drawn in figure 4.49 on the next page. (This hypersurface is naturally called
a hyperplane. See §§6.1.4 for the definition of totally geodesic.) The geodesic
reflection around that hypersurface is defined on the whole manifold and is
an isometry.

There are many characterizations of constant curvature (local and global);
we will see one in §§6.3.2. In the spirit of the above, only constant curvature
manifolds can have a totally geodesic hyperplane passing through each point
and normal to each direction; this comes directly from §§6.1.4. This is the
spirit of the chapters V and VI of Cartan 1988 [321], which can be interesting
to read with a modern eye.

4.4.3.2 Projective Spaces KPn The next examples are also important:
the KP

n of §§4.1.3. We saw in §§4.3.4 that they have a canonical Riemannian
metric up to scaling. In the literature one finds only two choices, up to a scal-
ing factor of 2. Which one an author prefers can be seen precisely by looking
at the value the author gives for K. We describe the sectional curvature K
of CPn, leaving the reader to work out the sectional curvature of HPn and
CaP2. Fix some m ∈ CP

n. The isometry group is transitive on unit tangent
vectors: let us pick anyone v among them and look at K(v, w) for w such that
{v, w} is orthonormal. This time the isometries which fix m and v do not act
transitively on the choices of w. The tangent space TmM has the structure
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S3 ⊂ E3

a totally geodesic hypersurface

Fig. 4.49. A totally geodesic hypersurface

of a complex vector space, so we have a privileged choice of w = iv (where
i =

√
−1).

K(v, iv) = 1 (4.36)

K(v, w) =
1
4

if w is orthogonal to iv.

In fact one has a complete determination:

K(v, w) =
1 + 3 cos2 α

4
(4.37)

where α is the angle between w and iv.
In the other scaling, K ranges from 1 to 4. According to the scaling, the

diameter is π or π/2. For a detailed proof, see for example section II.6 of Sakai
1996 [1085] or 3.30 in Besse 1978 [182]. The geometric explanation is simple:
our spaces contain two kinds of extreme totally geodesic submanifolds: first
the CP

1 (projective lines) which are spheres of diameter equal to π/2, hence
of constant curvature equal to 4 and second the RP

n (real projective spaces)
which are also of diameter equal to π/2 but hence of constant curvature equal
to 1. See page 260 for more details.

4.4.3.3 Products Even if trivial, the case of products (§§§4.3.3.1) is very
important. The result is that R(x, y, z, t) vanishes unless the four vectors are
either all horizontal or all vertical. Then the sectional curvature is given by
the formula:

KM×N (x, y) = KM (xM , yM ) +KN (xN , yN) (4.38)



230 4 Riemann’s Blueprints

im

w

iv

v

m

p

iv w

v

v CPn IH Pn

S1

S2n+1 S4n+3

?

Fig. 4.50. Curvature of CPn

In particular this curvature vanishes for all of the mixed planes span {x, y}
where x is horizontal and y vertical. Here we have the obvious notations for
the indices: M for example denotes the “M -part” in the product decomposi-
tion

T(m,n) (M ×N) = TmM × TnN.

Coverings and discrete quotients, since they are locally isometric, have iden-
tical curvature at corresponding points.

4.4.3.4 Homogeneous Spaces For Riemannian homogeneous spaces G/H
(see §§4.3.4) the curvature is always computable in theory by Lie group and
algebra techniques. It is enough to calculate curvature at any point of G/H,
since G acts transitively on G/H by construction. In most cases such a com-
putation is difficult. We refer to to §§15.8.1 and to chapter 7 of Besse 1987
[183] for a general reference. We will only mention a few special cases.

The first is a compact Lie group with a bi-invariant metric: then K >
0 and moreover the value zero can only be obtained for pairs of vectors
tangent to an Abelian subgroup of G. Subsequent chapters will show that it
is extremely hard to find Riemannian manifolds with K > 0, see §§12.3.1. For
this reason compact Lie groups are important, as we will see. Consider some
homogeneous space G/H with G compact and H a compact subgroup, and
pick some bi-invariant metric g on G. The metric goes down to a metric g0
on G/H. Such Riemannian homogeneous spaces are called normal (see also
§§15.8.1). The sectional curvature of g0 on G/H is also positive. The two
above results were obtained by Samelson in 1958 via geometric reasoning. In
this sense they are exceptional.7 It is hard to resist sketching the proof of
7 This work of Samelson was the first appearance of the concept of Riemannian

submersion (see §§4.3.6).
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positivity of sectional curvature of G/H because it is beautifully geometric.
First, the algebraic proof looks at formula 15.16 on page 745 which we give
again here:

K(x, y) =
1
4
‖[x, y]h‖2 + ‖[x, y]m‖2 (4.39)

Here the two tangent vectors x, y are considered in the tangent space to
G at the identity element. This means that they are elements of the Lie
algebra of G. They have a bracket [x, y] and the Euclidean structure on this
Lie algebra, coming from our chosen Riemannian metric, yields an orthogonal
decomposition of the Lie algebra associated to the subspace h made up by the
Lie algebra ofH, and its orthogonal complement m. For irreducible symmetric
spaces (see §§4.3.5) the Lie algebra formulas given there leave only one term,
namely

1
4
‖[x, y]‖2

.

This is for the compact groups. For irreducible noncompact symmetric spaces,
one has

−1
4
‖[v, w]|2 .

In particular the curvature vanishes on the flat totally geodesic subspaces
met in §§4.3.5. For nonnormal homogeneous spaces, 15.16 has to be replaced
by the very complicated formula 15.15 on page 745. This explains why not
everything is known concerning the curvature of homogeneous spaces; see for
example §§§11.4.2.2.

Consider a Riemannian submersion

p : (M, g) → (N, h) .

Nice geometric reasoning using the uniqueness of geodesics shows that a
geodesic in (M, g) with initially horizontal velocity will always have horizontal
velocity and moreover will project down to a geodesic in (N, h). By the above
definition they will have the same length.

Let P be some horizontal tangent plane at m ∈M and P ∗ its projection
in N. Samelson’s claim is:

K (P ∗) ≥ K (P ) . (4.40)

The idea is to use formula 4.31 both for P and P ∗. By the above, the
small circle C (P, ε) will project down to the small circle C (P ∗, ε) . But in a
Riemannian submersion, the differential of the projection can only diminish
norms so that

lengthC(P ∗, ε) ≤ lengthC (P, ε) (4.41)

and we are done.

Note 4.4.3.2 Today, we do not know which manifolds have Riemannian
metrics with positive curvature or with nonnegative curvature. See §12.3 for
that topic. �
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4.4.3.5 Hypersurfaces in Euclidean Space The curvature of submani-
folds of Euclidean spaces can be easily computed. This can be achieved by
nice formulas for the various presentations of submanifolds: chart-type pa-
rameterizations or solutions of equations, and of course the case which is the
intersection of these two: the graph presentation. See Dombrowski 1968 [454]
for a unique (to our knowledge) complete formulary covering all possible ways
of describing a submanifold: immersion, graph, equations. The general the-
ory for submanifolds of En, or more generally of submanifolds of Riemannian
manifolds, i.e. the notions of the first and second fundamental forms and
their relations (the so-called Gauß and Codazzi–Mainardi equations), is not
treated in very many books. We know chapter VII of Kobayashi & Nomizu
1996 [827, 828], chapter XX (see section 20.14.8) of Dieudonné 1969 [446]
and chapter 7 of Spivak 1979 [1155]. We will here content ourselves with the
case of hypersurfaces in Euclidean space.

A very geometric way to see the sectional curvature of hypersurfaces in Ed

is as follows. We just extend Gauß curvature by a simple trick. Given a plane
P in the tangent space to our hypersurface, consider the three dimensional
affine space generated by that plane and the normal to the hypersurface at
the point of tangency. Locally, the section of the hypersurface by that three
dimensional space is a surface. Its Gauß curvature at our point is nothing
but the sectional curvature K(P ) (this was pointed out to us by Hermann
Karcher).

Let Md ⊂ Ed+1 be a hypersurface. Like a surface in E3, it has a second
fundamental form which is a quadratic form denoted by II and defined (up
to ±1) on its tangent spaces. Then it is not too hard to generalize Gauß’s
theorema egregium in the formula:

K(v, w) = II(v, v)II(w,w) − II(v, w)2 (4.42)
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In particular, if we diagonalize II with respect to the first fundamental
form (which is ds2 = g) and call its eigenvalues ki the principal curvatures
with i = 1, . . . , d we reveal:

K (ei, ej) = Rijij = kikj . (4.43)

If one compares this with the warning note 1.6.6.1 on page 70 one sees that
Riemannian metrics on hypersurfaces of Euclidean spaces are very special.
Moreover surfaces M2 ⊂ E3 are also very special in the following sense. We
saw on page 70 that to know how M2 sits in E3, one needs to know more
than the inner geometry. One must have at hand the first and the second
fundamental forms. This is no longer true in dimension 3 or larger. Check as
an exercise that formula 4.42 gives II as a function of K “in general”. The
hint is to look at equation 4.43. If you know the pairwise products of three
numbers p, q, r

a = qr

b = rp

c = pq

then

p =

√
bc

a

etc.
This requires that no principal curvature vanishes, which explains the

term “in general”.

Theorem 41 (Rigidity of hypersurfaces) In Euclidean spaces Ed with
d > 3, generic hypersurfaces are determined by their inner geometry up to
congruence.

4.5 A Naive Question: Does the Curvature Determine
the Metric?

We asked this question on page 222. We now treat it in detail. This question is
rarely addressed. It might be because most people think the answer is always
positive. In fact the answer is negative in general. This explains why there
are difficulties in convergence problems for Riemannian metrics, problems to
be met in §§12.4.2. Just one example: the normal coordinates, obtained by
geodesics through a given point, are not the best ones for studying conver-
gence. The best adapted coordinates will be the harmonic coordinates to be
seen on page 291.

The negative answer is surprising, since a metric comprises d(d + 1)/2
functions of d variables, while its curvature tensor comprises d2(d2 − 1)/12
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functions of d variables, and moreover in view of formula 4.27 on page 222
it seems that we know all the second derivatives and can hope to rebuild
the metric from them. Let us be more precise about the question of the
curvature determining the metric. It turns out that this question splits into
two completely different set of questions. This splitting is significant even for
constant curvature manifolds. We have two natural questions:

1. Is every smooth map preserving the curvature tensor an isometry?
2. Is every smooth map preserving the sectional curvature an isometry?

We treat question 2 first. The answer is certainly negative for manifolds of
constant curvature, since any map will preserve their curvature. The paradox
here is that the metric in itself is known. This will naturally lead to another
type of determination question below. Constant curvature manifolds are al-
most the sole exception as discovered in Kulkarni 1970 [839]. It is proven there
that, when the sectional curvature is not constant and the dimension larger
than 3, diffeomorphisms preserving the sectional curvature are isometries.
This is not in contradiction with the above examples, because the definition
of the sectional curvature involves not only the curvature tensor but also
the metric. For dimension d = 3 there are examples of Yau and Kulkarni
from 1974 of nonisometric diffeomorphisms preserving sectional curvature.
For d = 2 this is trivial: any diffeomorphism preserving the level curves of
the function K : M → R does the trick, and of course need not be an isome-
try. For more on lower dimensions see Ruh 1985 [1075].

Enthusiasts of mathematical history will note that Riemann made a small
mistake in his Habilitationschrift of 1854, in characterizing flat manifolds; see
a detailed historical account in Di Scala 2001 [443].

4.5.1 Surfaces

It is tempting to imagine that because of the theorema egregium, the Gauß
curvature determines the metric. Of course, the converse is true. It is clear
that the curvature (one function) is not enough to determine a metric (three
functions). This question was considered in Darboux 1993 [433, 434] (or the
other edition Darboux 1972 [429, 430, 431, 432]), and essentially finished in
Cartan 1988 [321], pp. 322–323.

Proposition 42 (Cartan) For the generic Riemannian metric on a sur-
face, the differentials of K and ‖dK‖2 are linearly independent:

dK ∧ d ‖dK‖2 �= 0

on a dense open set.

Theorem 43 (Cartan) Given two surfaces with Riemannian metrics, so
that the functions K and ‖dK‖2 have everywhere independent differentials,
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a map between these surfaces is an isometry precisely when it preserves the
four functions

I1 = K

I2 = ‖dK‖2

I3 = 〈dK, dI2〉
I4 = ‖dI2‖2 .

See more in Cartan 1988 [321]; for example a characterization of surfaces of
revolution by only ‖dK‖2 and the Laplacian of the curvature ΔK, under the
assumption that there is a relation

F
(
K, ‖dK‖2

)
= 0 .

4.5.2 Any Dimension

To attack the subtle question 1 we need a formula. In general coordinates:

Rijkh =
1
2

(∂i∂kgjh + ∂j∂hgik − ∂i∂hgjk − ∂j∂kgih) +Q(g, ∂g, ∂g) (4.44)

with the obvious notations for the second derivatives of g and whereQ denotes
a term which is quadratic in the first derivatives of g. We compare it with
formula 4.27 on page 222. At the origin of normal coordinates:

∂i∂jgkh =
1
6

(Rikhj +Rihjk) . (4.45)

It is now clear from 4.44 that one cannot recover from the Rijkh, which
form a total of d2(d2 − 1)/12 numbers, all of the second derivatives ∂i∂jgkh,
which form a total of (d(d + 1)/2)2 numbers. The apparent contradiction
with 4.45 is explained by the fact that choosing normal coordinates involves
extra information: one has integrated the geodesic equation. This forces extra
relations between the curvature and the metric. This will agree completely
with the philosophy of Élie Cartan to be seen on page 272.

This does not answer question 1: is there enough room between (d(d +
1)/2)2 and d2(d2 − 1)/12 to find a nonisometric map between two metrics
which still preserves the whole curvature tensor? The subject was initiated
quite recently: we know now many examples of nonisometric Riemannian
manifolds admitting diffeomorphisms preserving their respective curvature
tensors. Various authors managed to smartly squeeze into the room left over
in the interval [(

d(d+ 1)
2

)2

,
d2(d2 − 1)

12

]
.

Complete mastery of this business has not been achieved today; see the books
Tricerri & Vanhecke 1983 [1200], Berndt, Tricerri, & Vanhecke 1995 [180], and
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Boeckx, Kowalski, & Vanhecke 1996 [214] which can be used as surveys. See
also Prüfer, Tricerri, & Vanhecke 1996 [1042] and the bibliographies of the
references given.

A fundamental fact, to be seen in §6.4 is that bounds on sectional cur-
vature, upper and lower, yield perfect geometric control in both directions.
This does not contradict the above. We will come back to this philosophy in
§§6.4.3, where one will see that the best adapted coordinates for some situ-
ations are not the normal ones but the so-called harmonic coordinates. This
is a case where the analyst trumped the geometer.

A completely different meaning can be attributed to the question of the
curvature determining the metric. Look for metrics whose curvature tensor
satisfies at every point some purely algebraic condition. The first case is
that of constant sectional curvature, where we know the answer is unique
and perfect: theorem 69 on page 275. The next example: suppose that the
curvature tensor is the same as that of a complex projective space. One
would expect then in some cases isometry (local) and in general at least
local homogeneity, as well as a description of the moduli. Since the founding
Ambrose & Singer 1958 [30] and Singer 1960 [1144] the field today uses various
definitions and enjoys many results. The books Tricerri & Vanhecke 1983
[1200], Boeckx, Kowalski & Vanhecke 1996 [214] can be used as surveys.
See also Prüfer, Tricerri & Vanhecke 1996 [1042]. We only give the result in
Tricerri & Vanhecke 1986 [1201], which is exemplary of simplicity both in
statement and in significance:

Theorem 44 If the curvature tensor of a Riemannian manifold is at every
point the same as one of an irreducible symmetric space, then the manifold
is locally symmetric and locally isometric to this model.

The result is local. It uses a formula in Lichnerowicz 1952 [864] which ex-
presses the Laplacian of the full square norm of the curvature tensor as

−1
2
Δ
(
‖R‖2

)
= ‖DR‖2 + Univ(R,R,R) +Q(DRicci),

where Univ(R,R,R) is a universal cubic form in the curvature tensor and
Q(DRicci) is a quadratic form in the covariant derivative of the Ricci cur-
vature. We have not yet defined the Ricci curvature, the covariant derivative
D or the Laplacian Δ, but the impatient reader can turn to chapter 15. The
hypothesis immediately implies that D2 Ricci = 0 and that ‖R‖2 is constant
as is Univ(R,R,R), because it is obvious in the symmetric case which is
characterized by DR = 0. It seems to us that this basic formula is still not
used as much as one would have expected. However, it was used for studying
manifolds with positive curvature operator, for example in Gallot & Meyer
1975 [543], Tachibana 1974 [1176], and Hamilton 1986 [679], and it was much
used in Anderson 1989 [37].
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A recent text on this subject is Ivanov & Petrova 1998 [760]. For the
behavior of curvature mixed with parallel transport, see Ambrose’s problem
on page 730.

4.6 What are Abstract Riemannian Manifolds?

We saw in theorem 30 on page 179 that there are no more abstract smooth
manifolds than submanifolds of En. But submanifolds of En inherit a Rie-
mannian metric from their embedding. For surfaces in E3 that was our initial
motivation. So it is natural to ask the converse: let (M, g) be any Riemannian
manifold. We know that, as a manifold, M can inherit its structure from an
embedding φ : M → En. But there is of course no reason for the induced
Riemannian metric to be identical with g. If it is, we will say that φ is an
isometric embedding. Does every (M, g) admit an isometric embedding into
some En?

Before answering this natural question, we should say that it is not a
crucial one: we have made evident that it is most natural to “see” Riemannian
manifolds abstractly.

4.6.1 Isometrically Embedding Surfaces in E3

Let us look first at the case of surfaces. Can we hope that every (M2, g) is
isometrically embeddable in E3? We remarked in theorem 5 on page 65 that
any compact surface immersed in Euclidean space E3 has at least one point of
positive Gauß curvature. So any compact abstract

(
M2, g

)
with nonpositive

Gauß curvature will never embed isometrically in E3. But there is a beauti-
ful (and extremely hard to prove) theorem of Alexandrov, Weyl, Nirenberg
and Pogorelov which says that an abstract surface (S2, g) with positive Gauß
curvature is always isometrically embeddable in E3 (see figure 4.52 on the
following page). Moreover the embedding is unique up to rigid motion, be-
cause of the rigidity result quoted in §§3.4.1. A recent survey of this problem,
called Weyl’s problem, is in I.2.1 of Burago & Zalgaller 1992 [284]. A recent
reference is Guan & Li 1994 [662].

4.6.2 Local Isometric Embedding of Surfaces in E3

One may feel that there should be room to isometrically embed small pieces
of a surface into E3, for instance some neighborhood of any point. There
has been substantial progress on this question, but it is still not completely
understood. Indeed, one can produce such local isometric embeddings near
points of positive or negative Gauß curvature. In 1971, Pogorelov found a
twice continuously differentiable metric (standard notation: C2) on a topo-
logical disk in E2 with Lipschitz curvature, such that no neighborhood of the
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isometric embedding
with some metric with K > 0

Fig. 4.52. Isometric embedding with some metric with K > 0

center of the disk can be isometrically embedded in E3. On the other hand,
recently Lin has found partial positive results: if K ≥ 0 and the metric has
ten continuous derivatives, or if dK(m) �= 0. The difficulty of isometrically
embedding surfaces into E3 (even locally) could have been guessed from the
paradox mentioned in note 3.1.1.2 on page 123: there is a forced loss of dif-
ferentiability showing that the differential system to solve is quite intricate.
See part III of Burago & Zalgaller 1992 [284] and also Gromov 1986 [620].

4.6.3 Isometric Embedding in Higher Dimensions

The first major event in embedding Riemannian manifolds was the Janet
theorem.

Theorem 45 (Cartan–Janet, 1926) Every real analytic Riemannian man-
ifold of dimension n can be locally real analytically isometrically embedded
into En(n+1)/2.

All was quiet until:

Theorem 46 (Nash, 1956) Every smooth Riemannian manifold of dimen-
sion n can be smoothly isometrically embedded in EN where

N =
(n+ 2)(n+ 3)

2
.

The price to pay is in the dimension N . Various authors have since improved
N ; see again Gromov 1986 [620] for a recent reference. We now know that
abstract Riemannian manifolds are no more general than submanifolds of the
various EN .

In very low differentiability, Nash in 1954 and Kuiper in 1955 obtained
surprising results:

Theorem 47 (Nash–Kuiper) Any continuous embedding of a Riemannian
manifold can be deformed into a C1 isometric embedding. In particular, any
n dimensional Riemannian manifold embeds C1 isometrically into E2n+1.
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For example, this implies that the rigidity theorem in §§3.4.1 really needs a
C2 surface. See Bleecker’s result in §§§3.4.1.2.
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6.1 First Metric Properties

6.1.1 Local Properties and the First Variation Formula

We want to study the metric of a Riemannian manifold. The first tasks to
address are:
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1. to compute the metric d as defined by equation 4.13 on page 192 (namely
d (p, q) is the infimum of the lengths of curves connecting p to q)

2. to determine if there are curves realizing this distance (called segments
or shortest paths or minimal geodesics according to your taste) and

3. to study them.

It will become clear that these three questions are not independent nor is
it wise to treat them in this order. Moreover except for extremely few Rie-
mannian manifolds, explicit answers are not known. We will have to content
ourselves with results of a general nature: bounds, inequalities, etc. We will
try to have estimates or, if you prefer, some kind of control in terms of the
curvature. We select curvature as our source of leverage because unlike dis-
tances and segments, curvature is relatively easy to compute, or at least to
estimate. The deep reason for the near impossibility of computing distances is
that they are given by an infimum definition. The curvature is given by com-
puting derivatives of the metric tensor gij . Influence of curvature on global
metric geometry will be the object of §6.4 and §6.5.

Most of the content of the present section belongs to the foundations
of Riemannian geometry and is systematically treated in every one of the
references we gave. When it is not, we will give more precise references.

We are going to follow the route of §§3.1.4 but in the general case and
with more details. It is convenient to introduce some technical notions and
notations. We set:

0m is the zero vector of TmM
UmM = {v ∈ TmM | ‖v‖ = 1} is the unit tangent sphere to M at m

B (0m, r) = {w ∈ TmM | ‖w‖ < r} is a metric ball in TmM (6.1)
B (m, r) = {p ∈M | d (m, p) < r} is a metric ball in M

From §§4.4.1 we know that segments can only be found among geodesics.
We will always parameterize geodesics with unit speed unless otherwise
stated. We know from §§4.4.1 that there is a unique geodesic γv with any
initial velocity v = c′(0) ∈ UmM. But in general this geodesic is only defined
for small values of the parameter. Nonetheless this enables us to define a
map:

expm : Wm ⊂ TmM → M (6.2)
w �→ γw/‖w‖ (‖w‖)

called the exponential map at m.
Geometrically, one draws expm(w) by drawing the geodesic starting from

m in the direction of w (and with unit speed) and traveling along it up to a
length equal to ‖w‖. The subset Wm is defined as the largest for which this
process is well defined. From a simple compactness argument we know that
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Fig. 6.1. The exponential map

for every m ∈M there exists some r′ > 0 with B (0m, r′) ⊂Wm. One is very
eager to get some knowledge of the best such r′ but this will need more work:
see §6.5.

Through the exponential map, orthonormal coordinates in the Euclidean
space TmM yield nice coordinates in M locally around m. These coordinates
are the ones called normal in §§4.4.1. Not only do they have an elegant geo-
metric definition, they are also very useful in resolving local geometric prob-
lems. But very recently it was discovered that there are better coordinates
for purposes of analysis on a Riemannian manifold. They are the ones called
harmonic, and will be discussed on page 291, on page 651 and on page 655.

The exponential map is a fundamental concept in Riemannian geometry.
Geometrically it depicts how the geodesics issuing from m wrap or stretch
around m. For the sphere they wrap, while in hyperbolic geometry they
stretch, because they diverge exponentially. If we know the exact rate of
variation of the geodesics issuing from m then we know the Riemannian
metric—at least locally around m. Equivalently: the knowledge of g is equiv-
alent to that of the measurement of the derivative of the exponential map.
This derivative will be studied in §6.3. It is also essential to know when this
derivative remains injective; if it is not then we have some kind of singularity.
The control of that singularity will be considered in §6.5.

The differential of expm at the origin 0m is the identity map, so we know,
by the inverse mapping theorem, that by suitably restricting ourselves to
B (0m, r) for some r < r′ on this last ball expm will be a diffeomorphism
onto its image. As in §§3.1.4 we claim again that:

Proposition 48 For any such r

expmB (0m, r) = B (m, r)

In the proof, two major consequences are obtained:

Corollary 49 The distance d (p, q) defined in equation 4.13 on (M, g) is
really a metric on M.

Corollary 50 For any point q ∈ B (m, r) there is one and only one segment
between m and q, namely the geodesic whose velocity is exp−1

m (q).
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Fig. 6.2. The exponential map is in general defined only in a star-shaped part of
TmM : for a given ξ one stops when γξ can not be prolonged

The spirit of the proof is that of §§3.1.4 and can be found in any of the
books we quoted on Riemannian geometry. With one proviso: recall from
page 193 and from the example in note 4.1.1.1 on page 163 one certainly
requires the hypothesis that manifolds are Hausdorff if one wants to know
that d (p, q) > 0 unless p = q. Hausdorffness is used in the custom passage
theorem (see figure 3.11 on page 132), because the image of the compact
ball which is the closure of B (0m, r) must be compact downstairs in M.
Surprisingly enough, to the best of our knowledge, no book on Riemannian
geometry explicitly mentions this subtlety, with one exception: see (iii) of
§2.91 of Gallot, Hulin, & Lafontaine 1990 [542].

B(m;r)

expm

TmM B(0m;r)

0m

Fig. 6.3. Balls about 0m go to balls about m under exp



6.1 First Metric Properties 247

S(m;r)

B(m;r)

m

!!!

Fig. 6.4. The custom passage theorem: one cannot leave the ball B (m,r) without
crossing the boundary ∂B (m,r)

Two other main consequences: first the topology of the manifold M is
identical with the metric topology. Second: for radii small enough, metric
balls are diffeomorphic to Rd.

As in §§3.1.4 to prove this we need the first variation formula:

dδ

dt
= d′(t)

∂γ

∂s

∣∣∣∣
s=b(t)

− c′(t)
∂γ

∂s

∣∣∣∣
s=a(t)

(6.3)

Following with no real change the route of §§3.1.4, one proves proposition 48.

c'(t)

c(t)

γa

γ
c(t)

c d

d(t)

d'(t)
d(t)

d(c(t),d(t))

γ'(c(t))
γ'(d(t))

∂B(m;r)
 

S(m;r)
=

γ
σ

m

γ(ρ)

f(ρ,σ,ξ)

Fig. 6.5. First variation

A complete proof consists just in using the language of §15.2, in particular
the fact that geodesics γ verify Dγ′γ′ = 0. The end points of the geodesics
emanating from a fixed point and drawn for a fixed length describe curves
orthogonal to those geodesics (this is often called Gauß’s lemma in books).
There is a small change in equation 3.8 on page 131 describing g in polar
coordinates:
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g = dρ2 + f2(ρ, σ, ξ)dσ2 (6.4)

where dσ2 denotes the Riemannian metric of the unit sphere UmM ⊂ TmM
and ξ denotes a vector tangent to UmM at σ.

Recall that TmM has by definition a Euclidean structure. The function
f is always positive because our restriction of expm is a diffeomorphism.
Another way to interpret f(ρ, σ, ξ) is to say that it measures the derivative
of the exponential map.

We note in passing some consequences of the first variation. The first is
the strict triangle inequality. If γ (resp. δ) is a segment from p to q (resp.
from q to r) then

d (p, r) < d (p, q) + d (q, r) unless γ′(q) = δ′(q) . (6.5)

Consequently if γ and δ are two distinct segments from p to q :

Proposition 51 After passing q, the geodesics γ and δ are no longer seg-
ments.

ξ
σ

ρσ

γ γ

UmM

0m
Tσ(UmM)

p

q

r

p

q r

segments

γ is no longer a segment
from p to r

Fig. 6.6. γ is no longer a segment from p to r

Various examples of geodesics and segments will be given in §§6.1.6.

6.1.2 Hopf–Rinow and de Rham Theorems

Independently from asking them to be segments, it is important to know
when geodesics are defined—or why they are not—for every t. When does
one have Wm = TmM? Surprisingly, the answer to this will also solve the
basic question: when can one be sure that every pair of points is joined by at
least one segment?

A clear answer appeared first in Hopf & Rinow 1931 [733]. Many people
were aware of various results, but general topology was not very clear either in
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those times. The Hopf–Rinow paper proved the result below only in dimension
two, and in great detail, but nevertheless for abstract Riemannian surfaces.
Their proof was valid without any change in any dimension as remarked
in Myers 1935 [954]. This applies to many other results in geometry before
more recent times: mathematicians were principally interested in 2 and 3
dimensions, even while they were working in very abstract contexts. However
in the case of Hopf, it was surprising, since he was often interested in general
dimensions; see for example §12.1.

Recall the notion of complete metric space: a metric space is said to be
complete when every Cauchy sequence converges to a point. Compact spaces
are automatically complete (but the converse is of course not true).

Bear in mind the example of the plane with one point deleted. Two bad
things happen: some geodesics cannot be extended to infinity, and some pairs
of points cannot be connected by a geodesic. More generally, delete closed
subsets of any “nice” manifold. This might make you feel that the two issues
are connected. Moreover you can also guess that the hole we cut is an ob-
stacle for extension to infinity of some geodesic emanating from each point.
Conversely, after drawing a few pictures you can imagine that if geodesics
emanating from a point are all extendable up to infinity, then this is valid
for every other point. You might also consider these holes as some kind of
“boundary” for the Riemannian manifold under consideration.

ρ

r

m

the foot of  r  to  B(m;ρ)

Fig. 6.7. The foot of r to B (m, ρ)

The relation to completeness is also foreseeable. A Cauchy sequence will
occur entirely at a finite distance from a fixed point m, and then almost
the entire sequence will be within a compact ball about m. Pick a Cauchy
sequence along a geodesic. The completeness implies that you can keep going
a little further along it.

Theorem 52 (Hopf–Rinow) These four conditions on a connected Rie-
mannian manifold M are equivalent:

1. For some m ∈M, the map expm is defined on all of TmM.
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the hole is for everybody a Cauchy sequence on γ

γ

m
γ(sn)

Fig. 6.8. (a) The hole is visible everywhere. (b) A Cauchy sequence on γ

2. For every m ∈M, expm is defined on all of TmM.
3. M is complete for its Riemannian metric.
4. Closed and bounded sets of M are compact.

Moreover, any one of these conditions implies that every pair of points is
joined by at least one segment.

The rigorous proof is a little lengthy, and is based on the foot trick seen in
figure 6.7 on the page before; see any reference on Riemannian geometry, and
also see Gromov 1999 [633].

From now on, every Riemannian manifold we discuss will be
assumed complete.

For any metric space M let us define the diameter of M to be

Definition 53

diamM = sup {d (p, q) | p, q ∈M} .

Proposition 54 A complete Riemannian manifold M is compact if and only

diamM <∞.

Beware that expm might be defined on all of TmM even though large balls
about m may not be diffeomorphic to Euclidean balls, and expm may not be
a diffeomorphism between TmM and M .

A useful corollary of the Hopf–Rinow theorem:

Corollary 55 Assume that M is a complete Riemannian manifold, and that
at a point m ∈M the exponential map expm has full rank everywhere. Then
it is a covering map. In particular, if M is simply connected, then expm is a
diffeomorphism.
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The disaster of the exponential map only reaching a portion of the mani-
fold cannot happen here because of the extendability of geodesics. The proof
goes with the following trick: endow TmM with the inverse metric exp∗

m g (this
makes sense because expm is of maximal rank). This Riemannian manifold
(TmM, exp∗

m g) is complete because radial geodesics through 0m exist, ex-
tended to any length, since they are just straight lines covering the geodesics
downstairs. Both (TmM, exp∗

m g) and (M, g) being complete and the map be-
ing by construction a local isometry, the covering axioms are easily checked.
We will use this corollary heavily later on in theorems 69 and 72. For a de-
tailed proof see for example 2.106 in Gallot, Hulin & Lafontaine 1990 [542],
or lemma 1.32, page 35, in Cheeger & Ebin 1975 [341].

6.1.2.1 Products Remember the notion of Riemannian product

(M, g) × (N, h) = (M ×N, g × h)

in §§§4.3.3.1. Suppose now that some (M, g) is locally reducible. One imagines
that a principle of analytic continuation will easily yield the:

Theorem 56 (de Rham) A complete Riemannian manifold which is lo-
cally reducible and simply connected is a Riemannian product.

In fact the de Rham theorem is quite subtle and lengthy to prove. To get a
covering is quite easy; the difficulty lies in proving the injectivity. It is better
phrased and understood in the language of holonomy; see theorem 394 on
page 668. Most books omit the proof of the de Rham theorem, but not Sakai
1996 [1085]. The simple connectedness is of course necessary; look at a flat
torus defined by a nonrectangular lattice; see figure 6.9.

≠ π/2

the quotient torus 
is not a Riemannian product

Fig. 6.9. The quotient torus is not a Riemannian product

6.1.3 Convexity and Small Balls

Metric balls of small radius are diffeomorphic to Euclidean space, which is
very interesting because it is a strong implication from the metric to the
topology. But if you look at two such balls it is not true in general that their
intersection is diffeomorphic (or even homeomorphic) to Euclidean space, as
in figure 6.10 on the following page.
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m n

B(n;s)

B(m;s)

B(m;r)  and  B(n;s)  are
diffeomorphic to IRd 
but  B(m;r) ∩ B(m;s) is not

Fig. 6.10. B (m, r) and B (n, s) are diffeomorphic to Rd, but B (m, r) ∩B (n, s) is
not

Balls intersect nicely in Ed (i.e. in balls, up to diffeomorphism) but on
general Riemannian manifolds, balls can intersect poorly. You can guess from
the picture that, unlike those in Ed, balls in general Riemannian manifolds
are not always convex.

Let us say that a set in a Riemannian manifold is (totally) convex if for
any pair of points in this set, every segment connecting these two points
belongs to this set. The standard sphere is a typical example: metric balls
with radius greater than π/2 are not convex. But you might guess:

Proposition 57 Every point of a Riemannian manifold lives at the center
of a convex ball such that any two points in that ball are joined by a unique
segment contained in the ball.

m

n

p

m

n p

S2

Fig. 6.11. Convexity and the lack of it

The proof is not too difficult; see for example Cheeger & Ebin 1975 [341]
5.14, Gallot, Hulin & Lafontaine 1990 [542] (the remark after 2.90), section 4
of chapter 3 of do Carmo 1992 [452]. In particular, any Riemannian manifold
admits a covering by convex balls. This is particularly useful when studying
the algebraic topology of a Riemannian manifold, for example under curva-
ture conditions. But of course one will need to have a priori estimates from
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below for the radii of these convex balls: see §§6.5.3 below and the refer-
ences there, and chapter 12 for applications. Let us just recall note 3.4.5.3
on page 157: the existence of a convex covering yields an easy proof of the
existence of triangulations for any compact surface.

Convexity in Riemannian manifolds has been playing an increasingly im-
portant role since the 1960’s. In the definition of convexity, one can ask for
a weaker property: demand only that any two points of the set under con-
sideration are joined by a segment belonging to that set. An example is a
hemisphere of a standard sphere.

We will see in §§§12.3.1.3 and in §§12.3.4 that an essential observation
concerning manifolds of nonnegative or of nonpositive sectional curvature is
the convexity of suitable geometrically defined functions: standard distance
functions or their extension, Busemann functions with a suitable sign.

Note 6.1.3.1 An extraordinarily simple question is still open (to the best
of our knowledge). What is the convex envelope of three points in a 3 or
higher dimensional Riemannian manifold? We look for the smallest possible
set which contains these three points and which is convex. For example, it is
unknown if this set is closed. The standing conjecture is that it is not closed,
except in very special cases, the question starting typically in CP2. The only
text we know of addressing this question is Bowditch 1994 [248]. �

some kind of a lens

Fig. 6.12. Some kind of lens

Let us develop a feeling for this problem. First in dimension two, and for
three points close enough, the convex envelope is a triangle whose sides are
segments. Now in higher dimensions: consider some point m and geodesics
emanating from m and with velocity contained in some two dimensional
subspace of TmM . These build up at least locally a smooth surface N ⊂M.
But if you pick two points q, r ∈ N (even as close as you like to m) the
segment from q to r will not be contained in N . The segment will sit inside
N when M has constant curvature (prove it), but not for generic metrics.
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not totally geodesic totally geodesic
N

M

N

M

Fig. 6.13. (a) Not totally geodesic (b) Totally geodesic

6.1.4 Totally Geodesic Submanifolds

This leads to the notion of totally geodesic submanifold : a submanifold N
of a Riemannian manifold M is said to be totally geodesic if every geodesic
starting from a point in N and tangent to N at that point remains always
contained in N. Note that this is equivalent to the fact that, locally, the
metric space structure induced in the sense of metric spaces coincides with
the metric structure coming canonically from the induced Riemannian metric
on N. Another equivalent condition is the fact that parallel transport in M ,
applied to curves lying in N , preserves the splitting TN ⊕ TN⊥ = TM . A
generic Riemannian manifold does not admit any such submanifold, except
for curves (geodesics). Totally geodesic submanifolds appear only in spe-
cial contexts; here are some. Space forms are the manifolds in which totally
geodesic submanifolds are the most plentiful: see theorem 40 on page 228. To
grasp the proof: the set of fixed points of a involutive isometry of (M, g) is
always totally geodesic. The reader can prove this using the local uniqueness
of segments.

Another circumstance where totally geodesic submanifolds appear is in
Riemannian products: any two dimensional submanifold which is the product
of an horizontal geodesic with a vertical geodesic is a totally geodesic surface.
Therefore there are many of them. For example, the product of two periodic
geodesics will be a flat two dimensional torus in the product. But in products,
one also has completely different totally geodesic submanifolds: all of the
horizontal and the vertical submanifolds: M × {n} and {m} ×N in M ×N.
Curiously similar is the case of a symmetric space of rank larger than 1: see
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N

M

p q
an involutive

isometry

Fig. 6.14. An involutive isometry

§§4.3.5. But the difference between the two cases is not completely mastered
today; see for example the simplicial volume on page 544.

The first variation formula implies that the elements of a one parameter
family of totally geodesic submanifolds are all locally isometric. The isome-
tries are obtained from the orthogonal trajectories. This remark implies the
geometric characterization of space forms seen in note 4.3.2.2 on page 198.
Totally geodesic submanifolds can be used in many instances to construct cer-
tain manifolds; see for example the Bazaikin manifolds of positive curvature
on page 605 and the counterexamples of Gromov and Thurston in §§12.2.4.

The naive geometer will ask what in Riemannian geometry generalizes
affine (Euclidean) or projective subspaces. The basic remark is that a general
Riemannian manifold admits no submanifold which is stable under geodesy,
i.e. so that geodesics in it are geodesics in the ambient space. Such sub-
manifolds are exactly the totally geodesic ones. Manifolds with many totally
geodesic submanifolds are extremely few and among them are the symmetric
spaces of rank greater than one; see §§§4.3.5.2. We now know that having
lots of “flats” (totally geodesic submanifolds) is very strong property.

Theorem 58 (Cartan) A Riemannian manifold with a totally geodesic sub-
manifold of dimension k passing through any point with any specified k di-
mensional plane as tangent space must be a space form.

In fact the proof is easy, by simply taking a few derivatives, requiring only a
little algebra to organize the repeated differentiation.

6.1.5 The center of mass

It appears as if there is no canonical method to fill up a triangle, or more
general simplex, in a generic Riemannian manifold. But this is not true—the
problem is solved by the notion of center of mass, modeled on Euclidean ge-
ometry. This center of mass exists only locally, except in special examples,
for instance simply connected complete manifolds of negative curvature; see
page 280 where it seems that its introduction by Élie Cartan was its first ap-
pearance in Riemannian geometry. The next appearance seems to have been



256 6 Metric Geometry and Curvature

in the unpublished proof by Eugenio Calabi of the differentiable pinching
theorem; see page 583. Chapter 8 of Buser & Karcher 1981 [296] is a founda-
tional text in this area. In Euclidean space one defines the center of mass of
a finite set of points {xi}i=1,...,n as the sum

x =
1
n

(x1 + · · · + xn) .

This is equivalent to asking the vector sum

−−→xx1 + · · · + −−→xxn

to vanish. But more important is the property (discovered by Appolonius of
Perga) that x is in fact the (unique) point minimizing the function

y �→
n∑
i=1

d (x, xi)
2 .

This can be generalized by assigning to each xi a weight λi > 0 with
∑

i λi =
1. The resulting points for all possible weights fill out the convex closure of
the set {xi} . Using measure and integration to replace the sums, this can be
extended to any mass distribution on a compact subset of Ed.

This extends without any problem to general Riemannian manifolds pro-
vided one stays within convex balls. Inside such a convex ball, we choose a
compact subset A ⊂M, and a mass distribution da on A of total mass 1.

Definition 59 A function f : M → R on a Riemannian manifold is
(strictly) convex if its restriction to any geodesic is (strictly) convex as a
function of one variable.

Proposition 60 (Cartan) The function

f : m ∈M �→ 1
2

∫
A

d (m, a)2 da

is strictly convex, achieves a unique minimum at a point called the center
of mass of A for the distribution da. Moreover this point is characterized by
being the unique zero of the gradient vector field1

∇f(x) =
∫
A

exp−1
x (a) da

1 The gradient vector field ∇f is defined to be the vector field dual to the differ-
ential df (which is a 1-form) in the sense that

g (∇f, v) = df(v)

for any tangent vector v.
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p

q

q

p

rv

u
w

A

u,v,w  have to be
linearly dependant center of mass

Fig. 6.15. (a) Center of mass of two points. (b) u, v, w have to be linearly inde-
pendent. (c) center of mass

When A consists in two points, as in figure 6.15 (a), each mass distribution
has center belonging to the segment whose extremities are these two points,
and every point on that segment is the center of mass of some distribution.
When we have three points, typically in dimension larger than 2, centers of
mass fill in a unique way the three side segments by a “triangle”. Points x
inside the triangle are characterized by the fact that the tangent vectors at
x to the three segments joining x to the vertices are linearly dependent. The
center of mass technique will be used in various places, especially in §§12.4.1.
The crucial point is that from pure metric information one gets implications
on tangent vectors; this will be essential to get differentiable maps.

For the center of mass and some applications one can read Karcher 1989
[780], Buser & Karcher 1981 [296] chapter 8, Cheeger, Müller, & Schrader
1984 [350]. But the existence of a unique center of mass in the large for
manifolds with nonpositive curvature was proven and used by Élie Cartan
back in the 1920’s. He used this to prove that maximal compact subgroups of
Lie groups are always conjugate. The general case (but locally only of course,
think of the standard sphere) was employed by Calabi in the unpublished
result quoted above.

6.1.6 Explicit Calculation of Geodesics of Certain Riemannian
Manifolds

In most Riemannian manifolds, geodesics are not computable nor are the dis-
tances between two points. We now list practically all Riemannian manifolds
for which one can carry out such computations more or less explicitly.

In a Riemannian product manifold (M ×N, g × h) geodesics are exactly
the curves which project to geodesics in both factors.

We recall the case of surfaces of revolution in E3, and also the complete
description of geodesic behavior on ellipsoids, in §§1.6.2. For ellipsoids (as
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well as for the other hyperquadrics) in Ed+1

d+1∑
i=1

x2
i

a2
i

= 1 (6.6)

one knows how to integrate the geodesic equation and, in some sense, one
knows their global behavior which is that of a completely integrable dynami-
cal system; see for example Knörrer 1980 [824] (and the references there) and
Paternain & Spatzier 1993 [1004]. There are relations between the geodesic
flow on the ellipsoid and solitons.

Geodesics in domains of intersection with the confocal quadrics can be
only either dense or periodic, with one exception: geodesics going through the
umbilic points; see §§1.6.2, §§10.2.2 and §10.9. for an interesting use of these
geodesics, namely to produce chaos on surfaces very close to an ellipsoid.

Some foolish people will say that everything is known about geodesics on
ellipsoids of any dimension. But to our knowledge the cut locus is unknown
(see section §§6.5.4 below for its definition) when d ≥ 3. For d = 2, we saw
this on page 44.

Because Riemannian coverings are local isometries, geodesics upstairs
project down to geodesics. Conversely, lifts of geodesics downstairs are
geodesics in the covering. For example, in flat tori of every dimension,
geodesics have a very simple behavior: they are either periodic or every-
where dense in a flat torus submanifold. In the case of the square tori (those
glued together by unit translations along coordinate axes) the distinction is
just whether the components of the initial velocity have rational or irrational
ratios. How quickly does such a geodesic fill up the torus (or the square, the
cube), or equivalently how quickly does your computer screen turn black?
The answer in the plane is given by the continued fraction expansion of the
slope. The golden ratio gives the fastest possible darkening. For the cube
(three-dimensional case) it is an open problem to generalize the golden ra-
tio. Equivalently: simultaneous approximation of two (or more) irrational
numbers by rational ones is not understood. The dichotomy of geodesic de-
portments in the square torus is exceptional—in general one has more than
two types of geodesics; see chapter 10. Another example is that all periodic
geodesics in a Riemannian covering will project down to periodic geodesics,
the converse being dependent on the homotopy class of the periodic geodesic
in the covered (downstairs) manifold.

In standard spheres geodesics are all periodic with the same period 2π
and the ones emanating from a point m all meet again π units of time later at
its antipode −m. This completely solves the problems of finding the distance
between points, and finding all of the segments in Sd. To study segments
of the real projective space RP

d, one just projects down segments from Sd.
The resulting geodesics are all periodic with periodic π. But this time those
emanating from some given point never meet again except back at this same
point. As a consequence, the diameter of RP

d is equal to π/2 and two points
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the square flat torus a periodic geodesic

Fig. 6.16. (a) The square flat torus. (b) A periodic geodesic

p, q are joined by a unique segment when d (p, q) < π/2 and by two when
d (p, q) = π/2.

m

p

n

π/2

π/2

IR P2

m p

n

Fig. 6.17. Geodesics on S2 and RP2

For a Lie group G with a bi-invariant metric, the local uniqueness of
geodesics shows that they are exactly the one parameter subgroups and their
translates. This is shown by a nice symmetry-uniqueness argument.

For Riemannian submersions p : (M, g) → (N, h), by Samelson’s results
from §§§4.4.3.4 one will know the geodesics in N if one knows the horizontal
geodesics in M (and conversely). For example for homogeneous spaces G/H
obtained from some bi-invariant metric on G the geodesics in G/H will be
the projections of the horizontal one parameter subgroups.

Élie Cartan gave a complete description of the geodesic flow on symmetric
spaces; we gave it in §§4.3.5. The standard reference is Helgason 1978 [701];
see also chapter 7 of Besse 1987 [183] and a few words on page 272. We
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g(t/2) g(t)

e

Fig. 6.18. The symmetry around g(t/2) is an isometry. By uniqueness . . .

recall that in compact symmetric spaces every geodesic is either periodic or
everywhere dense (evenly) in a totally geodesic flat torus. This is not the
complete description, especially if one wants to know when two geodesics
emanating from one point meet again. The answer is completely known; see
the reference given below in the cut locus story: §§6.5.4.

Back to the KP
n. We saw in §§§4.4.3.2 that for K = C or H the projective

spaces can be obtained from spheres by Riemannian submersion. Therefore we
can completely describe their geodesic behaviour. But for CaP2, one cannot
escape using all of Cartan’s machinery from theorem 36 on page 209.

Let us treat the case S2n+1 → CPn and use the notation of §§§4.4.3.2. All
geodesics are periodic of period π. Let m be the starting point of a geodesic
and v ∈ UmM the initial velocity of the geodesic, call it γv. Then it is easy
to see that γw will have the following behaviour: if w is in the tangent plane
defined by v and iv (i.e. the complex tangent line containing v) then the
geodesic γw will meet γv again at time t = π/2. Moreover the set of all
these geodesics, for all w in this 2-plane, build up in CPn a totally geodesic
submanifold which is a standard round sphere S2 of diameter equal to π/2
and of constant curvature equal to 4. These spheres are nothing but the
complex projective lines of CP

n. If w does not belong to the complex tangent
line generated by v then γw and γv never meet before returning at time π
to the original point m. Note that the set of geodesics γw where w turns in
a tangent plane generated by v and some v′ orthogonal to both v and iv
(one could say a real plane) build up a totally geodesic submanifold which
this time is a real projective plane RP2 of diameter π, hence of constant unit
curvature.

For HPn, the situation is the same except that the projective lines are now
four dimensional spheres S4. For CaP2one has 8 dimensional spheres S8, but
the proof is much more expensive, since we saw that there is no well behaved
fibration S23 → CaP2. For all of this geometry of KPn, some references are:
section II.C of Gallot, Hulin & Lafontaine 1990 [542] and chapter 3 of Besse
1978 [182].

Note that for these manifolds the diameter is equal to the injectivity
radius (see §6.5 for the definition of injectivity radius). It is not known today
if this characterizes them; see §§6.5.5 for this baffling question.
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m = p(x) = p(–x) in CaP2

CPn–1

Fig. 6.19. (a) m = p(x) = p(−x) (b) In CaP2

6.1.7 Transition

We have proven local existence and uniqueness of segments. In particular
we know that short pieces of geodesics are segments. But we do not have
any estimate of how short. For example, on a compact Riemannian manifold
the length of a segment cannot exceed the manifold’s diameter. Geodesics can
also fail to be segments for curvature reasons: remember Bonnet’s theorem 21
on page 140. Geodesic loops (a fortiori periodic geodesics) are obviously not
segments (see figure 6.20). The picture shows that if the geodesic γ has

p

L/2

L/2
q

Fig. 6.20. A periodic geodesic

period L then a piece of γ is certainly not a segment if its length exceeds L/2.
What will finally be seen is that, at least on compact manifolds, the above
two situations are the only ones preventing geodesics from being segments:
see 86. Note that flat tori can have periodic geodesics as small as desired.
But to achieve this one needs some technical tools.
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6.2 The First Technical Tools: Parallel Transport,
Second Variation, and First Appearance of the Ricci
Curvature

We follow the route of §§3.1.4: we have a geodesic γ : [a, b] →M and we look
at a one parameter family cα(t) = c(t, α) of curves neighboring γ(t) = c0(t).
We know that

∂length cα
∂α

∣∣∣∣
α=0

= 0

because γ is a geodesic. We want to compute the second derivative

∂2 length cα
∂α2

∣∣∣∣
α=0

as a function of the infinitesimal displacement

Y (t) =
∂c

∂α

∣∣∣∣
α=0

.

One can always assume that this displacement is orthogonal to the geodesic.
For surfaces (d = 2) this displacement was identified with a function f and
we obtained the equation of second variation (equation 3.11 on page 134).

m n

TmM TnM

γ'

γ'

a geodesic not comparable in general

Fig. 6.21. (a) A geodesic. (b) Not comparable in general

But as soon as d > 2 this displacement is now a vector field along γ taking
values in the subspaces of the Tγ′(t)M which are orthogonal to γ′(t). Those
spaces are of dimension greater than one and so there is no hope to work with
plain functions. Moreover we do not know at this moment how to compare
the various spaces Tγ′(t)M when t varies in order to get an analogue of the
derivative f ′ which figures in 3.11. For surfaces we succeeded to differentiate
the infinitesimal displacement as follows: a good comparison between tan-
gent spaces to a Riemannian manifold should be a Euclidean isometry. On a
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surface it is enough to know what to do with one nonzero vector plus an ori-
entation. We determine any orientation of the surface near the initial point
of the geodesic, and demand continuity in the choice thereafter, along the
geodesic. We then identify tangent planes along the geodesic by identifying
the velocities γ′(t) and the orientations. Starting in three dimensions, this is
no longer enough to produce a unique identification of tangent spaces. Geo-
metrically, one can identify them with a trick using various geodesic families
along γ as described in Arnold 1996 [66], appendix one and in figure 6.22.

Fig. 6.22. Approximation of parallel transport with beams of geodesics, in dimen-
sion ≥ 3

S

D(c)

c
D(c)

c

in IR3 for surfaces the parallel transport along c
can be gotten by "developing" on a plane the surface
enveloped by the tangent planes along the curve c

Fig. 6.23. For a surface S in E3, parallel transport along a curve c can be described
by “developing” on a plane the surface S′ enveloped by the tangent planes to S
along c
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We refer the reader to §15.4 for a rigorous proof (which is difficult), and
assert the following:

Proposition 61 (Parallel transport) On a Riemannian manifold M there
is a canonical notion of parallel transport along an absolutely continuous
curve c : [A,B] → M having the following properties: for any two values
a, b of the parameter there is a map

ca→b : Tc(a)M → Tc(b)M

which is an isomorphism of Euclidean spaces, and obeys the obvious compo-
sition rules. In particular, for a vector field Y along c there is a well defined
derivative, denoted by Y ′, given by infinitesimal parallel transport:

Y ′(t) = lim
h→0

Y (t) − c(t−h)→tY (t− h)
h

and called the covariant derivative. Geodesics are precisely the curves γ whose
velocity γ ′ is invariant under parallel transport:

(γ′)′ = 0 .

c(a)

c
c(b)

parallel transport along a curve  c

Fig. 6.24. Parallel transport along a curve c

Other examples of parallel transport are: in a Riemannian productM×N,
the parallel transport along c is the product of the parallel transport along
the two projections of c respectively on M and on N. The second example is
a totally geodesic submanifold, see §§6.1.4.

We now return to deriving a second variation formula; when the curves
cα have fixed ends γ(a) and γ(b) it reads:

∂2 length cα
∂α2

∣∣∣∣
α=0

=
∫ b

a

(
‖Y ′(t)‖2 −K (γ′(t), Y (t)) ‖Y (t)‖2

)
dt (6.7)
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Y'(t) = 
dY
dt

measures the defect 

of  Y(t)  to be parallel transported

c

Y(t)

Fig. 6.25. Y ′(t) = dY
dt

measures the defect of Y (t) to be invariant under parallel
transport

Y
Y

γ(a) γ geodesic
γ(b)

γ'

Fig. 6.26. Second variation—plucking a string

The second variation formula is an essential tool which will be used fre-
quently. For its history, see section 4 of Petersen 1998 [1019]. Note that very
often it is not the family of curves which is given but simply a vector field
Y (t) along γ. But it is trivial to built up a family of curves cα(t) = c(t, α) such
that ∂c

∂α

∣∣
α=0

= Y (t). For a complete proof one needs to extend the notion of
covariant derivative, etc. to maps of surfaces into (M, g) more general than
immersions. Even the definition on page 725 is not enough to get the proof
of the formula. It is only easy when the variation of curves verifies Y (t) �= 0.
Otherwise it is quite technical, but necessary because Y never vanishing is
too much to ask in most geometrical applications. The typical case is when
the ends of γ are held fixed. Then Y vanishes at these ends. Technically in
that case it is important to know the following interpretation for Y ′. Assume
that c(0, α) is a fixed point m and consider the velocities at m of the curves
cα(t), the vectors d

dtcα(t)
∣∣
t=0

. They now belong to the fixed vector space
TmM and so have an ordinary derivative vector with respect to variations
of α. Then we have the following formula which is a sophisticated kind of
symmetry rule for second derivatives:

∂

∂α

(
∂c

∂t

∣∣∣∣
t=0

)∣∣∣∣
α=0

= Y ′(0) (6.8)

For complete proofs, see various books on Riemannian geometry. It is
interesting to compare the various proofs. We just note that Milnor 1963
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Y'(0)

γ(a)

γ

∂c
∂t

(0;α)

Fig. 6.27. Measuring the covariant derivative

[921] admits a technical point: he works with variations whose transversal
vectors never vanish. To do this, one is forced to use the notion of induced
connection or work with tricky computations in coordinates.

As in theorem 21 on page 140 we draw immediately from 6.7:

Theorem 62 (Bonnet–Schoenberg–Myers, 1935) If a complete Rieman-
nian manifold M has sectional curvature bounded below by a positive constant
δ:

K ≥ δ > 0

then it satisfies
diamM ≤ π√

δ
.

In particular M is compact.

Proof. Let p, q be any two points in M with d (p, q) > π/
√
δ and connect

them by a segment γ : [0, L] → M using theorem 52. Pick any unit tangent
vector w ∈ TpM which is orthogonal to γ′(0) and define a vector field Z(t)
along γ by transporting w in parallel. Then Z ′(t) = 0 by construction and
definition of the derivative. Now inject into the second variation formula 6.7
the vector field

Y (t) = sin
(π
L
t
)
Z(t) .

As in Bonnet’s theorem 21 on page 140 one gets a negative second variation
from which one can built up curves neighboring γ whose lengths are smaller
than L.

A classical observation: consider a Riemannian manifold M with K ≥ δ >
0 and its universal Riemannian covering M̃ (cf. §§§4.3.3.2). By construction
it has the same curvature lower bound hence is also compact. This implies
that the number of sheets of the covering is finite. Conclusion: a complete
Riemannian manifold M whose sectional curvature has positive lower bound
has finite fundamental group π1(M); but see the stronger theorem 63 on
page 268.
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 > π/√δ

πt
L

sin ⎧⎢⎩
⎧⎢⎩

L0

these curves are
of smaller length than L

Fig. 6.28. These curves are of length smaller than L

Note 6.2.0.1 Today we know very little about which differentiable mani-
folds admit a complete Riemannian metric with positive sectional curvature:
see §§12.3.1. �

In 1941, Myers made the following observation: in dimensions higher than
two, there is a choice for w in the above proof, so that in some sense our proof
does not used the full force of the assumption. Otherwise stated: can one get
the same conclusion with a weaker assumption on the curvature? Indeed one
can: we just have to take the mean value of the second variation formula
for w running through the unit vectors in TmM which are orthogonal to
γ′(0). Practically this is done as follows: pick an orthonormal basis {ei}i=1,...,d

of TmM so that e1 = γ′(0) and define d − 1 vector fields Yi(t) for i =
2, . . . , d along γ starting with Yi(0) = ei. To aid in computing the sum of the
associated second variation formulas, introduce the quantity:

d∑
i=2

K (γ′(t), Zi(t))

Parallel transport being made up of isometries, one is led to introduce for
any orthonormal basis {ei}i=1,...,d of TmM the quantity

Ricci (e1) =
d∑
i=2

K (e1, ei) (6.9)

The above value is a trace (with respect to the Euclidean structure) of
the quadratic form −R(x, ·, x, ·). We define the Ricci curvature to be

Ricci(x, y) = −
d∑
i=1

R (x, ei, y, ei) (6.10)

with {ei}i=1,...,d any orthonormal basis, and also set Ricci(x) = Ricci(x, x).
Note that due to the symmetries of the curvature tensor (see equation 4.28

on page 223) this is the only nonvanishing quadratic form one can get from
R. Historically, Ricci introduced it in order to find a generalization of the sec-
ond fundamental form of surfaces in E3 and hoping that the integral curves
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πt
L

sin ⎧⎢⎩
⎧⎢⎩Z1(t) = Y1(t)

πt
L

sin ⎧⎢⎩
⎧⎢⎩Z2(t) = Y2(t)

Z1(t)

Z2(t)
e2

e1

Fig. 6.29. Averaging variations in different directions

of the directions given by diagonalizing this form with respect to the Rie-
mannian metric tensor would yield nice curves in the manifold, analogous to
the lines of curvature of a surface in E3. Curvature lines can play an impor-
tant role in understanding even the inner geometry of surfaces. For example
remember the curvature lines of the ellipsoid from on page 44: the geodesics
of the ellipsoid oscillate between two curvature lines and are either periodic
or everywhere dense in the annulus between these two curvature lines.

But for abstract Riemannian manifolds, Ricci was quite disappointed to
find no geometric interpretation of the Ricci curvature lines. We know only
of one instance where Ricci curvature lines have a geometric interpretation,
to do with conformal changes of metric; see Ferrand 1982 [514]. However
it will turn out in the sequel (more than once) that Ricci curvature is an
extremely important invariant of Riemannian manifolds. Note the behavior
under scaling:

Ricciλg = Riccig .

But the bounds of Ricci(x) on unit tangent vectors behave like K:

inf Ricciλg =
1
λ

inf Riccig

and the same for sup Ricci . For more philosophy on Ricci curvature, see
§§6.4.3.

We return now to the above trace-like summation of second variations.

Theorem 63 (Myers–Cheng 1941,1975 [955, 362]) If a complete Rie-
mannian manifold M of dimension d satisfies

Ricci(x) ≥ ρ > 0
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for every unit tangent vector x then

diamM ≤ π

√
d− 1
ρ

.

In particular, M is compact and π1(M) is finite. Moreover equality is realized
only by the standard sphere.

Optimality is obvious by looking at the standard sphere. Only the sphere
achieves equality; this is usually called Cheng’s theorem, see Cheng 1975
[362]. The proof is surprisingly not so easy: looking directly at the equality
case in the proof is not enough. One sees only that the sectional curvature of
a 2-plane containing the velocity vector of a segment realizing the diameter
must be one, but the problem is to propagate this all over the manifold.
Various kinds of proofs exist today: see references in 3.6 of do Carmo 1992
[452] or in theorem 3.11 of Chavel 1993 [326]. But the fastest proof is to
realize that it is a direct corollary of Bishop’s theorem 107 on page 334.

This result of Myers can be seen as a global topological conclusion drawn
from a curvature (infinitesimal) assumption. As such it belongs to the general
type of questions relating curvature and topology; chapter 12 will be entirely
devoted to these questions. You will see for example that the classification
of differentiable manifolds which can carry a complete Riemannian metric of
positive Ricci curvature is not known today. However we give right now a
second simple and beautiful application of the second variation formula:

Theorem 64 (Synge 1936 [1172]) A complete even dimensional Rieman-
nian manifold with positive sectional curvature is simply connected if ori-
entable. And if not orientable it is the quotient of a simply connected one by
a single involutive isometry without fixed point.

One cannot do better. Odd dimensional spheres have many quotients,
called lens spaces. The simplest ones are obtained as follows: look at S2n−1

as embedded in R2n = Cn and quotient by the finite group generated by the
maps

(z1, . . . , zn) �→ (αz1, . . . , αzn)

where α is some kth-root of unity. The quotient is well defined, and the
construction can employ various choices of α.

Assume that M is orientable and not simply connected; as we will see in
chapter 10 compactness insures that M bears a periodic geodesic γ : [0, L] →
M which is the shortest among all closed curves homotopic to it. Consider
parallel transport γ0→L along γ from 0 to L. It preserves γ′(t) for every t (cf.
chapter 15) so it is an isometry

γ0→L : Tγ(0)M → Tγ(L)M = Tγ(0)M
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γ'(0)

γ'(t)

γ'(t)

γ

x

a shorter
curve

Fig. 6.30. Using positive curvature to make a shorter curve

which leaves invariant γ′(0) = γ′(L). Since Tγ(0)M is even dimensional, there
is another unit vector x ∈ Tγ(0)M which is invariant under γa→b and orthog-
onal to γ′(0). We parallel transport that x along γ to produce a vector field
X(t) of norm one along γ and we apply the second variation formula 6.7 to
it: X ′(t) = 0 by construction of X so that the result is negative. This implies
that there are shorter closed curves neighbouring γ, a contradiction. If M is
not orientable, just consider its orientable two sheet covering.

The same trick will also be used in the proof of theorem 92 on page 300,
and in spirit in the proof of theorem 93 on page 300, but of course the
trick does not work with the weaker assumption of positive Ricci curvature.
However, one can prove such a theorem under a extra mild assumption on the
systole Sys (M) of the manifold, i.e. the length of the smallest noncontractible
curve (see §§7.2.1):

Theorem 65 (Wilhelm 1995 [1262]) If a complete Riemannian manifold
Md satisfies Ricci ≥ d− 1 and

Sys (M) > π

√
d− 2
d− 1

then

1. if d is even and M orientable, then M is simply connected and
2. if d is odd, then M is orientable.
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6.3 The Second Technical Tools: the Equation for Jacobi
Vector Fields

6.3.1 The Exponential Map and its Derivative: The Philosophy of
Élie Cartan

We still consider a given geodesic γ and a one parameter family of curves
neighbouring γ but this time we ask that they all be geodesics γα(t) = γ(t, α)
and moreover all parameterized by arc length (unit speed). We again set

Y (t) =
∂γ

∂α

∣∣∣∣
α=0

.

Using parallel transport along γ one can define not only Y ′(t) but also its
second derivative Y ′′(t). We find that Y satisfies the second order linear
differential equation:

Y ′′ = R (γ′, Y ) γ′ (6.11)

called the Jacobi field equation, where the vector endomorphism

v �→ R(x, v)x

is defined by:
〈R(x, v)x,w〉 = R(x, v, x, w)

for any w ∈ TmM. A solution of this equation is called a Jacobi vector field.

Y(t)

γ'(t)
γ

Fig. 6.31. A Jacobi vector field

As was the case for the second variation formula, the proof of equation 6.11
uses the results of the technical chapter (chapter 15) and again is much
easier when Y never vanishes, but this asks too much for most geometrical
applications, in particular for what we are going to do now.

Note: Jacobi vector fields Y (t) along a geodesic γ are always orthogonal
to γ′ as soon as the initial value Y (0) is orthogonal to γ′(0). Indeed, the
orthogonal projection on γ′(t) has constant value, since γ′(t) is a trivial so-
lution of 6.11. For this reason, in general only such orthogonal Jacobi vector
fields are considered. From standard results in ordinary differential equations
we see:
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Proposition 66 Along a given geodesic γ there is exactly one Jacobi vector
field Y with given values Y (0) and Y ′(0), and it can always be realized by a
one parameter family γα of geodesics.

In some applications, it is useful to know the geometric interpretation of
Y (0) and Y ′(0). The value Y (0) is easy to interpret—it is just the velocity
of the curve described by the initial values of the γα. What Y ′(0) means
geometrically is a little more subtle. One proves (using chapter 15) that it is
the (absolute) derivative with respect to α of the initial velocity vectors of
the γα.

The basic remark, which we call the Élie Cartan philosophy and which
goes back to the 1928 first edition of his book Cartan 1988 [321], is that
equation 6.11 on the page before gives the derivative of the exponential map
TmM as soon as the various endomorphisms R(γ′, ·)γ′ are known along the
geodesics issuing from m. In fact, let x be some unit tangent vector to M at
m and let us try to compute the derivative of expm at the point tx ∈ TmM.
By equation 6.4 on page 248 we have only to compute it for vectors y which
are orthogonal to x (since in radial directions the exponential map preserves
lengths). Then the very definition of the exponential map and the tricky
formula 6.8 tell us:

Proposition 67
d expm(y)(tx) = Y (t)

where Y is the solution of the equation

Y ′′(t) = R (g′(t), Y (t)) g′(t)

with Y (0) = 0 and Y ′(0) = y.

Standard theorems on differential equations tell us that such a solution is
completely determined by such initial values. In the notation of equation 6.4
one has

f(ρ, σ, ξ) = ‖Y |t=r‖
plugging x = σ and y = ξ into proposition 67.

The exact content of Élie Cartan’s philosophy is subtle. To know the en-
domorphisms R(γ′, ·)γ′ we need to know the curvature tensor and the parallel
transport operator along the various geodesics issued from m. Cartan used
his philosophy in the spectacular case of the symmetric spaces described in
theorem 36 on page 209. He was able to prove that those spaces are pre-
cisely the complete Riemannian manifolds for which the curvature tensor is
invariant under parallel transport (see §15.4 for more on that). In that case
proposition 66 shows that the Riemannian metric is known as soon as the
curvature tensor at one point is known: then calculations become purely alge-
braic. More generally, on a real analytic Riemannian manifold, one need only
know the curvature and all its covariant derivatives of any order (see §15.5)
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Fig. 6.32. How to compute the derivative of the exponential map with Jacobi fields

to know the metric, at least locally. The global problem of determining the
metric from parallel transport and curvature is called the Ambrose problem
(see on page 730) and is solved today in dimension 2.

Note 6.3.1.1 Beware that Élie Cartan’s uniqueness philosophy of proposi-
tion 66 on the preceding page does not say that the curvature determines the
metric in general. This question has been treated at large in §4.5.

A contrario, upper and lower bounds on the sectional curvature com-
pletely control the geometry in both directions; see this, the main achieve-
ment of §6.4. �

6.3.1.1 Rank Geometers recently introduced a notion of rank closely con-
nected with the notion of Jacobi vector field: rank v for a (unit) tangent
vector v in a Riemannian manifold. In Euclidean spaces, where the Jacobi
vector fields verify Y ′′ = 0, and are consequently linear, there are certain
Jacobi vector fields Y given by the translations. They verify Y ′ = 0. In a
general Riemannian manifold we call a Jacobi vector field Y trivial when
Y ′ = 0. Recall that we consider only Jacobi vector fields normal to γ′. This is
equivalent to saying that Y (t) is just parallel transported along the geodesic.
This of course implies that R(γ′, Y (t))γ′ = 0 for every t.

Definition 68 The rank of a nonzero vector v is the maximal dimension of
the linear space made up by the trivial Jacobi vector fields along the geodesic
generated by v, this time including the “super trivial” field Y = γ′. The rank
of a Riemannian manifold is the minimum of the rank of all its tangent
vectors.
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a trivial Jacobi field

Fig. 6.33. A trivial Jacobi vector field

Note that every vector is of rank at least one; only a rank larger than
1 is interesting. We met two completely different examples of manifolds of
rank larger than one, namely the Riemannian products in §§§4.4.3.3 and the
symmetric spaces in §§4.3.5. The notion of rank will be essential on page 639.

6.3.2 Spaces of Constant Sectional Curvature: Space Forms

In the special case of a constant sectional curvature metric, equation 66 com-
pletely determines the Riemannian metric without knowing anything a priori
about the parallel transport operator. We saw in theorem 39 on page 228 that
for every real number k there is at least one simply connected Riemannian
manifold with constant sectional curvature equal to k. Conversely assume
that is the case: from equation 4.29 on page 225 one deduces that for every
orthonormal pair of vectors x, y:

R(x, y)x = −ky . (6.12)

In particular the equation in proposition 66 is always the same:

Y ′′(t) = −kY (t) (6.13)

and its solutions with initial conditions Y (0) = 0 and ‖Y ′(0)‖ = 1 are

Y (t) =

⎧⎪⎪⎨⎪⎪⎩
sin(

√
kt)√
k

y k > 0

ty k = 0

− sinh(
√−kt)√−k y k < 0

(6.14)

In the notation of equation 6.4 this implies:

g = dρ2 +

⎧⎪⎪⎨⎪⎪⎩
sin2(

√
kρ)

k dσ2 k > 0
ρ2 dσ2 k = 0

− sinh2(
√−kρ)
k dσ2 k < 0

(6.15)

so that g is completely known. From this local uniqueness and because the
models that we wrote down (the sphere, Euclidean space and hyperbolic
space) when we proved theorem 39 are simply connected and complete, one
deduces
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Fig. 6.34. Jacobi vector fields in space forms

Theorem 69 For every real number k there is one and only one—up to
isometry—simply connected complete Riemannian manifold of constant sec-
tional curvature equal to k. We recall that it is denoted by Sd (k) (see theo-
rem 39 on page 228).

In this completely rigorous setting this result was available only in the late
1920s. Settling this uniqueness issue was one of the driving forces behind the
Hopf–Rinow theorem.

Note 6.3.2.1 There are two little technical difficulties in the global proof of
theorem 69. The simplest cases are k = 0 and k < 0. Then the formulas above
show in particular that the derivative of the exponential map never vanishes,
so the exponential map is locally one-to-one since the dimensions are the
same. This is a necessary condition for a covering; sufficiency is achieved
using completeness as stated in corollary 55 on page 250. For the sphere,
k > 0, the derivative of the exponential map deteriorates at the preimage
of the antipodal point. One wrangles the sphere by gluing two exponential
charts at different points (antipodal if you wish). This gluing seems to us not
explicit in many books. A reference: 3.82 in Gallot, Hulin & Lafontaine 1990
[542]. See another approach in part I of Vinberg 1993 [1221]. �

The above completely solves (at the first level, as we will see) the long-
standing problem of existence and uniqueness of space forms. We present
this problem as follows (see if needed the notes 1.6.1.1 on page 38 and 4.3.2.3
on page 202). We look for geometries for which once we know the distances
from q to p and r to p, and the angle between the relevant segments, we can
recover the distance from q to r by a universal formula involving only the
angle and the two distances. This same formula should be valid for any triple
of points, and the space should be complete. Such a space will present a nice
generalization of Euclidean geometry.
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The question can be asked locally or globally. Various considerations of
axiomatic type led to the fact one has to look only among Riemannian mani-
folds: see part II of Reshetnyak 1993 [1055] for a recent survey on generalized
Riemannian spaces. Considering smaller and smaller triangles, one sees easily
that the sectional curvature has to be constant.

Let the side lengths be

a = d (q, r)
b = d (p, r)
c = d (p, q)

and take α, β, γ the angles opposite the sides of lengths a, b, c. We treat b, c, α
as known, and want to know a. What was needed before the developments
of §6.4 (material dating from the 1960’s) was a Taylor expansion for a2 as a
function of b, c, α and the curvature at the vertex p, i.e. a more precise version
of equation 4.31 on page 226:

a2 = b2 + c2 − 2bc cos
(
α− KS

3

)
+ o

(
b2 + c2

)
(6.16)

where K is the sectional curvature of the tangent plane generated by the two
sides pq, pr and S is the area of the triangle. The error in the area S does
not matter; one can estimate the area to be

S =
1
2
bc sinα .

See section V of chapter X of Cartan 1988 [319, 321] for a proof. It seems to us
that more terms in the Taylor expansion for the distance between two points,
close to a given one, are not to be found in books today. Since the 1960’s
our contention about spaces with a universal formula has become trivial by
theorem 73 on page 281, which moreover yields the universal formula in one
shot.

An equivalent axiom (called the axiom of mobility): for every pair of
triangles having corresponding sides of equal lengths there is an isometry
of the space sending one into the other. This appears stronger, but is in
fact equivalent. The space forms are thus precisely the 3 point homogeneous
spaces; see §6.6.

By theorem 69 this implies that the universal cover (see §§§4.3.3.2) of
our space is a space form Sd (k) for some real k. Otherwise stated : a space
form is the quotient by a group of isometries of one the Sd (k). Such a group
should act without fixed point but also discretely, so that the quotient is a
manifold. This solves the problem of space forms at the first level. The next
level is to find—up to isometries—all such quotients. We will shape this in a
more general context in §6.6.

We kept for the end the most important fact:
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an isometry

Fig. 6.35. An isometry

Theorem 70 (Conformal representation theorem) Let (M, g) be any
compact Riemannian surface. Then there is one and only one metric g′ con-
formal to g, i.e. g′ = fg, such that g′ has constant curvature and f : M → R

is a smooth function on M.

This statement has a long history, and a huge importance because of the
theory of one complex variable, number theory, algebraic geometry, etc; also
see §§4.4.3. It was claimed by Riemann around 1850; he took it for granted.
Many mathematicians thought that it did not need any formal proof, because
it can be given an interpretation as an “obvious” result of physics, when
reposed as a problem of finding a minimum. The first completely rigourous
proof is due to Paul Koebe at the turn of the century. Note that it is a purely
Riemannian geometry statement, and solves for compact surfaces the problem
of finding the best metric on a given compact manifold. We will devote the
entirety of chapter 11 to this theory of best metrics; see in particular a very
modern proof on page 554 of the conformal representation theorem. This
proof exhibits an explicit flow in the space of metrics (Ricci flow), attracting
any metric toward one of constant curvature. The final proof is in Chow
1991 [378]; note that it uses sophisticated objects like the determinant of the
Laplacian and a special entropy; see §§9.12.3.

Theorem 70 does not say that there is a unique metric on the surface
(up to diffeomorphisms of course) of constant curvature. We now recall the
classification of surfaces in §§§4.1.4.1. Uniqueness of constant curvature met-
ric is easy to see for S2 and RP

2: by theorem 69 for the sphere and by a
trivial game left to the reader for RP

2. Flat structures on T 2, appropriately
normalized, form the two dimensional modular domain drawn in figure 6.36
on the following page; see the end of this story in §§6.6.2.

For the Klein bottle, one has only one parameter, because Klein bottles
have to come from rectangles, not from arbitrary parallelograms.

6.3.3 Nonpositive Curvature: the von
Mangoldt–Hadamard–Cartan Theorem

Recall proposition 66 which give the derivative of the exponential map in
terms of solutions of Jacobi vector fields. It is interesting to know when this
derivative is one-to-one. And if not, then try to control when the first bad
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–1 0 1/2 1 the modular domain is not compact, 
and not a manifold, 
having two singular points

Fig. 6.36. The modular domain is not compact, and not a manifold, having two
singular points

point occurs. This will be done in §6.4 but first we remark that there is a
simple case where we are sure never to get any kernel:

Proposition 71 If K < 0 everywhere then the derivative of the exponential
map is always one-to-one.

From equation 6.11 on page 271 we get 〈Y ′′, Y 〉 > 0 which implies

d2

dt2
‖Y ‖2 = 2 ‖Y ′‖2 + 2 〈Y, Y ′′〉 (6.17)

≥ 0

so that ‖Y ‖2 is a convex function. Vanishing at t = 0, it cannot vanish
elsewhere.

Using corollary 55, we find:

Theorem 72 (von Mangoldt–Hadamard–Cartan, 1881,1928 [893, 321])
If a complete Riemannian manifold M of dimension d has everywhere non-
positive curvature, then the exponential map at any point is a covering. In
particular, as a manifold M is the quotient of Ed by a discrete group. If M
is simply connected, the exponential is one-to-one, M is diffeomorphic to Ed

and any two points are joined by a unique segment.

Again this is a result passing from curvature to topology. But do not believe
that this ends the classification of such manifolds. It is a extremely active
field of research these days; see §§12.3.4 or (state of the art in 1985) Ball-
mann, Gromov & Schroeder 1985 [106], and thereafter Gromov 1991 [627].
Historically, von Mangoldt proved theorem 72 for surfaces. Hadamard gave
two different proofs for surfaces again and embedded the issue in the more
general study of the geodesic flow. He also mentioned an extension in three
dimensions. Cartan put this theorem into its final form.
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Fig. 6.37. The exponential map on a negatively curved surface

One can prove more results, which we leave as exercises:

1. In any homotopy class of a Riemannian manifold with nonpositive cur-
vature there is one and only one geodesic loop.

2. In a simply connected complete Riemannian manifold with nonpositive
curvature, any triangle obeys:

a2 ≥ b2 + c2 − 2bc cosα

(cf. formula 1.16 on page 62 and §6.4).
3. Consider an isometry f : M → M of a simply connected Riemannian

manifold with nonpositive curvature. The associated displacement func-
tion d (m, f(m)) is a convex function (and strictly convex if the curvature
is negative).

4. In a manifold of nonpositive curvature, the distance function

d : M ×M → R

is convex (see 60) on the Riemannian product M ×M. See figures 6.38
on the following page and 6.39 on the next page to visualize this. In
particular the distance functions d (p, ·) are convex.

5. At the infinitesimal level, result 4 is related to the statement: for any Ja-
cobi vector field Y in a manifold of nonpositive (resp. negative) curvature,
the function

t ∈ R → ‖Y (t)‖ ∈ R

is convex (resp. strictly convex).
6. In a simply connected Riemannian manifold with nonpositive curvature,

there is a notion of center of mass (see proposition 60) for any compact
subset. In particular, a group of isometries of M having a bounded orbit
has always a fixed point.
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Cartan 1929 [315] section 16 used this inequality to prove the existence
and uniqueness of the center of mass in complete manifolds of negative cur-
vature. From it he deduced that compact maximal subgroups of semisimple
Lie groups are always conjugate. This holds because a symmetric space of
nonpositive curvature is nothing but the quotient of a noncompact Lie group
by one of its maximal compact subgroups as seen on page 212.

Besides Ballmann, Gromov & Schroeder 1985 [106], partial results can
be found in chapter 12 of do Carmo 1992 [452], 3.110 of Gallot, Hulin &
Lafontaine 1990 [542], chapter 9 of Cheeger & Ebin 1975 [341], section V.4
of Sakai 1996 [1085] and here in §§12.3.4.

2
1

m

uniqueness : 1) loop based at  m  its class
2) closed geodesic in its free homotopy class

Fig. 6.38. Uniqueness: (1) loop based at m (2) A closed geodesic in its free
homotopy class

d(m,.) is a convex function

m

the displacement function
is convex

m

n

f(m)

f(x)

Fig. 6.39. (a) d (m, ·) is a convex function. (b) The displacement function is convex
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6.4 Triangle Comparison Theorems

6.4.1 Using Upper and Lower Bounds on Sectional Curvature

We now extend the results of §3.2 to any dimension and collect other inter-
esting things on our way. What follows can be seen from various viewpoints.
First we will try to control the global metric geometry of a Riemannian
manifold, obtaining this control only via the sectional curvature, which is
an infinitesimal (often explicitly calculable) invariant. This can be compared
with controlling a complete motion by controlling the acceleration at each
instant. One can also say this is a variation on the theme of the Euclidean
equation

a2 = b2 + c2 − 2bc cosα .

Other basic geometric consequences will be seen in the sequel, starting with
§6.5, and of course in chapter 12. Control on the metric via curvature is im-
portant because, as remarked before, even in Riemannian manifolds described
by elementary formulae, explicit calculations of distances are completely out
of reach.

We state the results first. We assume in all this section that the sectional
curvature of our Riemannian manifold obeys everywhere

δ ≤ K ≤ Δ (6.18)

In referring to a triangle {p, q, r} on a Riemannian manifold M we will mean
three points p, q, r ∈M together with three segments joining them: note that
in some cases those segments might be not unique.

Theorem 73 (Toponogov triangle comparison theorems) Assume that
the sectional curvature of a Riemannian manifold M of dimension d satisfies

δ ≤ K ≤ Δ

and let {p, q, r} be any triangle in M and in Sd (δ) take some triangle
{p′, q′, r′} such that the corresponding sides from p and p′ have equal lengths
and equal angles at p and p′. Then

dM (q, r) ≤ dSd(δ)(q
′, r′) .

The reverse equality holds with Sd (Δ) but under the proviso that—roughly
speaking—the triangle {p, q, r} can be filled by the exponential map at p; in
particular this always works for small enough triangles.

As for surfaces (see §3.2) there is an equivalent way to state the theorem
(particularly for the lower bound δ). One asks this time that the two triangles
have corresponding sides of equal length. Then the conclusion is that the
corresponding angles in M are never larger than those in Sd (δ).
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K ≥ δ K ≥ Δ

q' in Sd(δ) in Sd(Δ)
in (M,g)

p'

r'

q

p

r

≤

q'

p'

r'

q

p

r

≥

Fig. 6.40. Triangle comparison

The above theorem can vaguely be compared with the “outer” comparison
theorem 1 on page 17 given for plane curves, and theorem 6 on page 65 for
rolling surfaces. Note that theorem 73 solves immediately the problem of the
universal formula we alluded to on page 275.

The technique of the proof of theorem 73 on the preceding page is the
same as for the formula 3.12 on page 136 for surfaces, except that two com-
plications arise. The first: when cutting the triangles in small pieces. We will
not comment on that. We refer to some good references for the topic: Karcher
1989 [780], Eschenburg 1994 [494], and chapter IV of Sakai 1996 [1085]. His-
torically the global theorem 73 was obtained by Élie Cartan for K ≤ 0, while
the global case with δ ≤ K is due to Alexandrov for surfaces and to To-
ponogov for general dimensions.2 The case of K ≤ Δ comes from Rauch’s
inequality below. The most often used part of theorem 73 is the global result
about K ≥ δ which is most often called the Toponogov comparison theorem.

The second difficulty is in getting bounds for Jacobi vector fields. On a
surface this was easy because we had only to deal with real valued functions.
But when d > 2 the functions in equation 6.11 are vector valued. The results
of chapter 3 are still valid:

Proposition 74 (Rauch 1951 [1050]) Any solution Y of 6.11 with Y (0) =
0 and ‖Y ′(0)‖ = 1 satisfies

‖Y (t)‖ ≤

⎧⎪⎪⎨⎪⎪⎩
sin(t

√
δ)√

δ
δ > 0

t δ = 0
sinh(t

√−δ)√−δ δ < 0

2 Rauch had a statement for curves joining the extremities of the triangle.
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under the proviso that Y does not vanish between 0 and t.

We recall (cf. §3.2) that the proviso is necessary; see figure 6.41. The proof
of proposition 74 is never simple.

Proposition 75 (Rauch 1951 [1050]) Any solution Y of 6.11 with Y (0) =
0 and ‖Y ′(0)‖ = 1 satisfies

‖Y (t)‖ ≥

⎧⎪⎪⎨⎪⎪⎩
sin(t

√
Δ)√

Δ
Δ > 0

t Δ = 0
sinh(t

√−Δ)√−Δ Δ < 0

for

0 ≤ t ≤
{

π√
Δ

Δ > 0

∞ Δ ≤ 0.

Again the restriction on t is needed; see figure 6.42 on the next page.

sin (√δt)
√δ

π/√δ0
|| Y(t) ||

Fig. 6.41. The Rauch upper bound holds until Y = 0

The proof of proposition 75 is not much more complicated than that of
proposition 71 and is left as an exercise. Both of Rauch’s theorems provide
control with a second derivative—an acceleration. This is not surprising if
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sin (√Δt)
√Δ

π/√Δ0

|| Y(t) ||

2π/√Δ

Fig. 6.42. The Rauch lower bound holds until t = π/
√

Δ

one considers geodesics in a Riemannian manifold as free particle motions
(no potential).

Applications of these Alexandrov–Toponogov theorems are innumerable.
They are the corner stone of most of the results of chapter 12. We make
an important remark: the similarity of the upper and lower bounds on the
distance d (q, r) seems to imply that if the curvature varies extremely slightly
around zero, then the manifold is almost Euclidean. This is true locally (in a
sense to be made precise) but globally we will see in §§12.2.3 that there are
manifolds, called nilmanifolds, which have curvature as small as one wishes
but without the topology of a flat manifold, i.e. they are never finite quotients
of tori.

One can also expect that bounds on curvature will give bounds on volume.
This is of course true but will be treated in chapter 7. The surprising and
wonderful result is that for upper bounds on volumes, we only need to control
the Ricci curvature.

Note 6.4.1.1 From formula 6.16 one gets the feeling that in some sense sec-
tional curvature is the infinitesimal version of the metric geometry, and from
the triangle comparison theorems 73 one feels that conversely the sectional
curvature can be “integrated” and gives complete control on the metric. In
other words one is tempted to say that sectional curvature is necessary and
sufficient to control the metric. This is certainly true in one direction, the
sufficiency, but the converse is extremely subtle and is discussed at large in
§4.5. �

Note 6.4.1.2 The control theory we presented above was based on Jacobi
vector fields. This technique is the one used in most books. But it is not the
only one available. Another technique applies bounds on the second funda-
mental form of the metric balls centered at a fixed point. For those quadratic
forms, the Jacobi vector field equation is replaced by a Ricatti type equation
where the curvature enters. For a presentation in this spirit, good references
are Gromov 1991 [627], Karcher 1989 [780] and Eschenburg 1994 [494]. This
revolutionary technique was introduced by Gromov in 1979 (see Gromov
1999 [633]). In some sense one is playing with the distance function instead
of the geodesics lines. This is no surprise since the gradient lines of a dis-
tance function are geodesics. Moreover, for the case of Ricci curvature in the
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next section, only distance functions can be used—Jacobi vector fields are
not good enough.

The linear second order Jacobi vector field equation 6.11 on page 271 can
be replaced equivalently by a first order nonlinear equation of square Ricatti
type. It is the following equation, where the unknowns to control are the
Hessian of the distance function f , denoted by A = Hess f. But one merely
considers A as a linear symmetric map on tangent spaces. Then Jacobi’s
equation is equivalent to

A′ +A2 +R (γ′, ·) γ′ = 0 (6.19)

using the curvature tensor along the geodesic γ to form a symmetric linear
map. See figure 6.43.

The geometer has a simple view of the Hessian of a distance function (to
a point or more generally to some submanifold, most often a hypersurface).
This Hessian is nothing but the second fundamental form of the level hy-
persurfaces f−1(t). This viewpoint was also initiated in Gromov 1999 [633].
One feels that if K ≥ δ, then these hypersurfaces will be less curved than the

K > 0

K < 0

R governs the evolution of the second fundamental form
of the level hypersurfaces

Fig. 6.43. R governs the evolution of the second fundamental form of the level
hypersurfaces

corresponding ones in the comparison space form Sd (δ). This in turn controls
the distance functions, which are employed to control triangles. �

6.4.2 Using only a Lower Bound on Ricci curvature

So far we have obtained optimal control of the geometry on both sides if we
have bounds δ ≤ K ≤ Δ. Up to the end of the 1980s, Ricci curvature was
believed to be only useful to control volumes, but in a very efficient way as we
will see in §§7.1.2. This is not surprising heuristically. The philosophy of the
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second variation formula is that the second derivative of the metric is given
by the sectional curvature, and requires knowledge of the sectional curvature.
The Ricci curvature is a trace, and derivative of volumes, i.e. derivatives of
determinants, are given by traces. It is important to know nevertheless that
this only works when we have a lower bound

Ricci ≥ (d− 1)δ

except in dimension 3. This is not surprising since in three dimensions
the Ricci curvature and sectional curvature are essentially equivalent. As
a striking departure from sectional curvature, we will see in §§12.3.5 that
Ricci ≤ (d−1)Δ is a condition which basically cannot have any consequence.
Zhu [1305] is a systematic survey; also see Gallot 1998 [541].

Myers’s theorem 63 is one metric exception to the rule that Ricci curva-
ture can only control the measure. It yields a metric consequence through
a mean value argument, thereby using only Ricci curvature. Very recently
major breakthroughs appeared to the effect that a lower bound on Ricci cur-
vature controls metric geometry of different types, and surprisingly enough,
on both sides in some instances. Intermediate results were obtained by Cal-
abi 1958 [300] and by Cheeger & Gromoll 1971 [343] in the particular case of
noncompact manifolds with Ricci ≥ 0. We will now state the results. These
results will be essential to chapter 12.

The first result is the Gromov precompactness theorem 382 on page 653
which involves only controls on the volumes of balls; see §§§7.1.1.5. The second
is the excess theorem of Abresch & Gromoll 1990 [5]. The excess of a triangle
{p, q, r} is the number

e = d (p, q) + d (p, r) − d (p, γ)

where γ is a segment from q to r. This excess can be controlled when Ricci ≥
(d−1)δ with δ of any sign. The most spectacular results are Colding’s L1 and
L2 triangle comparison theorems. We will briefly state some of them; more
detailed formulas are in Colding 1996 [385, 386] and Colding 1997 [387].

Theorem 76 (Colding L1) In a Riemannian manifold with nonnegative
Ricci curvature, for any ε > 0 there is some η(d, ε) > 0 so that for any
R > 0, any r < ηR, and any points p, q with d (p, q) > 2R one has

1
VolUB (q, r)

∫
v∈UB(q,R)

‖d (γv(r), p) − d (γv(0), p) − r 〈v,∇d (p, ·)〉‖ dv ≤ εR

where UB (q,R) denotes the unit tangent bundle over the ball B (q,R).

There is a joint L1 formula but for the derivative of the distance d (γv(r), p),
which yields an L1 theorem for angles. Note that the above formula in the
integrand is even weaker than the corresponding one in Euclidean space, but
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a thin triangle

q r

p

d(p,γ)
γ

Fig. 6.44. A thin triangle

it is enough for Colding’s applications, described in chapter 12. Colding also
has a formula for manifolds with Ricci ≥ (d− 1)δ with δ of any sign.

One of the strongest of his formulas concerns the bound Ricci ≥ d−1. He
compares a manifold M satisfying this bound with the standard sphere Sd

and he obtains L2 theorems. We follow the pictures in figure 6.45. We compare
triangles, for congruent initial conditions. Pick points p, q ∈M and p, q ∈ Sd,

and unit vectors v ∈ TqM and v ∈ TqS
d. Assume that d (p, q) = d

(
p, q

)
and

that we have selected segments from p to q and from p to q. Suppose that the
angle between v and the tangent to the segment is the same as that between v
and the corresponding segment. We are interested in the respective distances

d(t) = d (p, γv(t))
d(t) = d

(
p, γv(t)

)
to the moving points γv(t) and γv(t) along the geodesics with initial velocities
v and v in the respective manifolds. The result is that we have, up to any

v
t

_v

in (M,g) prodicting the end point of γv(t)

Fig. 6.45. (a) In M . (b) Predicting the end point of γv(t)

ε > 0 and for almost all triangles as in the figure, a two sided comparison
theorem. This will hold provided that there exist points in the manifolds
whose distance is close enough to π.
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Theorem 77 (Colding L2 [386]) Let M be a Riemannian manifold with
Ricci ≥ d − 1. For any ε > 0 and s0 ∈ [π/2, π) there is a δ, depending only
on ε, s0 and d such that if there are two points p, q with d (p, q) > π − δ then
for every 0 < s < s0 one has

1
sVolUM

∫
v∈UM

∫ s

0

|cos d(t) − cos d(t)|2 dv dt < ε .

The analogous inequality for the angles αt and αt in figure 6.46 is also valid.

For the general case, Ricci ≥ (d−1)δ with δ of any sign, there is still a result,
but only for thin triangles:

Theorem 78 Suppose that a Riemannian manifold M satisfies

Ricci ≥ (d− 1)δ

and let dt (resp. dt) and αt (resp. αt) be the distances and the angles in M
(resp. in Sd (δ)) in the triangles as in figure 6.46. Then for any points p, q
such that d (p, q) > 2R and any ε > 0 there is a number c = c(δ,R, ε, d) such
that for any t < cR one has on the unit tangent bundles UB (q,R) (resp.
UB (q,R)) in M (resp. Sd (δ)) the bounds

1
VolUB (q,R)

∫
UB(q,R)

|dt − dt| < ε

1
VolUB (q,R)

∫
UB(q,R)

|αt − αt| < ε

in (M,g)

p

d(t)
αt

γ

in Sd

γ_

d(t)_
αt_

p_

Fig. 6.46. (a) In (M, g). (b) In Sd (δ)

All these Colding results can be seen as statements of probability predict-
ing the behavior of distance functions, or, say, where you land when starting
from p; see a typical application in theorem 320 on page 601.
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All preceding results rest finally on the following comparison theorem for
distance functions. Assume Ricci > (d − 1)δ and let f being any distance
function

f = d (p, ·) .

We have for the Laplacian Δf of f :

Proposition 79
Δf ≤ Δf

where Δf is the Laplacian in Sd (δ) of a distance function f on Sd (δ).

Of course this Laplacian is explicitly calculable in Sd (δ), depending only on
the dimension d and the lower bound δ. The proof is wonderfully simple and
starts with the Bochner–Weitzenböck formula from equation 15.8 on page 733
applied to the square norm of the gradient of distance functions f = d (p, ·):

−1
2
Δ
(
‖df‖2

)
= ‖Hess f‖2 − 〈df,Δdf〉 + Ricci (df, df) (6.20)

For distance functions, ‖df‖ is constant, so that the left hand side vanishes
identically. Then one remarks that 〈df,Δdf〉 is nothing but the derivative of
Δf along the gradient lines of f, which are geodesics, say γ so that along γ
one has, after applying Newton’s inequality to ‖Hess f‖2 as in theorem 181
on page 433:

(Δf ◦ γ)′ +
1

d− 1
(Δf ◦ γ)2 ≤ −Ricci (γ′, γ′) . (6.21)

In Sd (δ) one has equality with the constant d on the right hand side, so we
are finished by comparing solutions of the Ricatti equation. If one compares
this with what was done in §§6.4.1, it is nice to remark that here Δf is the
mean curvature of the level hypersurfaces of f.

Note 6.4.2.1 (Busemann functions) If Ricci > 0 one has Δf ≤ d−1
f .

This was known to Calabi. In particular for Busemann functions (see defi-
nition 334 on page 613), which are distance functions based at infinity, then
Δf ≤ 0 and f is subharmonic. This will be the core of the proof of theorems
of Cheeger & Gromoll 1971 [343] given in theorems 348 on page 622 and 349
on page 623. �

The above are the basic formulas which provide optimal control over any
function (distance or not). It is difficult to complete the proof. One has to
endure a lot of analysis, starting with Lichnerowicz’s inequality (theorem 181
on page 433) on the first eigenvalue of the Laplacian when the Ricci curvature
is positive. A second ingredient is the Cheng–Yau estimate of Cheng 1975
[362] for harmonic functions which says:
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Theorem 80 If Ricci > (d − 1)k (this k can be of any sign), and p is any
point, and f is a harmonic function, then

sup
B(p,R)

‖∇f‖ ≤ c(d, k,R) sup
B(p,2R)

f

for a constant depending only on the indicated data.

At first glance it is hard to believe Colding’s result, if we are caught in
the spirit of the two comparison theorems of §§6.4.1 with a lower and an
upper bound for the sectional curvature. After all, the formula above says
that, for small enough triangles, most of them are almost Euclidean in both
directions since the difference in the integral is bounded in absolute value.
But we are given only a lower bound for the Ricci curvature, so this seems
odd. The explanation (heuristic, this is of course not the proof) is that the
condition d (p, q) > 2R implies that the sectional curvature along segments
connecting p and q cannot be to large, thanks to the Bonnet–Schoenberg–
Myers theorem 62 on page 266. So we have upper bounds in disguise.

Note 6.4.2.2 In all of the above we assumed the smoothness of the distance
functions. They are smooth only outside of the cut locus (see §§ 6.5.4 on
page 302). To overcome this, there are a lot of technical tricks to work out,
for which we refer to the quoted references. �

Colding’s comparison theorems are only probabilistic, not deterministic,
but they provide control in both directions, and moreover they are optimal.
Recently results like those of Rauch and Toponogov appeared with “only”
lower Ricci curvature bounds, but not optimal. Still, they give upper esti-
mates. For example:

Theorem 81 (Dai & Wei 1995 [423]) In a Riemannian manifold Md with

Ricci ≥ (d− 1)δ

let J be any Jacobi vector field defined on [0, L] and in Sd (δ) pick a (“the”)
Jacobi vector field J0 with the same initial conditions. There is a universal
constant c = c(d, δ, L) such that, if there is no conjugate point3 before time
L for J , then

‖J(t)‖ ≤ exp
(
c
√
t
)
‖J0(t)‖

for t ∈ [0, L].

The proof is geometric, using a study of the geometry of the distance spheres,
based on results of Brocks 1994 [259].

How about upper bounds for Ricci curvature? This question is today an-
swered completely negatively. In §§12.3.5 we will meet Lohkamp’s results, to
the effect that with an upper bound on Ricci curvature one can still approx-
imate any metric while obeying such a bound.
3 See on page 292 for the definition of conjugate point.
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6.4.3 Philosophy Behind These Bounds

We comment very briefly on the above triangle comparison theorems. The
rough underlying idea for the case of two-sided bounds on sectional curvature
is that the sectional curvature (alias the curvature tensor) is some twisted
Hessian of the metric, say its weird acceleration or its second derivative. We
saw this in detail in § 4.5 on page 233.

In the same rough spirit, Ricci curvature is the Laplacian of the metric,
as can be guessed from formula 6.22, but there is a better answer. For this
we need to introduce harmonic coordinates.

Definition 82 Harmonic coordinates are sets of coordinates {x1, . . . , xd}
such all the xi are harmonic functions, i.e. Δxi = 0 for all i (the Lapla-
cian Δ is defined in chapter 9).

It is easy to see that such coordinates always exist in any sufficiently
small region. The precise optimal domains can be quite clearly specified. One
chooses d harmonic functions which are linearly independent and satisfy ad
hoc boundary conditions. This approach works only within the harmonic
radius which was first systematically introduced and controlled in Anderson
1990 [39]. Such a control is basic in many results and we refer for this to
the various references which we will meet in §12.4. With sectional curvature
bounds it is easier than with Ricci ones. For the historian we note that
harmonic coordinates were employed a long time ago by theoretical physicists
such as Einstein 1916 [484] and Lanczos 1922 [844]. The founding paper is
Jost & Karcher 1982 [769]; also see Hebey & Herzlich 1995 [693]. In §§11.4.1
harmonic coordinates are the basic tool to prove that Einstein manifolds are
necessarily real analytic.

The underlying idea is briefly this: in normal coordinates, given control
of the curvature (via for example Rauch comparison) one needs to integrate
the equation of geodesics and thereafter to integrate the Jacobi vector field
equation which is of second order, so that finally one loses at least one deriva-
tive in information on the metric. Harmonic coordinates enable us not to lose
any derivative in the control. For Ricci curvature, which would be awful in
general coordinates using equation 4.44 on page 235, the analysis is better in
harmonic coordinates:

Δgij +Q(g, ∂g) = −Ricciij (6.22)

where Q involves the first derivatives of g only quadratically.
This will turn out to be essential for convergence theorems under Ricci

curvature lower bounds: see e.g. theorem 385 on page 656. We will sometimes
play with the maximum principle, armed with Laplacian estimates: think of
Liouville’s theorem to the effect that any bounded harmonic function defined
on the whole plane has to be constant. See also fact 281 on page 557 for some
analogous ideas.
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6.5 Injectivity, Convexity Radius and Cut Locus

6.5.1 Definition of Cut Points and Injectivity Radius

Pick some point m ∈ M in a complete Riemannian manifold and look at
the exponential map at m. We want to study the behavior of the various
geodesics emanating from m. Our manifold being complete these geodesics
can be extended indefinitely (this does not preclude their coming back and in
some cases doing horrible things as their lengths become larger and larger).
From §§6.1.1 we know that for a some small enough but positive number r
the exponential map is a diffeomorphism: the geodesics from m do not meet
again; they form a nice spray around m and they are segments between m
and their various end points. We are then naturally forced to ask ourselves
the following question:

Question 83 What is the largest possible r for which the exponential map is
a diffeomorphism? Try if possible to get some control on this r with various
invariants—preferably with the curvature.

One can ask first for less:

Question 84 How long does a given geodesic γ emanating from a point m
remain a segment from m to its extremity?

The question was partially attacked in § 3.3 on page 139. We just remark that
if one looks at spheres of various radii this forces the sectional curvature to
enter into any result. But also the cylinder (or flat torus) shows that periodic
geodesics cannot be avoided: curvature bounds are not enough. The fact that
two completely different kind of conditions enter into the picture explains
why the subject is difficult. This dichotomy can also be felt as follows: the
exponential map can fail to be a local diffeomorphism either because it ceases
being one-to-one or because its derivative does.

Optimal results for question 83 were uncovered by Klingenberg in 1959
and Cheeger in 1969. To present these results we first answer question 84. A
convenient definition:

Definition 85 Two points m and n on a geodesic γ are said to be conjugate
on γ if there is a non-trivial Jacobi vector field along γ which vanishes both
at m and at n. This is a symmetric relation. Moreover it is equivalent to say
that the derivative of the exponential map expm is not one-to-one at the point
exp−1

m (n) ∈ TmM obviously defined by n and γ.

Now we sum up the elementary facts which completely solve question 84:

Theorem 86 Let m = γ(0) be the initial point of a geodesic γ. Then there
is a number t > 0 (which can be infinite) such that γ is a segment from m to
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n

m

m
n

m

n

for a flat torus or a cylinder a geodesic
can stop to be a segment with no control

what happens (generally) when the derivative
of the exponential map is no longer of maximal rank

Fig. 6.47. (a) A geodesic on a flat torus or cylinder can cease to be a segment—
curvature control is insufficient. (b) What happens (generically) when the derivative
of the exponential map is no longer of maximal rank

γ(s) for every s ≤ t and for s > t thereafter never again a segment from m to
any γ(s) for s > t. This number t is called the cut value of γ, and denoted by
Cut (γ). The point γ (Cut (γ)) is called the cut point of γ. There are only two
possible reasons (which can occur simultaneously) for n to be the cut point of
γ :

1. n is conjugate on γ to m or
2. there is a segment from m to n different from γ.

Spheres are examples for which both forms of segment degeneration oc-
cur at the same time at the antipode. A more interesting one is a prolate
ellipsoid of revolution. Look at the equator (which is a geodesic). The nature
of the cut locus of an ellipsoid is still a matter of conjecture; see page 144.
Please compute the exact cut value along the equator and look for where two
different segments with common ends appear.

Theorem 86 is often used a contrario: before the cut value, the exponential
has one-to-one derivative; in particular no Jacobi vector field vanishing at the
origin can vanish between the origin and the cut value.

There are essentially two puzzles in the theorem; namely the two last
assertions. The first is easy: look at the picture and apply the strict triangle
inequality 6.5 on page 248 The second is less obvious. We sketch the proof,
which is very interesting, and for details refer the reader to 2.2 of chapter 13
of do Carmo 1992 [452], 2.1.7 of Klingenberg 1995 [816], 5.2 of Cheeger &
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oblate ellipsoid : please complete
the cut-locus of  m  if needed

m

Fig. 6.48. Oblate ellipsoid: please complete the cut locus of m if needed

prolate ellipsoid : 
please complete the cut-locus of  m  

m m

Fig. 6.49. Prolate ellipsoid: please complete the cut locus of m

m n pγ

Fig. 6.50. On γ, from m up to p the derivative of expm is one-to-one

Ebin 1975 [341], 3.78 of Gallot, Hulin & Lafontaine 1990 [542], and III.4 of
Sakai 1996 [1085].

We have to prove:

Lemma 87 If m = γ(0) and n = γ(t) are conjugate along γ, then for every
s > t the geodesic γ is no longer a segment on the interval [0, s].

Let Y be the Jacobi vector field vanishing at 0 and t. It defines a one pa-
rameter family of curves with m and n as ends. The Jacobi equation 6.11 on
page 271 implies that the second variation (equation 6.7 on page 264) vanishes
for this variation. In fact the integrand reads now as an exact derivative:
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0

(
‖Y ′‖2 + 〈Y ′′, Y 〉

)
dt =

∫ t

0

〈Y ′, Y 〉′ dt

= 〈Y ′(t), Y (t)〉 − 〈Y ′(0), Y (0)〉
= 0

and gives zero at both ends. We have the same situation as with two different
segments, but only infinitesimally. With a little gluing, it is not hard to make
a family of curves out of Y from γ(0) to γ(s > t) with negative second
variation (see figure 6.51).

Y

0 t – ε t t + ε

Y(t – ε)
Z

Fig. 6.51. Producing a negative second variation

Using continuity and compactness arguments one checks that the follow-
ing definition and results make sense:

Proposition 88 At a given point m in a Riemannian manifold M the infi-
mum of the cut values of the various geodesics emanating from m is positive;
it is called the injectivity radius of M at m and denoted by Inj (m). This
radius Inj (m) is continuous in m. In particular if M is compact it has a
positive minimum on M called the injectivity radius of M and denoted by
Inj (M).

The injectivity radius Inj (M) is the basic metric control one needs. Every
piece of geodesic of length smaller than or equal to Inj (M) is a segment. Every
open metric ball B (m, r) of radius r ≤ Inj (M) is diffeomorphic to Rd. Note
that without compactness the injectivity radius need not be positive, as in
figure 6.52.

metric balls

Fig. 6.52. Vanishing injectivity radius
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6.5.2 Klingenberg and Cheeger Theorems

The first of these theorems says that Inj (M) can be controlled—for a compact
manifold—with merely an upper bound for the sectional curvature and a
lower bound for the length of the periodic geodesics:

Theorem 89 (Klingenberg 1959) If M is a compact Riemannian mani-
fold with sectional curvature K ≤ Δ everywhere then the injectivity radius of
M is not smaller than the lesser of the two numbers

1. π/
√
Δ

2. half the length of the shortest periodic geodesic.

A more precise statement comes from the proof itself. It says that, in the
case where the second entry in the inf is used, we have equality. On the other
hand, for the first entry, in most cases there is no periodic geodesic with
length precisely π/

√
K. For example, for manifolds of nonpositive curvature,

only periodic geodesics will matter here, since there are no conjugate points:
see theorem 72 on page 278. The content of this section is covered by the
following references: chapter 5 of Cheeger & Ebin 1975 [341], 3.2 of Chavel
1993 [326], 2.13 of do Carmo 1992 [452], and chapter V of Sakai 1996 [1085].

δ'(m) = – γ'(m)
γ'(m)

m

n
δ'(n) = – γ'(n)

γ δ

θ

δ'(n)

γ'(n)

γ'(n)

δ

γ

m

n

H

Fig. 6.53. TnH = {ξ | 〈ξ, δ′(n)〉 = 〈ξ, γ′(n)〉}

The idea of the proof is too nice not to be presented. First, Rauch’s
inequality of proposition 74 on page 282 shows that there are never conjugate
points before the fateful value π/

√
K. Assume that Inj (M) < π/

√
K. We

apply the duality from theorem 86 on page 292 and consider any pair of
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points m,n which are joined by two distinct segments associated to geodesics
γ and δ and with d (m,n) < π/

√
K. Look at the exponential map expm

around γ and δ : at both places its derivative is of maximal rank. This shows
that locally around n there is some hypersurface H with every one of its
points r situated equidistant from m on two different segments. Then by
the first variation equation 6.3 on page 247 the tangent space TnH to the
hypersurface H at n is precisely the bisector in TmM of the two tangent
vectors γ′(n) and δ′(n). If we are not in the case where γ′(n) = −δ′(n) then
some points in H will be joined to m by two different segments of the same
length, that length being smaller that d (m,n). This implies that if you pick
two points m and n such that

d (m,n) = Inj (M)

which is the absolute minimum (this is always possible by compactness) we
necessarily have γ′(n) = −δ′(n). But replacingm by n, γ′(m) = −δ′(m). This
says exactly that γ ∪ δ is a periodic geodesic of length equal to 2d (m,n) .

In general the length of periodic geodesics cannot be controlled with just
the curvature: consider a flat rectangle two-dimensional torus. The curvature
is the best possible, identically zero, but one can have periodic geodesics of
length as small as desired. But assume that one knows that the area is not
too small; then this will force the diameter to be large. See figure 6.56 on
page 299 for the four required counterexamples. Conversely, Cheeger proved
that no more is needed:

Theorem 90 (Cheeger 1970 [330]) The length of periodic geodesics on
a compact Riemannian manifold of given dimension can be controlled from
below with the three following ingredients (besides the dimension, of course):

1. a lower bound δ for the sectional curvature
2. a lower bound for the volume VolM and
3. an upper bound for the diameter diamM .

Cheeger employed beautiful “butterfly” arguments; see page 63 of Cheeger
1970 [330]. However, now we have a much simpler and more powerful argu-
ment, yielding better constants, which was given in Heintze & Karcher 1978
[699]. The idea is simple: start with a periodic geodesic γ of length L and draw
all the geodesics orthogonal to it of length equal to the diameter diamM .
This “tube” will certainly cover M completely; this is seen by considering,
for any point p ∈M the point q of γ which is closest to p: γ is perpendicular
to any segment from p to q by the first variation formula. But an extension to
this situation of Rauch’s comparison theorem (theorem 74 on page 282) will
tell you that the volume of this tube (which in fact coincides with the volume
of M) is bounded from above as a function of δ, diamM and of course L. So
if the diameter and L are very small then VolM will be too small.

Technically, one has to be a little more careful, as in the proof of the
classical isoperimetric inequality given on page 75. For every point m ∈ M
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γ

filling M completely 
by geodesics normal to γ

Fig. 6.54. Filling M completely by geodesics normal to γ

take a point p(m) ∈ γ as close as possible to m and pick a segment ξ from
p(m) to m. Of course

d (m, p(m)) ≤ diam g.

But when one applies Rauch’s type of upper bound for computing the in-
finitesimal volume element along the segment from p(m) to m, one has a
proviso as on page 75. The proviso is that no Jacobi vector field along ξ
starting with zero derivative at p(m) can be allowed to vanish before m. This
is technically proved mutatis mutandis exactly as in lemma 87 on page 294.
We will use this technique again in §§§7.1.2.1.

γ

γ'(p(m)) = Y(0)

p(m)

Y

t

m

Fig. 6.55. If there is a Jacobi vector field Y with Y (0) = γ′ (p (m)) and Y (t) = 0,
with t < d (m,p(m)) then there is a negative second variation from p(m) to m

Scholium 91 The injectivity radius is either equal to half the length of the
smallest periodic geodesic or equal to the smallest distance between two conju-
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gate points (which is always bounded from below by π/
√
K but not in general

to equal to this bound).

Note 6.5.2.1 Optimality, i.e. the need for these four ingredients entering
Cheeger’s theorem is evident in the pictures in figure 6.56. �

1
ε

ε
1/ε

m n

flat rectangular torus with sides ε and 1

flat torus with sides ε and 1

dumbell prolate ellipsoid

Fig. 6.56. (a) Flat rectangular torus with sides ε and 1. (b) Flat torus with sides
ε and 1/ε. (c) Dumbbell. (d) Prolate ellipsoid.

Note 6.5.2.2 In Heintze & Karcher 1978 [699] one finds a lower bound for
the injectivity radius with weaker ingredients, namely: inf Ricci, supK, diam,
and Vol . Theorems 89 on page 296 and 90 on page 297 solve the injectivity
radius problem for a “general” situation. �

Note 6.5.2.3 Using results from § 6.2 on page 262, on a manifold of positive
curvature, with say 0 < δ ≤ K ≤ Δ, a bound on the diameter is obtained for
free. �

Note 6.5.2.4 On surfaces, with the Gauß–Bonnet theorem (theorem 28 on
page 155) we can cancel the volume lower bound. More precisely let us as-
sume, say, that −1 ≤ K ≤ 1. Then theorem 28 reads:

2π ‖χ(M)‖ =
∥∥∥∥∫

M

K(m) dm
∥∥∥∥ ≤

∫
M

‖K(m)‖ dm ≤ VolM (6.23)

to the effect that we have a lower bound for the volume, employing only
curvature bounds, provided that ξ(M) �= 0. This excludes the torus and the
Klein bottle.

This is one motivation for finding generalizations of the Gauß–Bonnet
formula to any dimension. We will uncover such generalizations in § 15.7 on
page 735. �
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Note 6.5.2.5 We come back to positive curvature. The natural question is to
find all possible differentiable manifolds which can carry some metric of pos-
itive curvature (“curvature and topology”). Among surfaces, only the sphere
and the projective space can carry such metrics because of the Gauß–Bonnet
formula. For higher dimensions, chapter 12 will show that the injectivity ra-
dius is important. We quote now what is known about the injectivity radius.

Theorem 92 (Klingenberg 1959 [811, 812]) Let M be a compact ori-
ented and simply connected manifold with 0 < K ≤ Δ. If either

1. M has odd dimension and satisfies the “pinching” hypothesis

δ ≤ K ≤ Δ

with δ/Δ > 1/4 or
2. M has even dimension

then the injectivity radius of M satisfies

Inj (M) ≥ π√
Δ
.

The even dimensional case is proven with a trick based on the proof of
Synge’s theorem (theorem 64 on page 269). The odd dimensional case is
more elaborate—it uses Morse theory (see §§10.3.2 or 13.3 of do Carmo 1992
[452] or chapter 6 of Cheeger & Ebin 1975 [341]). The idea of Klingenberg
is explained below, but is harder to work with when the ratio δ/Δ hits 1/4,
and was a little gappy there for a long time. The proof is very delicate and
had to wait for Cheeger & Gromoll 1980 [345].

�

What happens just below 1/4 was a complete mystery until

Theorem 93 (Abresch & Meyer 1994 [8]) If a compact manifold M has
δ ≤ K ≤ Δ with δ and Δ positive and

δ

Δ
>

1
4 (1 + 10−6)

then
Inj (M) ≥ π√

Δ
.

The proof is long and subtle. One can also look at the very recent survey
Abresch & Meyer 1996 [7]. It starts with the Klingenberg–Cheeger–Gromoll
“long homotopy” lemma: the initial idea is to take the smallest periodic
geodesic and to consider a suitable deformation of it into a point (the manifold
being simply connected). The key idea of Klingenberg is to use Morse theory
to get the fact that, during the “long” homotopy, conjugate points will show
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up. Then one uses curvature assumptions to get a contradiction as follows.
We assume that there is a small periodic geodesic γ of length smaller than
2π/

√
Δ and pick any point m ∈ γ. Simple connectivity implies the existence

of a homotopy between γ and the point m. If all the lengths of the curves
in this homotopy are smaller than 2π/

√
Δ then the entire homotopy can

be lifted by the exponential map expm into TmM, because the exponential
map is a covering on the ball B

(
0m, π/

√
Δ
)
. This is a contradiction because

the lift of γ will have two ends! In any homotopy, when one has a curve of
length larger than π/

√
δ there is always a way to shrink all the lengths of

the homotopy around it. Here, we require negative second variation on a two
dimensional space of variations which is the worst possible case when our
curve is a geodesic. Looking at the proof of Myer’s theorem (theorem 62 on
page 266) we see that there will always be a (d − 1) dimensional space of
negative variations, and we are done since d ≥ 3. It remains to be sure that
our length is larger than π/

√
δ, but our hypothesis says that one cannot have

π/
√
δ > 2π/

√
Δ. This proceeds easily when δ/Δ > 1/4. A little more care is

needed, as we have already said, when δ/Δ = 1/4.

γ'

"the long homotopy"

γm

a conjugate point to p on γ' 

Fig. 6.57. The “long homotopy”

But when δ/Δ is actually below 1/4, one has to work harder with the
curvature assumption, and also with the various holonomy elements along
the period geodesic. Holonomy will be discussed at large in chapter 13. In
Synge’s theorem, the holonomy element involved always had a fixed vector;
here one has to put in more work and control the various angles showing up
in the decomposition of the linear isometry into plane rotations given by the
holonomy.

On the other hand, one cannot do better in a sense, because there are
examples of compact simply connected Riemannian manifolds with positive
curvature and injectivity radius Inj (g) as closed to zero as desired, with Δ
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fixed. What might be improved is the value of ε; see §§12.2.2 for applications
of this and more.

6.5.3 Convexity Radius

We come back to §§6.1.3 were it was proven that there are convex balls
centered at any point of any Riemannian manifold. Again we ask the same
question as for the metric balls: we want to control the radius of such balls.

Definition 94 The convexity radius of a Riemannian manifold M is the
infimum of positive numbers r such that the metric open ball B (m, r) is
convex for every m ∈M.

Compactness is really needed to ensure a positive convexity radius; see the
picture in figure 6.52 on page 295. The following facts are not too difficult
(see 7.9 of Chavel 1993 [326] or 5.14 of Cheeger & Ebin 1975 [341]).

Proposition 95 If M is compact, then its convexity radius is positive. It is
always less or than equal to half of the injectivity radius. The convexity radius
CvxRad (M) satisfies

CvxRad (M) ≥ the smaller of

{
1
2 sup π√

K
1
4 length of shortest periodic geodesic.

Apparently, there is no example in the literature with the convexity radius
smaller than half of the injectivity radius. A natural conjecture is that such
a bound should not be too difficult to prove.

To prove the above proposition, one can think of the sphere, for which
π/2 is the convexity radius. On the other hand one, can look at the pictures
in figure 6.58 on the next page of Jacobi vector fields; as soon as the norm
decreases, convexity is lost.

An important application of the existence of a positive convexity radius
on a compact Riemannian manifold was given above to triangulate surfaces;
see the note 3.4.5.3 on page 157.

6.5.4 Cut Locus

We fix a point m of a Riemannian manifold M and use the name cut locus of
m, denoted by Cut-Locus (m) , the set of cut points of the various geodesics
emanating from m. This is always a closed subset (possibly empty, or with
branches going to infinity) of M. Just as the metric of a Riemannian manifold
cannot in general be explicitly computed, the same is true for the cut locus.
In fact, it is even harder to find its geometric structure. However it is of
basic importance in control theory when the Riemannian manifold under
consideration has any practical significance. Starting from m and arriving at
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maximum of || Y ||

Y

0 t

π/2

(S2 standard)

convexity is lost after t

Fig. 6.58. Some Jacobi vector fields

the cut locus means some kind of catastrophe. Or, at least, it leaves us with
a difficult decision as to the shortest path to follow; moreover the distance
function will not be smooth there (see definition 305). We met the cut locus
first on page 44 and then in more detail in the context of surface theory in
§3.3 for surfaces. We are going to survey the state of knowledge about cut
loci in general dimensions.

We are aware of only one survey on the cut locus: Kobayashi 1989 [825],
and a great deal has been discovered since its date of publication. One can
look at 3.81 in Gallot, Hulin & Lafontaine 1990 [542], at chapter 2 of Klingen-
berg 1995 [816] and at III.4 of Sakai 1996 [1085]. To make up for the absence
of a more complete survey, we will present here a complement to Kobayashi’s
survey. The reader will find many references and much historical information
in the first pages of Buchner 1978 [275]. For historians, it might be interest-
ing to know that Élie Cartan used the cut locus in studying the topology
of Lie groups in Cartan 1936 [316], precisely to prove that the second Betti
number of a simple Lie group always vanishes, the reason being that the root
structure forces the cut locus to be at least of codimension 3. Cartan also
studied cut loci in Cartan 1988 [321], but it seems that he was unaware of
the results of Poincaré and Myers.

By theorem 72 on page 278, the cut locus is always empty, for any point in
any simply connected Riemannian manifold of nonpositive curvature. Recall
that examples of surfaces were given in §3.3. We will now make a list of
the positively curved compact manifolds where the cut locus is completely
described. For spheres, the cut locus of every one of its points is a single
point: its antipode. Taking the quotient by the antipodal map, one gets the
standard real projective space; the cut locus of any point of the real projective
space is the dual hyperplane, namely the image under the antipodal quotient
of the associated equator in the sphere.
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More generally, the same applies to the various KPn of §§§4.1.3.5: the cut
locus of every point is the dual hyperplane which is a KP

n−1; see §§6.1.5. So
the cut locus of any point is a nice submanifold (located at constant distance
π for a suitable scaling of the metric) of dimension

n− 1, 2(n− 1), 4(n− 1), or 8

if, respectively
K = R,C,H,Ca .

For more information, see 2.114 of Gallot, Hulin & Lafontaine 1990 [542], or
3.E of Besse 1978 [182]. Note that for these manifolds, the injectivity radius
and the diameter are equal; see §§6.5.5 for more on that.

For a flat torus obtained as the quotient of Rd by a lattice Λ (see §§4.3.3)
the cut locus is the image by the exponential map (which here is also the
quotient map) of the boundary of the fundamental domain. We suggest to
the reader that she make drawings, at least on a two-dimensional flat torus,
to determine the structure of the cut locus of a point in a flat torus, paying
attention to the different possible cases. For tori of revolution embedded in
R3, see §3.3.

3
2

2

2 2

2

2
3

3

3

3

3

m

The cut-locus of this flat torus in TmM before expm
The cut-locus of m in M is its image by expm

Fig. 6.59. The cut locus of this flat torus in TmM before expm. The cut locus of
m in M is its image under expm.

For other space forms (see §§6.3.2), cut loci are more or less work-
able. They were completely determined for (compact) symmetric spaces by
Takeuchi 1979 [1179]. This illustrates the philosophy (see §§4.4.3) that sym-
metric spaces are completely accessible to explicit determination of their ge-
ometric invariants through algebra. An exception will be the isoperimetric
profile; see §§§7.1.2.1.

We saw in §3.3 that the cut locus of the quadrics in E3 are conjecturally
topological intervals. It seems to be an open problem to find the cut locus
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structure of quadrics in higher dimensions as well as to find, even to guess, a
complete proof for the E3 quadrics.

There is only one other example that the author is aware of: namely
the 3-dimensional sphere (or the 3-dimensional real projective space). We
saw in §§4.3.3 that the motions of a rigid body around its center of gravity
are given as the geodesics of the group SO (3) for a left invariant metric
depending on three parameters {a, b, c}. For simplicity, we will examine the
universal covering which is (see §§4.1.2) the sphere S3 considered as a Lie
group. So S3 has left invariant metrics depending on constants {a, b, c} (of
course, only different ratios will give different geometries, after rescaling). To
our knowledge it is open to find the structure of the cut locus when a < b < c.
When a = b < c, the cut locus was determined by Sakai in Sakai 1981 [1084].
It has the structure of a disk: inside the disk, two different segments meet;
at the boundary only one segment reaches the disk. For the case a < b = c,
it seems to us (to be checked) that the cut locus is a segment. Inside the
segment, a one-parameter family of segments arrive, at both ends only one
segment does. See figure 6.60.

A reasonable guess when a < b < c might be that the cut locus has
the same structure as the “cut locus” of a solid 3-dimensional ellipsoid with
unequal axes. By this we mean the closure of the set of points inside the
ellipsoid which are connected to the surface of the ellipsoid by more than
one segment. The structure of this naive object was determined recently in
Degen 1997 [437]. It is always a topological disk located in the principal plane
of coordinates. The proof is quite simple: such points are centers of spheres
bitangent to the ellipsoid, and classically the line of their contact points is
orthogonal to the principal plane.

A positive answer for the homogeneous metric on S3 (see §§4.3.8) will
however not solve the following question: launch a body around its center of
gravity and ask when the attained position can be obtained from a different
initial position in the same time. This is because one has to work on RP3

instead of S3. In exchange, a continuity argument shows that when the three
moments of inertia are close enough, the cut locus is a smooth surface as it
is in RP3. This is because accidents in smoothness could happen only when
conjugate points show up. And they also depend continuously on the inertia
parameters.

Note 6.5.4.1 (Poinsot motions) The motions of a body around its cen-
ter of gravity have a marvelous geometric interpretation due to Poinsot 1842
[1035]; see figure 6.62 on page 307. Take the ellipsoid of inertia of the body.
The motions of the body are the same as those obtained by rolling the ellip-
soid of inertia on a plane without sliding. The distance of the plane to the
center of the ellipsoid depends on the initial conditions. For proof, and more,
see (for example) §29 of Arnold 1996 [66]. We cannot resist mentioning that
the curves drawn out on the surface of the ellipsoid are the intersection of the
ellipsoid with the various spheres centered at the center of the ellipsoid; this



306 6 Metric Geometry and Curvature

1

1

1 1
1

1

1

22
2

2
2

∞

∞

∞

∞

∞

in these pictures the numbers indicate the numbers indicate
the number of different segments attaining the point

Fig. 6.60. In these pictures, the numbers indicate the number of segments reaching
that point

a sphere bi-tangent to
an ellipsoid touches it in

two points on a line
parallel to the medium-axis

the inner cut-locus

Fig. 6.61. (a) A sphere bitangent to an ellipsoid touches it in two points on a line
parallel to the medium axis. (b) The inner cut locus
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(a) Rolling an ellipsoid as Poinsot motions

(b) Motions drawn on the ellipsoid

Fig. 6.62. The visual interpretation of the Poinsot motions
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is pictured in figure 6.62. From this, you will deduce immediately the Euler
theorem: around the longest and the shortest axes of inertia, the motions are
stable, but the motion around the middle axis is unstable. Please check this
by launching a book (not a square book, a truly rectangular one) around the
three possibilities. �

Note 6.5.4.2 Most often, a clear picture of the cut locus can only be at-
tained from one of the first conjugate locus: this is the set made up by fol-
lowing the geodesics propagating from a given point, up to the first conjugate
point. By theorem 86, the cut point always appear just at or before the first
conjugate point. Conjugate points are apparently more accessible because
they are given by the Jacobi differential equation for geodesics. For the el-
lipsoid, this requires only hyperelliptic functions; see the conjectured picture
for an ellipsoid in figure 3.30 on page 147. �

We now present what is known about the cut locus (to our knowledge).
First, as in §3.3 the cut locus is closed and is the closure of the set of points
attained by two different segments; see 2.1.14 in Klingenberg 1995 [816] for
a proof. Second, as already mentioned for surfaces in §3.3, the cut locus of
a smooth manifold can be a very bad set, e.g. nontriangulable: see Gluck
& Singer 1979 [570]. The cut locus of a real analytic metric is subanalytic,
and in particular is triangulable: we saw in §3.3 that this was proven by
Myers for surfaces in 1935. For higher dimensions, this result remains true
but the proof is much much more expensive and due to Buchner 1977 [273].
In dimension two, this means that the cut locus is a nice graph. Myers showed
that the order of a point in the graph is equal to the number of the segments
connecting it to m.

For smooth manifolds, Buchner 1977,1978 [274, 275] and Wall 1977 [1228]
proved:

Theorem 96 (Buchner & Wall) The cut locus of a smooth compact man-
ifold is triangulable for generic Riemannian metrics and moreover is stable
under perturbations of the metric. The stability is smooth up to dimension 6,
thereafter only continuous.

In Buchner 1978 [275] the various possible local structures of the cut locus
around a cut point are described for generic metrics up to dimension 6. We
give the pictures for dimensions 2 and 3 in figure 6.63 on the next page.

The difficulty for all these studies is an unavoidable dichotomy for cut
points: the mixture of points with two different segments and conjugate
points.

The structure of the generic conjugate locus was investigated back in 1970
by Weinstein 1968 [1247]. We only note here that, contrary to what most
people think, the conjugate locus is not always closed in M : see Margerin
1992 [896].
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Fig. 6.63. Cut loci in 2 and 3 dimensional compact Riemannian manifolds

Studies on the cut locus have been infrequent after Buchner. However,
very recently there has been a strong revival. Firstly concerning surfaces,
Itoh 1996 [758] showed that the cut locus of a surface always has finite 1-
dimensional Hausdorff measure; this solves Ambrose’s problem for surfaces:
Ambrose asked (back in 1956) if curvature and parallel transport from one
point determines completely the Riemannian metric. The Ambrose problem
is discussed on page 273 and on page 730. Finally, cut loci are not incorrigible;
see Itoh 1996 [758] for a relation between their Hausdorff dimension and the
smoothness of the metric. See Itoh & Tanaka 2001 [759].

The reader versed in analysis will be pleased to note that we will meet
the cut locus in studying heat diffusion in a Riemannian manifold in the
discussion of theorem 168 on page 424.

It is interesting to contrast cut loci in Riemannian manifolds with those
of a more general metric space. For example, on convex surfaces (defined as
boundary of a convex body in E3) the set of points y which can be joined to
a given point x by at least three different segments can be everywhere dense
in the surface. In particular we are very far from having positive injectivity
radius: see Zamfirescu 1996 [1301]. For Alexandrov spaces, see Shiohama
& Tanaka 1992 [1135], for Carnot–Carathéodory metrics (see §§14.5.7) the
injectivity radius is zero in general, see El Alaoui, Gauthier & Kupka 1996
[487].
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6.5.5 Simple Question Scandalously Unsolved: Blaschke Manifolds

We start with this section with a trivial remark: for any Riemannian manifold,
Inj (M) ≤ diamM. A curious mind will ask which manifolds achieve equality:

Question 97 What are the compact Riemannian manifolds M for which

Inj (M) = diamM?

This is an extremely strong condition and the naive reader will suppose its
solution easy, namely that only the standard KP

n and of course the spheres
enjoy this property (see §6.5.4). Nevertheless the question is still open today.
Indeed, no other examples are known than the KP

n and the spheres. It is
even unknown if there are others. Here is the beginning of what we know.
The basic reference, up to 1978, is Besse 1978 [182]. For more see §10.10.

The condition is in fact very strong. Let us normalize the manifold with

Inj (M) = diamM = π.

So the cut value of every geodesic is constant and equal to π. Constancy
of the cut value for all the geodesics emanating from a given point is not a
strong condition; this always happens in a surface of revolution for the north
pole, the cut locus being reduced to the south pole. But we ask that this
occurs for every point. Pick a point m ∈M and take n in its cut locus. Let γ
be some segment from m to n : then looking at points of γ after n one sees
that in fact γ is a periodic geodesic of total length 2π. So M is a manifold
all of whose geodesics are closed. Such manifolds will be studied in §10.10.
We turn our attention to digging out information that can be obtained with
simple geometric means (essentially the first variation formula).

First, the set of all segments from m to n build up a smooth sphere which
can be denoted by S(m,n). All of these spheres have the same dimension. The
cut locus of m is a smooth submanifold of M of dimension complementary
to that of the S(m,n).

With the use of expensive tools from algebraic topology, we will see in
§§10.10.2 that the only possibilities for the dimension of the S(m,n) are
precisely the same as for the sphere and the KPn: if k = dimR K, then the
possible dimensions are the multiples of k. And more: the topology of M
is known to be almost that of a KPn. We will also see in theorem 257 on
page 520 that the question is solved for topological spheres, and the answer
is the expected one: our manifold has to be isometric to a standard sphere or
a standard real projective space (where standard means of constant sectional
curvature).
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Fig. 6.64. Behaviour of the cut locus

6.6 The Geometric Hierarchy and Generalized Space
Forms

Except in §§6.6.1, we will only consider compact Riemannian manifolds, for
simplicity. Noncompact cases, especially those of finite volume, are vitally
important and under earnest study. The special manifolds of this chapter,
and their quotients, arise naturally in number theory (as modular domains),
geometry and dynamical systems. Some references to these neighbouring sub-
jects will be given. References for space forms are Gromov and Pansu 1991
[637], Vinberg 1993 [1221] and, for the influence of Calabi, Berger 1996 [168].
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6.6.1 The Geometric Hierarchy

6.6.1.1 Space Forms Let us consider Riemannian geometry as a general-
ization of Euclidean geometry. The first level of generalization is to look at
metric spaces which are 3 point transitive (or satisfy the mobility axiom) as
seen on page 276 We found that these spaces are precisely the simply con-
nected, constant sectional curvature manifolds, namely (besides Euclidean
spaces) the spheres and the hyperbolic spaces.

6.6.1.2 Rank 1 Symmetric Spaces Pursuing our hierarchy, we look now
for metric spaces which are “only” 2 point transitive i.e. there is always an
isometry carrying one pair of points into another pair (provided of course
that their respective distances are equal). Another formulation is: we are
looking for spaces which are isotropic, in that all unit tangent directions are
metrically equivalent. The simply connected ones are all known. Discarding
the constant curvature ones discussed about, we are left with the KPn and
their negative curvature analogues, denoted here by HypnK. They are the
symmetric spaces of rank one, see §§4.3.5. Their curvature ranges from 1/4
to 1 (or from −1 to −1/4) after normalization. The CPn together with the
HypnC are the complex geometries corresponding to spheres and hyperbolic
spaces. Their classification is in Wang 1952 [1233] for the compact ones and
in Tits 1955 [1192] for the noncompact ones. It is still a long story to carry
out the classification in detail; the best reference today to our knowledge is
Karcher 1988 [779] (see page 120). The difficult part of the proof is to show
that one is in a symmetric space, see Szabo 1991 [1173] for a short proof.
Then the space is forced obviously to be of rank 1, see §§4.3.5.

6.6.1.3 Measure Isotropy The search for spaces which are only measure
isotropic (so called harmonic) started in the early 1940’s. There are many
equivalent definitions; the first says that at every point the solid angle (the
infinitesimal measure along a geodesic starting from this point) depends only
on the distance. The word harmonic was chosen because this condition is
equivalent, at least locally, to the property that the value at every point p of
any harmonic function f (i.e. a function satisfying Δf = 0) is equal to the
mean value of f on every metric sphere centered at p. Lichnerowicz conjec-
tured in 1944 that such spaces are, at least locally, isometric to a space form of
rank one, so that measure-isotropy forces metric isotropy. After many inter-
mediate results, the conjecture was settled positively for compact manifolds
by Szabó in 1990 and then negatively for noncompact manifolds by Damek
and Ricci. All of the references can be found in Berndt, Tricerri, & Vanhecke
1995 [180] and its bibliography. Conversely, harmonic compact manifolds of
negative curvature are also proven in Besson, Courtois, & Gallot 1995 [189]
to be symmetric spaces; this is a corollary of theorem 251 on page 510.
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6.6.1.4 Symmetric Spaces Next in the hierarchy are the symmetric spaces
of §§4.3.5. In some sense, their geometry is completely computable; in partic-
ular answers to metric questions and the geodesic flow. This does not prevent
certain features from being very hard to work out explicitly, e.g. the complete
trigonometric formulas for triangles in Leuzinger 1992 [860].

6.6.1.5 Homogeneous Spaces A further step down is to look for merely
homogeneous spaces—namely we ask the isometry group to be transitive.
Thus the geometry will be the same at every point, as in Euclidean spaces. It
turns out that this last class is extremely large and then we will not look for
their space forms. But we will meet many of them in the future, because their
curvatures can be computed (to some extent, and sometimes awkwardly).

6.6.2 Space Forms of Type (i): Constant Sectional Curvature

Do not think that everything is known today about constant sectional curva-
ture manifolds. Moreover the subject is a whole field in itself. Let us me add
just one more motivation, among many others possible. To study dynamics
on a plane polygonal billiard with angles rational multiples of π one attempts
to build a space form by identification along the sides of the polygon. This
very nearly yields a space form, of zero curvature (flat), with a finite number
of exceptional points where the surface is not smooth but has a conical an-
gle an integral multiple of π. However, to study such an object, one endows
it with a metric of constant negative curvature. For various references and
beautiful results on this topic, see the survey which is part II of Vinberg 1993
[1221]. In a different context, a very brief survey is given in Berger 1996 [168].
We now present another survey because of the importance of the subject.

Today our knowledge of space forms is as follows. Remark first that after
normalization there are only three cases to consider: K = 1, 0,−1 i.e. one
should look for quotients of Sd,Ed,Hypd. For the cases K = 1 and K = 0
the basic reference is Wolf 1984 [1276]. For K = −1, the main reference is
Ratcliffe 1994 [1049].

The quotients of Sd and Ed are childishly simple for d = 2 : namely one
can only make out of S2, besides S2 itself, the projective plane RP

2; as for
E2, one can construct only the flat tori associated to various lattices and the
Klein bottles (which have to be rectangular ones). As to the higher dimen-
sions, these quotient objects were completely classified in 1930 for S3 and
very nearly classified in 1948–1960 for general dimensions. But the complete
classification is still not really finished. One has to look first for the possible
discrete subgroups of the orthogonal group O (d+ 1) of all isometries of Sd.
This is treated in full detail in the book Wolf 1984 [1276] (try to get the
latest edition). Contrary to what most people think, the classification is not
completely finished but this is only an algorithmic problem. Moreover the
rigidity problem for quotients of the sphere is almost virgin territory, in con-
trast with hyperbolic space forms, which we will turn to shortly. To get some
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feeling about the mysterious and hard component in spherical quotients, see
Milnor 1966 [923].

Vanishing curvature occurs precisely on locally Euclidean Riemannian
manifolds, called most often flat. The question of categorizing the complete
flat manifolds was asked explicitly by Hilbert in 1900 in his famous address.
In 1911, Bieberbach got the basic result (still not too easy to prove) that

Theorem 98 (Bieberbach 1911) Every flat complete Riemannian mani-
fold is a finite quotient of a product Ek × T d−k of some Euclidean space with
a flat torus.

If one looks only for compact flat manifolds, then there can be no Euclidean
factor, and the compact flat manifolds are finite quotients of flat tori. More-
over Bieberbach proved that the number of possible quotients is finite in every
dimension. But this is still not a complete classification: see again Wolf 1984
[1276]. We just note that, especially in dimension three, the problem was of
great interest for crystallographers. And also that we will come back later on
to flat tori: see chapters 9 and 10.

Manifolds which are quotients of hyperbolic space, called hyperbolic man-
ifolds follow a completely different story, and are in some sense more im-
portant. The study of amazing relations between geometry (volumes of poly-
topes, cross-ratio and its generalizations) is currently in full swing and enjoys
beautiful results. We just mention chapter 14 (by Kellerhals) of the book
Lewin 1991 [862] and the informative Oesterlé 1993 [972].

We briefly comment on these two remarks and focus our attention on
compact manifolds; also see §§6.3.2. Hyperbolic surfaces were quite clearly
understood by the end of the 1930’s. We discard the trivial case of positive
and zero constant curvature surfaces (spheres and tori). It is easy to build up
examples geometrically. For example, take suitable triangles or polygons in
the hyperbolic plane and make tessellations with them. But then the group
yielding the quotient is hard to visualize. Another way is to glue together
pantaloon pieces along their boundaries, provided the boundaries are closed
geodesics; we saw this in §§4.3.7 and in figure 4.10 on page 175. The pan-
taloon pieces are obtained by gluing two identical hyperbolic hexagons all of
whose angles are equal to π/2. This latter method enables us to build up all
compact hyperbolic surfaces, as seen by working back by dissection (this is
perfectly exposed in Buser 1992 [292]). The other method is to use the confor-
mal representation theorem for compact orientable topological surfaces of any
genus; see theorem 70 on page 277 The complete classification of hyperbolic
surfaces was worked out by Teichmüller in the late 1930’s. On an orientable
surface of genus γ, the constant curvature Riemannian structures build up a
space with 6γ − 6 parameters. Constructing all of these hyperbolic surfaces
by group theory (i.e. quotienting the Poincaré disk, using the conformal rep-
resentation theorem) is harder and consists largely in number theory; see for
example Vigneras 1980 [1215]. The link between the algebra and the genus
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of the surface is already subtle. We note here for the curious reader that the
unorientable hyperbolic surfaces (beyond the topological classification) have
received less attention; we gave references in §§6.3.2.

Unorientable hyperbolic surfaces have been recently described in many
places, because, although these surfaces are no longer objects generalizing a
complex variable (describing, for example, complex algebraic curves) they do
nonetheless appear in crystallography, and are important to geometry as rep-
resenting “complexifications” of real algebraic curves. A surface, whether ori-
entable or not, which is equipped with a family of complex coordinate charts
which agree up to either holomorphic or conjugate holomorphic transforma-
tions is called a Klein surface. We give some references: Alling & Greenleaf
1971 [25], Bujalance, Etayo, Gamboa & Gromaszki 1990 [276], Seppälä 1990
[1123], Singerman 1974 [1146].

6.6.2.1 Negatively Curved Space Forms in Three and Higher Di-
mensions Starting in three dimensions, the difficulties of classifying hyper-
bolic manifolds appear formidable. We will be very sketchy here. First: it
is unbelievably hard to obtain examples. Our two dimensional techniques
look easy to generalize to any dimension by considering suitable polytopes
in Hyp3. But researchers had to wait for Löbell in 1931 to give the first
infinite family of nonisometric hyperbolic three manifolds. We remark that
he used a geometric approach, and not at all a group theoretical one. It is
far from easy to start from a pantaloon type gluing and find out what sub-
group of SO (3, 1) (the group of all isometries of Hyp3) generates the resulting
three manifold that has been thus glued together. It is a dramatic fact that
polyhedral (polytopal, for higher dimensions) techniques cannot work in ev-
ery dimension. There is a good reason for that: in Vinberg 1984 [1220] it
was discovered that geometric tessellation constructions do not exist in large
dimensions. Left open today is the exact value of the limit dimension, see
Vinberg 1993 [1221].

So we are now trying to build space forms in any number of dimen-
sions. This is can be done only using number theory, and the spaces ob-
tained (using suitable subgroups of SO (d, 1)) are called arithmetic. There
are also (see below) nonarithmetic space forms. The definition of arithmetic-
ity, which is also valid for the more general space forms to be seen below,
is as follows: we consider space forms of the type G/Γ , for a semi-simple
Lie group G and a discrete subgroup Γ . Arithmeticity says, roughly, that
Γ is given by matrices with integral entries, up to finite differences. More
precisely, (G,Γ ) is arithmetic if there exists a subgroup G′ of the general
linear group GL (N,R), and a group epimorphism ρ : G′ → G with compact
kernel such that Γ ∩ ρ(G′ ∩ GL (N,Z)) has finite index both in Γ and in
ρ(G′ ∩ GL (N,Z)). In two dimensions, nonarithmetic examples arise easily
from gluing. The possibility of finding such space forms was in the air in the
1960’s, but they appeared explicitly for the first time in the founding paper
Borel 1963 [223]. The difficulty is to get compact quotients; if not, then any Z
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valued discrete representation would do. It is not hard to realize the difficulty,
since the first quotient is from Hyp2 and is

SL (2,R) /SL (2,Z) .

This is the modular domain and is not compact (even though it has finite
volume and has two singular points); see figure 6.36 on page 278.

6.6.2.2 Mostow Rigidity The reader will want some kind of Teichmüller
theory (deformations, number of parameters) for higher dimensions. On a
given compact orientable surface of genus γ, there is a 6γ − 6 parameter
family of hyperbolic structures (metrics up to diffeomorphism). Teichmüller
began to understand this family in 1939 (see however the historical notes 9.9
of Ratcliffe 1994 [1049]). We will come back to this in chapter 11. The big
event:

Theorem 99 (Mostow 1968 [947]) Two space forms of constant negative
curvature and dimension larger than 2 whose fundamental groups are iso-
morphic (as groups) must be isometric.

So important and conceptual is the rigidity of hyperbolic manifolds that
a succession of simpler proofs have appeared. See chapter XI of Ratcliffe
1994 [1049], part II of Vinberg 1993 [1221], and the completely new Besson,
Courtois & Gallot 1995 [189, 190]. Also see the survey Besson 1996 [191], the
expository Pansu 1997 [999], Pansu 1995 [997], Gromov & Pansu 1991 [637]
and the book Farrell 1996 [504].

Mostow’s initial proof used the sphere at infinity (see §§§12.3.4.3) and
the subtle notion of a quasiconformal map. Gromov’s proof used ideal sim-
plices in hyperbolic geometry (see this, and his notion of simplicial volume, in
§§§11.3.5.2). We cannot resist the temptation to sketch the ideas behind the
various steps of the complete proof, which is completely explained in the book
Ratcliffe 1994 [1049]. From algebraic topology, the fact that our two space
forms Mand M ′ are covered by Rd implies that, if they have isomorphic fun-
damental groups, then they are in fact homotopic; let us write f : M → M ′

for some such homotopy. One lifts f to a map

f̂ : Hypd → Hypd .

Then one uses the fundamental technique of §§§12.3.4.3: one proves first that
f̂ is a quasi-isometry of Hypd; then one can extend it to the sphere at infinity
S (∞)to get a map

f̌ : S (∞) → S (∞) .

We will be done if we can prove that f̌ is a Möbius transformation, since this
equivalent to saying that f̂ is an isometry of Hypd. Now let us triangulate
Hypd by regular simplices and let us prove that all of the images of simplices
under f̂ are again regular. This is a volume argument, which after some
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work (recalling that the regular ideal simplices are characterized as those of
maximal volume) boils down to proving that

VolM = VolM ′ .

But we can use theorem 273 on page 545 twice:

‖M‖ = VolM/VRS (d)

and
‖M ′‖ = VolM ′/VRS (d) .

But the simplicial volume of Gromov is an invariant depending only on the
fundamental group; since the fundamental groups are isomorphic,

‖M‖ = ‖M ′‖

so that
VolM = VolM ′

as desired. We end by using a lemma to the effect that when two regular ideal
simplices have a common face, they are deduced by a hyperbolic (hyperplane)
symmetry. Look at the vertices of our two triangulations in S (∞), both of
which are built of regular simplices. By the above, the restriction of f̌ to these
sets is an isometry (a Möbius transformation). But these sets are everywhere
dense in S (∞), so we are finished.

6.6.2.3 Classification of Arithmetic and Nonarithmetic Negatively
Curved Space Forms Mostow’s rigidity, although very strong and won-
derful, does not yield any classification. Today one still does not have a clas-
sification. On one side, we have the Borel type arithmetic examples. On the
other hand, without employing polytopal tiling by reflexions on the polytopes’
faces, one can still produce nonarithmetic examples by cutting an arithmetic
form along some totally geodesic hyperplane and gluing the two parts again
with a different identification. This was carried out in Gromov & Piatetski-
Shapiro 1988 [638] and yielded examples which are definitely not arithmetic.
The open main question is

Question 100 Among compact hyperbolic manifolds, are the arithmetic or
the nonarithmetic more numerous?

But in higher dimensions, it is much more difficult to prove the existence of
nonarithmetic examples. Such a proof was achieved only in 1988; see Gromov
& Pansu 1991 [637] and part II of Vinberg 1993 [1221].
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6.6.2.4 Volumes of Negatively Curved Space Forms An important
issue for negatively curved space forms are their volumes. The Gauß–Bonnet
formula implies immediately that the set of volumes of hyperbolic surfaces
is an arithmetic progression. The existence of an universal positive lower
bound for any dimension is proven in Wang 1972 [1234] where it is proven
that starting in dimension 4 and for space forms of any rank the set of volumes
is discrete. In Prasad 1989 [1040], the volumes of all arithmetic space forms
are explicitly computed. The case of dimension 3 was solved in Jørgensen
1977 [765] and Thurston 1997 [1189] and the result is fascinating: volumes
are isolated from zero (however the best value is still unknown today), but
the set of possible volumes has accumulation points located on a discrete
scale. For more see Gromov 1981 [615] and Ratcliffe 1994 [1049], page 501.
See the recent Goncharov 1999 [572] to realize the depth of the problem.

6.6.3 Space Forms of Type (ii): Rank 1 Symmetric Spaces

The rank 1 symmetric spaces are the first level of generalized space forms,
covering different levels of generalization of the preceding spaces. We saw
that they coincide (globally) with the 2-point transitive spaces, i.e. there is
always an isometry carrying one pair of points into any other pair of of points
(provided the distances are equal). The associated space forms will have that
2-point property only locally. We discard of course the constant curvature
case, treated above. Now Synge’s theorem 64 on page 269 shows that, in
the positive curvature case, because the KP

n are even dimensional, only the
simply connected spaces or the two sheet quotient CP2k+1/Z2 can appear.
There is thus no classification problem for positively curved rank 1 symmetric
spaces.

Let us consider the negatively curved rank 1 locally symmetric spaces.
The complex case is particularly interesting because of the relations with
complex analysis and algebraic geometry. General existence of lots of arith-
metic examples was proven in Borel 1963 [223] (the same article mentioned
previously for existence of arithmetic space forms). Nonarithmetic examples
appeared in Mostow 1980 [949], built up by subtlely tessellating polyhedra
in Hyp2

C and in Hyp3
C. Also later on in Deligne & Mostow 1986 [439] by a

different and expensive number theoretic technique. The question of deciding
if there exist nonarithmetic manifolds covered by the HypnC is still open today
for higher n.

For the quaternionic and the Cayley case, HypnH and Hyp2
Ca, it was proven

in Gromov & Schoen 1992 [639] that all compact quotients of these spaces
are necessarily arithmetic. The proof uses hard analysis; more precisely it
uses harmonic maps into manifolds with singularities (see §14.3). Their proof
also uses Corlette 1992 [404], where there is an intermediate result, based on
an essential tool which is a Bochner-type formula for manifolds with special
holonomy.
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The Mostow rigidity theorem 99 on page 318 has a companion rigidity
theorem for the compact quotients of the HypnK in Mostow 1973 [948], but
today it can be obtained by the general theorem 251 on page 510 of Besson,
Courtois & Gallot [189] already mentioned.

6.6.4 Space Forms of Type (iii): Higher Rank Symmetric Spaces

The higher rank irreducible symmetric geometries (see §§4.4.3) split again
into two classes: those of nonnegative curvature and those of nonpositive
curvature. Finding all the quotients in the positive case is a finite job, which
was completed back in Cartan 1927 [314]. For the negatively curved ones, it
is again in Borel 1963 [223] where compact quotients were proven to exist
for the first time, always by arithmetic considerations. But here, if there is
a classification problem, it is for number theorists. Indeed, in Margulis 1975
[900], a superrigidity result was proven, which implies not only topological
rigidity but also arithmeticity for ranks greater than one. Margulis’s tools
were expensive; today there are other ways to recover Margulis’s result (see
for example Jost & Yau 1990 [770]). Results like those of Besson, Courtois
& Gallot 1995 [189] still do not yield superrigidity. Do not forget the survey
Gromov & Pansu 1991 [637].

6.6.4.1 Superrigidity We briefly explain the idea of superrigidity. Arith-
meticity is a consequence of superrigidity, which concerns discrete subgroups
Γ of isometries of a symmetric space, such the quotient by Γ is a compact
manifold. On the universal cover, one can again define the sphere at infinity
S (∞). One puts on it the Tits metric of §§§12.3.4.3. Now the fact that the
rank is at least two makes the geometry of the covering space, and of its
sphere at infinity, quite rigid. The flat spaces (flat totally geodesic subman-
ifolds) are moreover very numerous, since they are all conjugate under the
action of the group; see §§4.3.5. Finally one sees that nothing can be moved.

6.6.5 Homogeneous Spaces

These are the spaces whose isometry group is transitive. This implies that
all points have the same geometry. Thus they are the natural (but weakest)
Riemannian generalization of Euclidean spaces. Hence their properties can
be understood only very weakly. We do not say much more here about them.
It is much more complicated to compute their curvature in the general case
G/H that in the special case of a bi-invariant metric as seen in equation 4.39
on page 231. see formula 15.15 on page 745. But they will be of fundamental
importance later on when building examples of Riemannian manifolds with
various types of conditions imposed on the curvatures, e.g. §§§12.3.1.1
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7.1 Curvature Inequalities

7.1.1 Bounds on Volume Elements and First Applications

7.1.1.1 The Canonical Measure and Computing it with Jacobi
Fields We start by stating, in case it is not obvious, that a Riemannian
manifold M enjoys a canonical measure which can be denoted by various
notations; we pick dVM as our notation. On every tangent space we have the
canonical Lebesgue measure of any Euclidean space. So the measure we are
looking for is roughly the “integral” of those infinitesimal measures. If M is
oriented (of dimension d) it will have a canonical volume form: see §§ 4.2.2
on page 184. The measure is the “absolute value” of that volume form. In
any coordinates {xi} with the Riemannian metric represented by gij , the
canonical measure is written

dVM =
√

det (gij) dx1 . . . dxd

where dx1 . . . dxd is the standard Lebesgue measure of Ed. Similarly, the
volume form of an oriented Riemannian manifold is
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ω =
√

det (gij) dx1 ∧ · · · ∧ dxd .

Under scaling g → λg the canonical measure undergoes

dV(M,λg) = λd/2dV(M,g) .

For a domain D ⊂M we will use the notation Vol(D) for its measure. When
M is oriented, Vol(M) =

∫
M ω. Any submanifold of a Riemannian manifold

inherits a Riemannian metric and from it a canonical measure. In particular,
a compact submanifold will have a volume. In the sequel we will use the word
volume whatever the dimension to avoid verbiage; but it should be clear that
for curves volume is length and for surfaces it is area.

m0

TmM

M

Fig. 7.1. The measure is the “integral” of the infinitesimal measures

Most often volumes in Riemannian manifolds are computed by the fol-
lowing scheme. One fills up a domain of the d dimensional manifold M by
a (d − 1) parameter family geodesics, so that the dth dimension is nothing
but the arc length s along the geodesics. By the Fubini theorem the volume
of the domain under consideration will be the integral with respect to s of
the integral with respect to the d− 1 parameters of the infinitesimal (d− 1)
dimensional volume element of the “tube”. This is what we have to compute.
It is reasonable to start at time s = 0 with initial point n running through
some hypersurface H (our d−1 parameters) and the corresponding geodesics
γ = γn normal to H at n.

Since an infinitesimal variation of geodesics is a Jacobi field Y (see equa-
tion 6.11 on page 271), to answer our question we need to know the initial
conditions Y (0) and Y ′(0) for such Jacobi field. The value Y (0) is nothing
but some unit vector e ∈ TnH and by the same trick as in equation 6.8 on
page 265 the value of Y ′(0) will be equal to the parallel transport derivative
of the vector field along the curve ce(α) of H (with c′e(0) = e) given by the
initial speed vector c′e(0) of the family of geodesics normal to H at ce(α).

This is for a one parameter infinitesimal displacement of γ. Now we need
d− 1 of them. Pick up a orthonormal basis {ei}i=1,...,d−1 of TnH. To each ei
is associated a Jacobi field Yi along γ with initial conditions Yi(0) = ei and
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H
e

n

Y(t)

γn(t)

γα
γn

Y(0) = e

Y'(0) =
∂γα' (0)

γα

Fig. 7.2. Measuring volume by extending normal geodesics off of a hypersurface

Y ′
i (0) = hi =

∂γα
∂α′

∣∣∣∣
α=0

where (as was said above) the derivative has to be taken using the notion of
parallel transport (see § 15.4 on page 727) and where γα denotes the geodesic
starting from ce(α) ∈ H and proceeding orthogonally to H. Then the picture
in figure 7.3 on the next page makes intuitive that we have:

Lemma 101

dVM (γ(t)) = det (Y1(t), . . . , Yd−1(t)) dt ∧ dVH (n)

where the determinant is the canonical one associated to the (d − 1) dimen-
sional Euclidean subspace of Tγ(t)M orthogonal to γ′(t).

This is in fact nothing but the change of variables formula.
Now suppose we want to compute the volume of a ball centered around

a point m ∈M. This time the natural (d− 1) parameter family of geodesics
is that of all geodesics emanating from the center m, and its natural param-
eterization is the unit sphere UmM. This time we have no hypersurface H,
but we replace it by UmM. Let γ be a geodesic starting from m with speed
vector γ′(0) = e ∈ UmM and complete e into an orthonormal basis

span {ei} i = 1, . . . , d− 1

of the tangent space TmM. Denote by Yi the Jacobi field along γ with initial
conditions

Yi(0) = 0 and Y ′
i (0) = ei .

Then the analogue of lemma 101 is:

dVM (γ(t)) = det (Y1(t), . . . , Yd−1(t)) dt dσ (7.1)

where dσ is the canonical measure on the sphere UmM.
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γn(t)

e2

e1

H

n

Y2(t)

Y1(t)
γn

Fig. 7.3. Calculating the volume form
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Y1(t)
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um

UmM
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Μ

p

N
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d(p1(n))

dhoriz M(n)
m

Fig. 7.4. Computing volumes of small balls

Note 7.1.1.1 There is at least one interesting type of volume computation
not covered by the above technique, that of Riemannian submersions (see
§§4.3.6). We leave as an exercise to prove that for a Riemannian submersion

p : (M, g) → (N, h)

the volume elements are:

dVM (m) = dVp−1(n) (m) dHm (7.2)

where H is the hyperplane in TmM perpendicular to the tangent space of
the fiber p−1(n).

In particular,
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Vol(M) =
∫
N

Vol p−1(n) dVN (n)

In many cases, in particular when the fibers are all totally geodesic subman-
ifolds, their volume is constant. Then

Vol(M) = Vol (fiber) · Vol(N) .

This is the case for example for the submersions from spheres to the KP
n

seen in §§4.1.3. This is one way to compute the volume of the KP
n (except

for CaP2) if one knows the volumes of spheres; we will find these next. �

7.1.1.2 Volumes of Standard Spaces Formula 7.1 on page 325 enables us
to compute the volume of balls of any radius in Euclidean spaces, spheres of
various radii, hyperbolic spaces of any constant curvature and in the KPn. It
is enough to remember formula 6.14 on page 274 to find volumes of Euclidean,
spherical and hyperbolic balls. For balls in the KP

n, one will need formula 4.36
on page 229 and need to pick an adapted basis. In particular, one can compute
the (total) volume of those of the preceding spaces which are compact: spheres
and KP

n. Details are given, partly or completely, in III.H of Gallot, Hulin &
Lafontaine 1990 [542], 3.3 of Chavel 1993 [326], Berger 1965 [151] and Sakai
1996 [1085]. With the notation

σd = VolSd

the volumes of balls are

VolB
(
Sd, r

)
= σd−1

∫ r

0

sind−1(t) dt

where since the sphere (as well all the spaces below) is homogeneous, we need
not make precise which point is the center of the ball.

In particular, σd is obtained by induction using the value of the classical
integral on the right. We then get:

VolS2n =
2n+1πn

1 · 3 . . . (2n− 1)

VolS2n+1 =
2πn+1

n!

or in one shot, with the classical Γ function:

VolSd =
2π(d+1)/2

Γ
(
d+1
2

) .

In hyperbolic space,

VolB
(
Hypd

(
−k2

)
, r
)

= σd−1

∫ r

0

(
sinh(kt)

k

)d−1

dt
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And for the KPn of diameter π/2 :

VolB (CPn, r) = σ2n−1

∫ r

0

sin(2t)
2

sin2n−2(t) dt

and in particular

Vol CPn =
πn

n!
=
σ2n+1

σ1
.

VolB (HP
n, r) = σ4n−1

∫ r

0

(
sin(2t)

2

)3

sin4n−4(t) dt

and in particular

VolHPn =
π2n

(2n+ 1)!

=
σ4n+3

σ3

VolB
(
CaP2, r

)
= σ15

∫ r

0

(
sin(2t)

2

)7

sin(8t) dt

and in particular

Vol CaP2 =
6π8

11!
It is amusing to observe that this volume is equal to σ23/σ7 although there
is no fibration S23 → CaP2 as mentioned on page 173.

7.1.1.3 The Isoperimetric Inequality for Spheres In the 1940’s Schmidt
proved the isoperimetric inequality for spheres of any dimension (endowed
with the constant curvature metric) as well as for hyperbolic spaces. Great
simplification comes from the fact that those spaces have as many as possible
hyperplane symmetries1 (see theorem 40 on page 228). The result is what
one expects:

Theorem 102 (Spherical isoperimetric inequality) Among all domains
of a given volume living inside a sphere, the metric balls are precisely the do-
mains whose boundary has the minimum volume.

See an application to the concentration phenomenon in note 7.1.1.2 on the
facing page. A detailed proof is given (for example) in 6.3 of Chavel 1993
[326]; see also IV.H of Gallot, Hulin & Lafontaine 1990 [542] and chapter VI
of Sakai 1996 [1085]; but the basic reference today is Burago & Zalgaller 1988
[283].
1 An exercise for the reader: prove that this multitude of isometric involutions

characterizes these spaces.
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S2 Hyp2

Fig. 7.5. The isoperimetric inequality on the sphere and in hyperbolic space

Note 7.1.1.2 (On the volumes of balls in spheres) Looking at the graph
of the function sind−1(t) for large d we see that that the volume of a ball in
Sd grows extremely slowly with the growth radius for small radii, and then
changes drastically around the equator. This is called the concentration phe-
nomenon: the sphere is concentrated around its equator in the sense that
a very small tubular neighborhood of an equator has almost full measure.
From this and from the spherical isoperimetric inequality (theorem 102 on
the preceding page) one can deduce this surprising phenomenon: on a sphere
of very large dimension, any function is very close to its mean value on a sub-
set of very large measure. To see this, one employs lemma 101 on page 325.
This is basic in proving Dvoretzky’s theorem for symmetric convex bodies
in Euclidean spaces: for every ε a convex body admits ε-almost spherical sec-
tions of a suitable dimension (of logarithmic growth in d). References for this
fascinating subject: Lindenstrauss 1992 [869], Milman 1992 [920], Pisier 1989
[1030], Lindenstrauss & Milman 1993 [870], Berger 2003 [173]. For a general
setting for this story of “geometric probabilities”, see Gromov’s mm spaces
in §14.6.

The values given above for the σd show also that σd goes to zero very
quickly (use Stirling’s formula to see that σd behaves like d−d/2). An amusing
exercise is to compute the first d for which σd < 1. �

d = 2

d = 3
d = 4

d =5
d =6

1

0 π/2 π

Fig. 7.6. The graph of sind−1(t) for various d
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7.1.1.4 Sectional Curvature Upper Bounds We simply mix Rauch’s in-
equality (proposition 74 on page 282) together with equation 7.1 on page 325
above to get a simple control result:

Theorem 103 Assume K ≤ Δ everywhere on a complete d dimensional
Riemannian manifold M and that expm is a diffeomorphism on B (m, r) .
Then

VolB (m, r) ≥ VolB
(
Sd(Δ), r

)
To get a complete proof one only needs the following trick: at a given t in
equation 7.1 on page 325 replace {Yi(t)} by an orthogonal basis {Zi} obtained
by taking an orthogonal transformation of the orthogonal complement of the
velocity γ′(0) in TmM. Then the determinant

det (Y1(t), . . . , Yd−1(t))

is equal to the product

det (Z1(t), . . . , Zd−1(t)) = Πd−1
i=1 ‖Zi‖

and

‖Zi‖ ≥
sinh

(√
Δt

)
√
Δ

by proposition 74. An analogous trick will be used in the proof of lemma 106
on page 332.

The inequality in theorem 103 was used in 1968 by Milnor (see also Švarc
1955 [1170] and Karcher 1989 [780]) to get:

Theorem 104 (Milnor 1968 [924]) The fundamental group of compact
manifold of negative curvature has exponential growth.2

Definition 105 The growth of a finitely generated group with fixed choice
of generators is the function γ(s) which tells us the number of elements of
the group which can be expressed as words in those generators with length
smaller than s. The growth is said to be polynomial if one has

γ(s) ≤ sk

for some integer k, and all sufficiently large s, while the growth is exponential
if one has

γ(s) ≥ as

for some number a > 1. Both of these notions make sense because they are
invariant under changes of the choice of generators.
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Fig. 7.7. A hyperbolic tiling

We sketch the proof, which is very geometric. We consider the universal
Riemannian covering M̃ →M (which is not compact, by the von Mangoldt–
Hadamard–Cartan theorem 72 on page 278). Being simply connected and of
negative curvature we know from that theorem that we can apply theorem 103
on the preceding page to it for any real number r and get that for any point
m̃ ∈ M̃ :

VolB (m̃, r) > a exp(br)

for some constants a, b > 0.
Fix m̃ in M̃ and set

N = B (m̃, diamM) .

Recall (see §§4.3.3) that the elements of the fundamental group π1(M) act on
M̃ by isometries. Introduce the subset of π1(M) made up of the g such that
gN intersects N. These g build up a finite subset Γ of π1(M). The other gN

2 It is easy to see that the fundamental group of a compact manifold is finitely
generated.
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are always at a positive minimum distance ν from N. If the distance from m̃
to some gN is such that

d (m̃, gN) < nν + diamM

for some integer n then the picture below will show that g can be written as
a product

g = g1 . . . gn

of elements of Γ. This proves first that π1(M) is generated by Γ. Second, it
proves that the set of the gN build up by the g of word length not larger
than n will certainly cover the ball B (m̃, nν + diamM) so that:

γ(s)VolN ≥ VolB (m̃, nν + diamM)

and we are done via equation 7.1.1.4 on the preceding page.

g3N

g1N

g2N

gN

g4N

N
m

v N

gN

m'

Fig. 7.8. Proof of theorem 104 on page 330

7.1.1.5 Ricci Curvature Lower Bounds Without any trick, since we
always have

det (Yi) ≤ Πi ‖Yi‖ ,
one would clearly bet that a lower bound K > δ would provide an upper
bound on the volume of balls, through theorem 62 on page 266. But in 1963
Bishop made a striking discovery to the effect that a Ricci curvature lower
bound is enough to get an optimal upper bound on the volume of balls.
According to Gromov such a result is outlined already in Lévy 1951 [861] but
it seems to have been unnoticed thereafter.

We will first state a more general inequality due to Heintze and Karcher
in 1978 and then give two consequences of it (for reference see 7.5 of Chavel
1993 [326], and also 4.21 in Gallot, Hulin & Lafontaine 1990 [542]):

Lemma 106 (Heintze & Karcher) As in lemma 101 on page 325 let
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{Yi(t)}i=1,...,d−1

be Jacobi fields along some geodesic γ and set

F = det (Y1 . . . , Yd−1)

and
f = F 1/d−1 .

Then f satisfies:

f ′′ +
Ricci(γ′)
d− 1

f ≥ 0

under the proviso that f does not vanish (except possibly at the origin).

There is a straightforward computation plus a trick analogous to that of
theorem 103 on page 330. Computation yields:

f ′′ =
2 − d

(d− 1)2
fF−2

(∑
i

det (Y ′
i )

)2

+
1

d− 1
fF−1

(∑
i

det
(
Y ′
i , Y

′
j

)
+
∑
i

det (Y ′′
i )

)

with the obvious notations for the determinants; for example Y ′
i should ap-

pear at the ith place and at all the other places one puts Yi etc. The last term
is easy and classically by linear algebra yields the value

1
d− 1

f Ricci (γ′) .

But the two other terms are a mess in the general expression for the
Yi(t). To clear up things one must first fix some time t. By an orthogonal
transformation of Tγ(t)H one can change the sets

{Yi(t)} , {Y ′
i (t)}

into sets
{Ai} , {Bi}

such that
Bi = λiAi .

This is possible because the bilinear form given by the scalar products

〈Y i′(t), Yj(t)〉

is symmetric. This is not obvious; it comes from the fact that the Jacobi field
equation 6.11 on page 271 and the symmetries of the curvature tensor (see
equation 4.28 on page 223) implies that

(〈Y ′, Z〉 − 〈Y, Z ′〉)′ = 0
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so that we need only to insure symmetry at time t = 0 which can be done
for example taking for the ei the eigendirections of the second fundamental
form.

Note that the determinant is not changed so that we are left with two
terms: (∑

i

λi

)2

and
∑
i,j

λiλj .

The total result turns out to be

− 1
(d− 1)2

∑
i,j

(λi − λj)
2

proving the theorem.

Note 7.1.1.3 Beware that the above trick is only valid when the full action
of SO (d− 1) is available. This is the case for the set of geodesics emanat-
ing from a given point or that of geodesics emanating orthogonal to a given
hypersurface. It does not work, for example, for geodesics emanating orthog-
onally from a curve (as in theorem 90 on page 297 for example). In such a
case one needs more assumptions that only controlling the Ricci curvature.
�

The basic consequence of theorem 106 on page 332 is:

Theorem 107 (Bishop–Gromov 1963,1999 [196, 633]) Assume that

Ricci ≥ (d− 1)δ

where δ is any real number. Starting from any point m ∈M the function

r → VolB (m, r)
VolB (Sd (δ), r)

is nowhere increasing. In particular for any r ≥ 0 we have

VolB (m, r) ≤ VolB
(
Sd (δ), r

)
.

We have only to integrate in polar coordinates centered at m and apply
equation 7.1 on page 325: the determinant will be bounded by fd−1 where f
satisfies

f ′′ + δf > 0 .

Looking at the limit when r → 0, the initial condition yields then

f ≤ fδ

where fδ is the corresponding function in the space form Sd (δ).
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Fig. 7.9. Continue with 0 after the cut value

This was Bishop’s result. Now one has to wonder about the proviso in
lemma 106 on page 332 which concerns conjugate points. But it is irrelevant
here because we are looking for lower bound. On every geodesic starting from
m one has only to go no longer than the cut-value (see §§6.5.1) and one knows
that before the cut value the function f will never vanish from theorem 86
on page 292. After the cut value there is only zero to integrate. This was
the contribution of Gromov, which will turn out to be essential in the future,
first for getting metric bounds from lower Ricci curvature without wondering
about injectivity radius, and second for getting lower bounds for the volume
of balls when the total volume

VolM = VolB (m, diamM)

(for any point m) is bounded (this is because of the non-increasing property
in theorem 107 on the facing page see equation 12.2 on page 653.

In fact, if this is not obvious at first glance, this is Gromov’s philosophy
as explained in 5.31 and in the Appendix B (see B.2) of Gromov 1999 [633];
we will see in the references quoted just above that what is at the root of the
proofs is the:

Theorem 108 (The doubling property) In a Riemannian manifold of
dimension d with nonnegative Ricci curvature, any ball of radius 2R can
be covered by a collection of 4d balls of radius R. If we only know that
Ricci ≥ (d − 1)δ, then there is an analogous inequality, but only valid for
“small balls” and with some constant depending only on d and δ.

We have only to use the covering trick (lemma 125 on page 357): pack in the
given ball of radius 2R as many balls of radius R/2 as possible. Then the
balls of same centers and radius R must cover the initial ball. But now use
the Bishop–Gromov theorem 107 on the preceding page and remember that
the volume of a Euclidean ball of radius ρ is proportional to ρd. This shows
that there cannot be more than 4d disjoint balls of radius R/2 within a ball
of radius 2R. For the doubling property in a completely different context, see
Toro 1997 [1197].

The natural analogue of theorem 104 on page 330 is:
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Theorem 109 (Milnor 1968 [924]) Let M be a complete Riemannian man-
ifold with non-negative Ricci curvature (not necessarily compact). Then the
growth function of any finitely generated subgroup of the fundamental group
π1(M) satisfies

γ(s) ≤ asd

for some positive constant a.

sμ
 +

ε

m' μ

ε

Fig. 7.10. Ball packing and growth of the fundamental group

Let us look once again at the universal Riemannian covering M̃ which
has nonnegative Ricci curvature because M does. Pick some point m̃ in M̃ .
Recall that the fundamental group π1(M) acts as isometries on M̃ . There is
ε > 0 such that B (m̃, ε) does not meet any other B (gm̃, ε) for g running
through π1(M) (except the identity). Let us also introduce the supremum μ
of the distances d

(
m̃, gim̃′) when gi runs through the generators of a finitely

generated subgroup. Then the ball B (m̃, sμ+ ε) will contain at least γ(s)
disjoint balls of radius ε to the effect that

γ(s)VolB (m̃, ε) ≤ VolB (m̃, sμ+ ε)

and theorem 108 on the page before (the doubling property) implies the
desired assertion.

Note 7.1.1.4 (About Milnor’s result) A deep theorem of Gromov says
that a group of polynomial growth is a discrete subgroup of a nilpotent Lie
group: see Gromov 1981 [614] or Gromov 1993 [629]. We will come back to
this in theorem 352 on page 625.

Milnor conjectures in his article that the fundamental group is automat-
ically finitely generated (for complete noncompact manifolds of course): to
our knowledge it is still an open question.

Note that the doubling property theorem 108 is a refinement of Myers’
theorem 63 on page 268. Also note that one cannot do better: take flat tori
for example. Compare with Bochner’s theorem 345 on page 621. �
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Note 7.1.1.5 A priori one cannot expect a lower bound for the volumes of
balls with only an upper bound on the Ricci curvature: in fact there are
manifolds with identically zero Ricci curvature (see Besse 1987 [183]) and for
which there is no lower bound in comparison with Euclidean space for the
volume of balls. There is one exception (besides of course dimension two):
this is dimension three. The reason is that in dimension three Ricci curvature
and sectional curvature are equivalent (an exercise left to the reader): see
Eschenburg & O’Sullivan 1980 [496]. This was stricto sensu. But as remarked
above, if for example we know the total volume, then we can hope to control
volumes of balls. �

We come now to the second application of lemma 106 on page 332. To
express it we need to first extend to general Riemannian manifolds the notion
of second fundamental form of a hypersurface. As in §§1.6.3 this is a quadratic
form on the tangent space TnH at n of a hypersurface H of our Riemannian
manifold M. It tells us how much H differs from the hypersurface generated
by the various geodesics starting from n and tangent to H. With the notation
of §§§7.1.1.1 it is nothing but the quadratic form given by the scalar products

〈ei, hi〉 .

The mean curvature of H at n is by definition equal to the trace of the second
fundamental form of H at n divided by d− 1 and is denoted by η.

H

H'm

m

Fig. 7.11. Comparing a hypersurface with the hypersurface formed from ambient
space geodesics emanating out of a point and tangent to our original hypersurface

The mean curvature of hypersurface in general Riemannian manifolds
has the same property that it has in Euclidean spaces: formula 9 on page 67
extends without modification.3

Lemma 110 (First variation equation) For a normal variation of length
f of a piece H of hypersurface, the first derivative of the volume is equal to
3 Just recall that the mean curvature is only determined up to a sign but in

theorem 111 on the next page below a preferred normal will be given by γ′(0).
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H

fη dVH .

In particular, assume that D is a compact domain in M with boundary ∂D
and that ∂D has minimal volume among all domains close to D having the
same volume as D. Then ∂D has constant mean curvature.

f

H

Fig. 7.12. The first variation of a hypersurface

We now come to the evaluation of the volume equation in lemma 101 on
page 325:

Theorem 111 (Heintze–Karcher, 1978) Assume Ricci > (d − 1)δ and
consider a pencil of geodesics normal to a hypersurface H neighboring some
geodesic γ. Provided that the determinant in lemma 101 on page 325 does
not vanish from 0 to t then

dVM (γ(t)) < fd−1
δ (t)

where η is the mean curvature of H at γ(0) and fδ is the standard function

fδ =

⎧⎪⎪⎨⎪⎪⎩
cos

(
t
√
δ
)

+ η√
δ

sin
(
t
√
δ
)

when δ > 0

1 + η
t when δ = 0

cosh
(
t
√
−δ

)
+ η√−δ sinh

(
t
√
−δ

)
when δ < 0.

For the proof we first remark that f and fδ have the same initial conditions

f(0) = fδ(0) = 1

and

f ′(0) = f ′
δ(0) = η

by the very construction of the Yi and the definition of the mean curvature.
Then we proceed as in on page 136 by the Sturm-Liouville technique. As an
exercise, compare the above with the proof in §§1.6.8.
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7.1.2 Bounding the Isoperimetric Profile with the Diameter and
Ricci Curvature

7.1.2.1 Definition and Examples The isoperimetric inequality in Ed is a
fundamental geometric notion and also has many applications. We gave one in
detail: the Faber–Krahn inequality 1.22 on page 94. We saw also in §§§7.1.1.3
that there is an isoperimetric inequality in the standard space forms, the
spheres and hyperbolic spaces, so that it is natural to ask

Question 112 Is there an isoperimetric inequality in a general Riemannian
manifold?

Let us say first that the state of affairs today is far from what we hope for.
For example one would expect the domains optimal for isoperimetry in the
symmetric spaces of rank one would be the metric balls. This is extremely
reasonable since those spaces are precisely the isotropic (or two-point homo-
geneous) ones (see §§6.6.2). We will see below that is false for compact spaces,
but that there is a very reasonable conjecture. But for the noncompact, sim-
ply connected ones, one would expect the balls to be optimal. However this
is a completely open problem today, starting with the HypnC .

To be more precise, we consider domains D in a Riemannian manifold
M with a smooth boundary ∂D. As in the case of the sphere we cannot in
general hope to have a universal bound for the dimensionless ratio

Vol(∂D)d

Vol(D)d−1
.

This was possible for Euclidean spaces essentially because they admit noni-
sometric similarities. We need a concept where Vol(D) enters explicitly and
is normalized in some way.

Definition 113 Take M a compact Riemannian manifold. For every real
number

β ∈ [0, 1]

we define h(β) as

h(β) = inf
D

{
Vol(∂D)
Vol(M)

| Vol(D) = β Vol(M)
}
.

The function β �→ h(β) is called the isoperimetric profile of the Riemannian
manifold M . The more crude Cheeger’s constant hcwas introduced in Cheeger
1970 [329] and is defined as above, but in terms of domains D with

Vol(D) ≤ 1
2

Vol(M) .

It is then equal to
hc = inf

β≤ 1
2

h(β) .
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This profile can be quite wild, for example for the surface in figure 7.13.

Fig. 7.13. Study h(β) for this surface

The isoperimetric inequality 102 on page 328 for spheres and the formula
in §§§7.1.1.2 yields the isoperimetric profile for sphere. We suggest that you
perform some computation and drawings, starting with two dimensions.

h

1/2

d = 2 1/2 1 β

h

0 1/2 1 β

?

??

Fig. 7.14. Compute and draw isoperimetric profiles for dimensions 3, 4, . . .

Let us now try to compute the isoperimetric profile of the real projective
plane RP

2, equipping it with the standard metric of constant curvature (see
§§§4.3.3.2). We follow Gromov’s technique as in §§1.6.8. For a given β, we
look for a domain D of area equal to

βVolRP
2 = 2πβ

and with smallest possible length for ∂D. We apply lemma 110 on page 337:
the curve ∂D has constant curvature. In RP

2 this implies that ∂D is a geodesic
or a circle, i.e. the projection of a small circle of the sphere S2. To see this,
show that in S2 the curves of constant curvature are small circles and use
the fact that

S2 → RP
2

is a local isometry.
As expected, at least for small values of β, the optimal domains are those

D whose boundaries have constant curvature, which could be a disk, or could
very well be the tubular neighborhood of a geodesic. The picture in figure 7.15
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working

in

IR P2

Fig. 7.15. Working in RP2

on the next page represents the story on RP2 lifted up to the sphere. Down
in RP

2 such a domain is a Möbius band. But its complement is an ordinary
disk and their boundaries have the same length. So finally the isoperimetric
profile of RP2 is as indicated in figure 7.16.

h

0 1/2 1
β

Fig. 7.16. The isoperimetric profile of the real projective plane

We now look at the square flat torus of two dimensions. Here again can-
didates for boundaries are ordinary plane circles or straight lines. But notice
that when we look at a large disk, of radius r > 1/π, the band of width δ
has a better isoperimetric ratio: the band has isoperimetric ratio 2/δ while
the disk has 2πr/πr2. Since disks and strips are the only ones with constant
curvature boundary, the profile for the square T 2 is as pictured in figure 7.17
on the next page.

As an exercise, work out the case of a square Klein bottle and some other
flat tori.

For compact hyperbolic space forms, the isoperimetric profile is compli-
cated but theoretically answerable since again we know which boundary to
look at.
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h

0 1/2 1
β

1/π

Fig. 7.17. The isoperimetric profile of the flat square torus

The recent result of Ritoré & Ros 1992 [1059] solves the problem for real
projective 3-space RP

3 (but not for the three dimensional torus). The answer
is the “reasonable guess” from figure 7.18 on the facing page.

Except for spheres of any dimension and RP3, to our knowledge there is
not a single example with dimension at least three where the isoperimetric
profile is known. See partial results for noncompact manifolds in Hsiang &
Hsiang 1989 [740].

This is a surprise for us because we know everything about the metric of
each of the KPn, in particular the geodesic behavior (see §§6.1.6). But the
reason is simple. Boundaries will now, starting in dimension three, be hyper-
surfaces of constant mean curvature in the manifolds under consideration. Of
course in flat tori or real projective spaces (or more generally in the KPn)
the metric spheres (boundary of a metric ball) will be of constant mean cur-
vature (because of homogeneity, for example) but there are certainly other
constant mean curvature surfaces. For example the tubular neighborhoods
of projective subspaces of any dimension in the KP

n or various cylinders in
flat tori. But we do not know if there are other ones and if so who they are.
There is no analogue to the result of §§3.4.2 for surfaces in E3.

Nevertheless, it seems reasonable to guess that the isoperimetric profile
for a square flat torus is given by a succession of curves corresponding first
to disks, second to tubular neighborhoods of straight lines, third to tubular
neighborhoods of planes, etc. ending with tubular neighborhoods of hyper-
planes. As we have seen, something like this is true for RP

3.
For all of the KP

n, it also seems reasonable that the isoperimetric profile
will be that given by successive tubular neighborhoods of projective subspaces
(starting with points). Now if we leave our favourite manifolds to look for
theorems about general manifolds, it was discovered in Pansu 1997,1998 [998,
1000] that the isoperimetric profile can be quite wild; for example, not smooth
at the origin. For more see the references in Pansu’s articles and for some
surfaces of revolution Morgan, Hitchings, & Howards 2000 [938]. In a different
direction, the isoperimetric behavior at infinity of noncompact manifolds is
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h

1/2 1
β

Fig. 7.18. The isoperimetric profile of real projective 3-space RP3

basic in various contexts; for instance, group theory and geometry; see Burago
& Ivanov 1994 [280].

7.1.2.2 The Gromov–Bérard–Besson–Gallot Bound Thinking of the
proof of Faber–Krahn inequality 1.22 on page 94, assume we want only some
bound on the first eigenvalue of the Laplacian, λ1 (which might not be an
optimal bound). Then it is enough to have an isoperimetric bound of the type

Vol(∂D) is larger than some function of Vol(D).

This is what we are going to do for Riemannian manifolds. It is clear that
optimal bounds for general Riemannian manifolds are hopeless. But our un-
derstanding of control is that we wish to get an estimate from curvature
bounds. Recalling the Klingenberg and Cheeger theorems from §§6.5.2, we
might expect to need to know the diameter (the volume is already in the
profile anyway). After intermediate results due to various authors, Bérard,
Besson and Gallot in 1985 got a bound involving only the lower bound of
the Ricci curvature and the diameter. The pictures above in §§§7.1.2.1 show
that one cannot do better. So their bound is optimal given the ingredients.
Their explicit functions (which we are not going to give because they are
very complicated and not yet having any clear interpretation) will probably
be improved some day.

Theorem 114 (Gromov 1980 [633], Bérard–Besson–Gallot 1985[139])
There are three universal functions

Aε(d, α)

for ε = 1, 0,−1 such that for every compact Riemannian manifold M of
dimension d with

diam2M · inf Ricci = (d− 1)εα2

one has for every β with 0 ≤ β ≤ 1

h(β) ≥ 1
diamM

hSd(β)Aε(d, α)

where hSd denotes the isoperimetric profile of the sphere.
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We have previously accumulated all of the material for the proof and are
prepared for it. The general case is quite involved but the key ideas are in
the following simpler case, initiated by Gromov (see Gromov 1999 [633]). The
Ricci curvature is positive and we normalize it to have

Ricci ≥ d− 1 .

See also, if needed, IV.H of Gallot, Hulin & Lafontaine 1990 [542]. More
precisely, we look only at the positive case and we forget the diameter. This
is possible because of Myers’ result 62 on page 266. Doing so, we are loosing
an improvement of Gromov’s inequality, and for the general case we again
refer the reader to the original article Bérard, Besson & Gallot 1985 [139].
Before starting, you might like to reread the proof in §§1.6.8 from which we
follow the scheme.

In the present case, we want to prove that

hM (b) ≥ hSd(β)

for every β ∈ [0, 1] and that equality can occur only for the standard sphere,
as the proof will show. We pick some β and we use deep results from geometric
measure theory (see §§14.7.2) to get a domain D ⊂M with volume

Vol(D) = β Vol(M)

and with the following properties: (remember the idea on page 75)

1. its boundary ∂D has minimal volume among all domains with same vol-
ume as D,

2. the singular points where ∂D is not locally a manifold are of measure
zero in ∂D and

3. when the tangent “object”4 to ∂D at some point n is contained in a half
space of TnM then n is a regular point.

These results of geometric measure theory are very hard to locate and to find
in an handy form; we refer the reader to the various references given in the
papers we quoted on the subject, and refer again to Morgan 2000 [937] for a
wonderful first introduction to the subject.

We now compute the volume of D as a function of the volume of ∂D as
we did in §§1.6.8. For every m ∈ D, let n be a point of ∂D as close as possible
to m, and take γ a segment from n to m. Then the first variation formula 6.3
on page 247 tells us that the tangent object to ∂D at n should stay in the
half space of TnM determined by γ′(n) so that n is regular. Denote by N the
set of regular points of ∂D.

Starting in the opposite direction, this means that we can recover all of
D by starting from all regular points n of ∂D and taking the geodesics γn
4 generalizing the tangent plane
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Fig. 7.19. Geometric measure theory in action: Isoperimetric inequalities

normal to ∂D at n and heading along them inside D. On such a geodesic, we
can stop when it ceases to be a shortest path in D. We call this stopping point
the focal value of n and denote it by focal(n). As in §§1.6.8 and theorem 86
on page 292 we know that the Heintze–Karcher theorem 111 on page 338 is
applicable.

By Milnor’s theorem 109 on page 335 we know that ∂D has constant mean
curvature, say η0. We apply lemma 101 on page 325 and the Heintze–Karcher
theorem 111 to get:

Lemma 115

VolD =
∫
∂D

dV∂D (n)
∫ focal(n)

0

dt (cos(t) + η0 sin(t))d−1

n
∂D

foc(n)

D*

∂D*
Sd\D*

η*

η*-

Fig. 7.20. Calculating volume by integrating up to the focal value

Denote by D∗ a ball in Sd with

VolD∗ = βVolSd .
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Let r∗ be the radius of D∗ and η∗ be the mean curvature of its boundary.
Assume first that

η0 < η∗ .

Check that
focal(n) ≤ r∗

for every n ∈ ∂D so that the lemma 115 on the page before of Heintze and
Karcher implies that

Vol(D) ≤ Vol(∂D)
∫ r∗

0

(cos(t) + η∗ sin(t))d−1
dt .

When we carry out the same integral for D∗, the last integral will be exactly
the same as for D except that it will take place in Sd and with equality
everywhere. So the value of this integral is exactly

Vol (D∗)
Vol (∂D∗)

Q.E.D. We have proven theorem 114 on page 343. If by bad luck η0 ≥ η∗,
the amazing trick of Gromov is simply to perform the same computation but
with the complementary sets

M\D and Sd\D∗ .

This has the effect of switching the orientation of the boundary, so switching
the signs of the mean curvatures.

The fun is that is we have equality for only one manifold: the sphere. The
above proof will imply knowledge of both D and M\D. To prove isometry
with the sphere, one just traces back the inequalities, and ends up with a
metric given by

ds2 = dρ2 + sin2ρ dσ2 .

Note 7.1.2.1 Theorem 114 on page 343 will play a significant part in chapter
9 to get lower bounds for every eigenvalue in terms of only the infimum of
the Ricci curvature and the diameter. �

7.1.2.3 Nonpositive Curvature on Noncompact Manifolds An unan-
swered

Question 116 Is the isoperimetric profile of a complete simply connected
Riemannian manifold of nonpositive curvature always dominated by the
isoperimetric profile of Euclidean space?

Such manifolds are never compact, as we known by theorem 72 on page 278
(the von Mangoldt–Hadamard–Cartan theorem). We consider a simply con-
nected manifoldM of nonnegative curvature. By the von Mangoldt–Hadamard–
Cartan theorem, we know that this manifold is diffeomorphic to Ed. It is
conjectured that
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Conjecture 117 For any domain D of M one has the same isoperimetric
inequality as for Euclidean space:

Vold ∂D
Vold−1D

≥ Vold Sd−1

Vold−1B (Ed, 1)

with equality if and only if the restriction of the metric of M to D is flat and
for this flat metric D is a ball.

This was proved for surfaces by André Weil in 1926 using conformal rep-
resentation and the theory of harmonic functions; it was in fact the first
mathematical piece of work of André Weil, answering a question asked dur-
ing or after a Hadamard seminar at the Collège de France. The lecturer
was Paul Lévy, telling the audience about Carleman’s result of 1921. What
Carleman had obtained was the desired isoperimetric profile, but only for
a minimal surface.5. In dimension 4, it was proven by Croke in 1984 using
Santalo’s equation 7.11 on page 388. For this demonstration the surprise is
that Santalo’s equation gave the right answer only in four dimensions; for
all other dimensions it only gives an weaker inequality. For three dimensions,
this isoperimetric inequality was recently proven by Kleiner in 1991 [808]; the
proof is subtle and uses the fact that hypersurfaces in three dimensions are
ordinary Riemannian surfaces.

Unlike two and three dimensional manifolds where one works, so to speak,
downstairs (i.e. directly on the manifold itself), the proof for four dimensions
requires one to work in the tangent bundle over the manifold, to use the
geodesic flow, etc. See §§§7.2.4.2

The main difficulty in proving the above conjecture is that, contrary to
the compact case in the beginning of this section, geometric measure theory
cannot be applied directly thanks to noncompactness: the optimal domains
can “go to infinity.”

Remarkably, Cao & Escobar 2000 [309] proved the desired isoperimetric
inequality of our conjecture for three dimensional piecewise linear manifolds.
Here, nonpositive curvature means that at the singular points the sum of
the measures of the spherical angles is never less than the total volume of
the Euclidean unit sphere (of the given dimension). Unhappily, it is an open
very interesting question to know if every Riemannian manifold of nonposi-
tive curvature can be nicely approximated by a piecewise linear one (still of
nonpositive curvature). The Cao–Escobar result is of course preserved under
approximations.

The natural and fascinating, but very difficult, topic of piecewise flat
approximations of Riemannian manifolds is treated in Cheeger, Müller, &
Schrader 1984,1986 [350, 351]; see also the lecture Lafontaine 1987 [843].

Note 7.1.2.2 Another important control is that of λ1 (the fist eigenvalue of
the Laplacian) with the Cheeger’s constant hc:
5 Recall that minimal surfaces have nonpositive curvature
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hc = inf
{

VolD | VolD ≤ 1
2

VolM
}

which is obtained from the isoperimetric profile by

hc = inf
{
h(t)
t

| 0 ≤ t ≤ 1
2

}
.

In Cheeger 1970 [329] one finds the inequality

λ1 >
1
4
h2
c

which is optimal by Buser 1978 [291] but never attained by a smooth object.
See §§ 9.10.2 on page 434 for more on this. �

The beautiful formula in Savo 1996 [1098], or in Savo 1998 [1099], studies
the volume of various tubes and then encompasses many results of the above
type with a very nice proof. The second derivative of volume with respect to
the radius of the tube is computed and linked with the Laplacian. Precisely,
let N be any submanifold and u any function. Let M(r) denote the solid tube
of radius r around N, and ρ the distance function to N. Then set

F (r) =
∫
M(r)

u dVM

for the Riemannian measure dVM . Then

−F ′′(r) =
∫
M(r)

ΔudVM +
∫
ρ−1(r)

uΔu dVρ−1(r)

where the measure on the “sphere” ρ−1(r) is the one induced from its Rie-
mannian geometry as a submanifold of M. This formula is valid within the
injectivity radius of the tube. Beyond that radius, one has a distribution
rather than a function.

Recently, in the spirit of many results in Riemannian geometry (some of
them met above), the article of Gallot 1988 [540] succeeded in controlling the
isoperimetric profile via integral bounds on the Ricci curvature; see §§§7.2.4.4
for precise statements. There are many corollaries, for example the finiteness
theorems of §§12.4.1. and control on the spectrum. Moreover, Gallot also
controls the volumes of tubes around hypersurfaces. A key tool as we will see
in the proof of theorem 90 on page 297 or proposition 375 on page 648 would
be to control the volume of tubes around geodesics. With only an integral
Ricci bound, it is impossible to control the volume of tubes around geodesics;
see the Eguchi–Hanson examples in Petersen, Shteingold, & Wei 1996 [1021]
for more information in this domain.

The Sobolev inequalities are a basic tool in analysis. They are used in
many results quoted in this text.
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Theorem 118 (Sergei L. Sobolev) Take a numerical function

f : M → R

on a Riemannian manifold M of dimension d and take integers p and q with

1
p

+
1
d

=
1
q
.

Between the function and its gradient one has

‖f‖Lp ≤ A‖df‖Lq +B‖f‖Lq .

In most cases the Riemannian geometer is interested not just in some A and
B numbers; he wishes to control them with the curvature, etc. The problems
of the optimal A and B are quite different. For the constant B, it is basically
the work of Gallot; see the various references to this author above. For the
constant A it is the work of Aubin, see for example Aubin 1998 [86]. See the
recent references Hebey 1996 [690] and 1999 [691], Hebey & Vaugon 2001
[694] and Druet & Hebey 2000 [463] (where in some cases, sharp estimates
of the A term characterize certain Riemannian manifolds). We just mention
that in these works the control of the isoperimetric profile is crucial. The
isoperimetric profile of a noncompact manifold is of course deeply linked
with the geometry of the manifold at infinity. For this important perspective,
as well as results, see Pittet 2000 [1032] and the references there.

7.2 Curvature Free Inequalities on Volumes of Cycles

The beauty of this section is its purity: the inequalities we will uncover are
curvature independent, so that we completely lack local control—this is an
entirely global game. General references are Chavel 1993 [326], Sakai 1996
[1085], two surveys Berger 1993,1996 [165, 168], and in Gromov 1999 [633]
chapter 4 and appendix D.

7.2.1 Systolic Inequalities for Curves in Surfaces

7.2.1.1 Loewner, Pu and Blatter–Bavard Theorems In 1949, Loewner
made a wonderful discovery, apparently the very first of its kind. Consider a
two dimensional torus T 2 with Riemannian metric g. It can be abstract (i.e.
not embeddable in E3) but it is not forbidden to be an embedded one.

We see in the picture in figure 7.21 on the next page that there are closed
curves on our torus which are not contractible, this is due to the fact that the
torus is not simply connected. But beware that the set of closed curves up to
homotopy is in general smaller that the fundamental group. This set is the set
of conjugacy classes of the fundamental group; see VII.6 of Berger 1965 [151];
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the systole a periodic geodesic
but not the systole

Fig. 7.21. Searching a torus for its systole

the name for a closed curve up to homotopy is “a class of free homotopy.”
The torus is an exception to the rule that the classes of free homotopy form
a smaller set than the fundamental group, because its fundamental group is
Abelian.

Now one might guess that there is, in each free homotopy class, at least
one curve of smallest possible positive length. This is not hard to prove. The
idea is that the minimum is achieved, even though the space of curves is
infinite dimensional, in the present case for various possible reasons. One is
the possibility of approximating curves in a compact Riemannian manifold
by piecewise geodesics. This reduces the problem to a finite dimensional one
(for this idea, basic in Morse theory, see Milnor 1963 [921], and §§§10.3.2). A
second reason is the so-called semicontinuity of the length of a curve. See for
example Choquet 1966 [377], VI.3.11, where there is a proof for quite general
metric spaces. Compactness is of course required, as the picture shows. Such
a curve will then necessarily be a periodic geodesic, and not merely a geodesic
loop. See also 4.12 of Chavel 1993 [326].

a non-contractible geodesic loop Sys(g) = 0

Fig. 7.22. Looking for systoles
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We refer to the systole of our torus to mean the smallest length of all
possible noncontractible curves.6 Denote the systole by Sys

(
T 2, g

)
. Looking

at the picture, a reasonable guess is that if Sys
(
T 2, g

)
is large, then the area

of the torus in the metric g cannot be very small.

Theorem 119 (Loewner 1949) Any Riemannian metric g on T 2 satisfies

Areag
(
T 2

)
≥

√
3

2
Sys (g)2 .

Moreover equality is achieved precisely when g is flat and corresponds to an
equilateral torus (see §§4.3.3).

One can see that inequality as a kind of global isoperimetric inequality:
there is no domain with a boundary here, the domain is the whole manifold
and the systole plays the role of boundary. Of course we call such an inequal-
ity an isosystolic inequality. For such an inequality, the word co-isoperimetric
could be used, in the sense that here we relate the area to the length of some-
thing looking like a boundary, but in the opposite way: instead of squared
length bounding a constant multiple of area, we have area bounding a con-
stant multiple of squared length.

The proof is beautiful to be concealed but a little expensive because there
is no way to escape to use the conformal representation theorem (which we
have already put in its general context in theorem 70 on page 277):

Theorem 120 Let g be any Riemannian metric on T 2. Then there exists a
flat metric g′ on T 2 and a positive function f : T 2 → R such that g = fg′.

Proof. We now give two different proofs of Loewner’s theorem. The first is
Loewner’s original. Being flat, (T 2, g′) has a transitive groupG of isometries ξ.
(The group is identifiable with the torus itself, in some sense, but maintaining
a distinction makes the proof clearer.) We calculate the mean value of f1/2

under the action of G for its canonical measure dξ to get

(f∗)1/2 =
∫
ξ

f(ξ)1/2dξ .

We get a new metric f∗g′. It is easy to check that by the definitions one has

Sys (f∗g′) ≥ Sys (g)

and (using Schwarz’s inequality) that
6 The term systole comes from physiology (originally from the Greek word for

contraction), and refers to the contraction of the heart that occurs when the
heart pumps blood into the arteries. The analogy of this periodic behaviour
with the periodic behaviour of the geodesics explains the origin of the term in
geometry.
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Area
(
T 2, f∗g′

)
≤ Area

(
T 2, g

)
so that

Area
(
T 2, g

)
Sys (g)2

≥
Area

(
T 2, f∗g′

)
Sys (f∗g′)2

.

But (if it didn’t already occur to you) the function f∗ is constant because
G acts transitively. So the metric f∗g′ is in fact flat. The problem is thus
reduced to finding the minimum of the systolic quotient for flat tori. The
picture below shows that is is attained exactly for the equilateral one.

The second proof consists in testing the systole on a nice set of curves,
large enough to fill up the torus. We fix the flat torus to be given by the
two vectors (0, a) and (c, b) in an orthonormal coordinate system (x, y) in
the plane, adding moreover that (0, a) is the smallest non-zero vector in the
lattice, and that (c, b) is the second smallest one. And, moreover that (c, b)
is not a multiple of (0, a) and that

c ∈
[
−1

2
,
1
2

]
.

We compute the sum of the lengths—for the primitive metric fg′—of the
horizontal curves and get, by the very definition of the systole:∫ b

0

length (y−1(t)) =
∫ b

0

∫ a

0

f1/2 dt dx > b Sys (g) .

But

Area
(
T 2, g

)
=
∫ a

0

∫ b

0

f dx dt .

So we conclude by the Schwarz inequality and looking at the picture in figure
7.23.

Now for some other surfaces. The real projective plane is the simplest.
Take any Riemannian metric on it, and look at its Riemannian universal
covering, which is a metric on S2. Use the conformal representation theorem
for the sphere. As an exercise, first compute the systole for the standard
real projective plane. After a small trick involving the Möbius group of the
standard sphere:

Theorem 121 (Pu 1952 [1043]) For every Riemannian metric g on RP
2

one has
Area

(
RP2, g

)
≥ 2
π

Sys
(
RP2, g

)2
with equality if and only if the metric is the standard one (up to rescaling by
a constant factor).
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1

-1 0 1/2 1 = sustolic value

the area is minimal here

Fig. 7.23. Loewner’s theorem

See VIII.12 of Berger 1965 [151] for details. Next comes the Klein bottle.
Again we have a complete solution, but the result is not the one which we
would naively expect. As an exercise, compute the systolic ratio for the flat
Klein bottle. You will have first to know that the flat Klein bottle can only
come about from rectangular flat tori.

Theorem 122 For any metric g on the Klein bottle K,

Area(K, g) ≥ 2
√

2
π

Sys (K, g)2

and if one wants to attain this lower bounded one should take a metric with a
singular line obtained by gluing two copies of the Möbius band obtained from
the standard sphere as indicated by the picture in figure 7.24 on the next page.

Note 7.2.1.1 The systolic inequality for Klein bottles is largely present in
Blatter 1963 [206] and was rediscovered in Bavard 1988 [119]. Why is the
optimal Klein bottle not a flat Klein bottle? Because the smallest geodesic in
the homotopy class which is of order 2 is isolated. The neighboring curves are
turning twice around it. So in the flat case one can reduces the area without
changing the systole. The general idea is that there should be continuous
families of curves having the systolic length; if not then one can reduce the
volume. See below for more on this, and 4.D in Berger 1996 [168], and of
course Calabi 1992 [304]. For example, for the equilateral torus there are
three such families. The case of RP

2 is exceptional: all of the geodesics are
periodic. Look for yourself at these bands for Bavard’s Klein bottle. �

7.2.1.2 Higher Genus Surfaces We recall that compact surfaces are com-
pletely classified (see figure 3.36 on page 155). The orientable ones are the
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a

b

a

b

b a

ba

a b

b a

a b

glue ab with ba

two π-systole
another π-systole

(find all the systoles)

three bands in the
equilateral flat torus,
meeting at 2π/3

Fig. 7.24. Gluing together a singular Klein bottle with minimal ratio of area to
squared systole

sphere, the torus and then surfaces with two or more holes; the number of
holes γ is called the genus and the Euler characteristic χ (already met in
equation 3.17 on page 155) is equal to 2(1 − γ). The nonorientable ones are
RP

2, the Klein bottle and those of higher genus (obtained by add doughnut
holes to RP

2, for example).
Looking at the pictures, it is tempting to think that for surfaces M of

genus higher than one, the systolic ratio

Area(M, g)

Sys (M, g)2

can be given a lower bound and that moreover this bound will grow with the
genus.

This was proven recently (in 1983) by Gromov, and has a very interesting
history. In various fields of mathematics (algebraic curves, number theory,
and the conformal representation theorem 70 on page 277) a very fruitful
approach to the study of surfaces of any genus is via the theory of functions
of a complex variable. Independently in Accola 1960 [11] and Blatter 1962
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orientable surface, genus 4 large area ?

Fig. 7.25. An orientable surface of genus 4. Can a surface have large area with
small systole, if it has large genus?

[206] complex function theory was used to attack the systolic problem for
surfaces of genus higher than one. But counter to the intuition stemming
from our pictures they could only find a lower bound on the systolic quotient

Area(M, g)
Sys (M, g)2

which tended toward zero for large genus.7 The reason is that they used
the conformal representation theorem, always a natural move when studying
surfaces. They thereby reduced the question to the isosystolic inequality for
flat tori (applied to the Jacobian of the surface M).8 See the end of section
§§§7.2.2.1 and the remarks at the end of section §§§7.2.2.3. This gave them
a bound whose order of magnitude in γ is 1/gγ/2. This is shocking.

This is one of the rare cases where, for studying surfaces, conformal rep-
resentation (alias complex analysis) is the wrong approach.

Theorem 123 (Hebda & Burago (independently) 1980)

Area(M, g)
Sys (M, g)2

≥ 1
2

whatever the nonsimply connected surface and whatever metric g you place
on it.

Proof. Let γ be a periodic geodesic of length equal to

L = Sys (M, g)

and m any point on γ. We are going to see that

VolB
(
m,

L

2

)
≥ L2

2
.

The subtlety is that we cannot say that the injectivity radius is larger than
or equal to L/2, as one can see on the picture in figure 7.26 on the next page
7 It was not the best possible lower bound, as we will see.
8 For more on this, see e.g. section 4.B of Berger 1993 [165].
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exhibiting “small fingers.” So the simple argument used below in section
§§§ 7.2.4.1 on page 377 is not available. Still we will retain part of it as
follows. For any

r < L/2

we consider the closed metric disks

B̄ (m, r) .

By the very definition of the systole, B̄ (m, r) is a topological disk, and in
particular its boundary

S (m, r) = ∂B̄ (m, r)

is made up of two curves joining γ(r) to γ(−r). We cannot have both of
these curves of length smaller than 2r because then one will get together
with the remaining part of γ a closed curve homotopic to γ and smaller than
γ, contradicting the fact that γ realizes the systole.

m
γ'

M

m

γ(-r)
C(m,r)

B(m,r)

γ(r)

γ

Fig. 7.26. Little fingers

Putting these two curves together, we know that

lengthS (m, r) ≥ 4r

and by integration

Area B̄
(
m,

L

2

)
=
∫ L/2

0

lengthS (m, r) dr ≥
∫ L/2

0

4r dr =
L2

2
. (7.3)

Very soon after, Gromov used the same technique to prove what was
expected, namely growth with the genus.
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Theorem 124 (Gromov) For any Riemannian metric on a compact sur-
face M of genus γ

Area(M.g)
Sys (M, g)2

≥ a
√
γ

for some positive constant a (see also note 7.2.1.2).

Proof. (Sketch) Build up a succession of periodic geodesics γi belonging to
a basis of the homology of M.9 We ask that each γi be the shortest in its
homology class. The systole is still denoted by L. For any point m on any γi
we still have

AreaB
(
m,

L

4

)
≥ L2

8
.

Now consider a maximal set of pairwise disjoint balls

B

(
mj ,

L

4

)
each of which has centermj belonging to one of the γi.We apply the following
classical trick, which is no more than the triangle inequality in disguise, but
which is incredibly useful in many contexts (see for example chapter 12):

Lemma 125 (The covering trick) In a metric space, take a system of
pairwise disjoint metric balls of a given radius r as large as possible (i.e.
so that with larger r some of them will overlap). Then the system of balls
obtained from the preceding one by keeping the centers the same, but doubling
the radii, covers the whole space.10

Remark now that any one of the γi needs at least two such balls, and that
such a pair of balls cannot be used for any other loop γj. So the number N
of our balls satisfies

N(N − 1)
2

≥ 2γ .

Thus
N = O (

√
γ) .

Note 7.2.1.2 Gromov has a much better result on systolic inequalities for
surfaces. By deeply refining the above proof, he got a lower bound of the type

Area(M.g)

Sys (M, g)2
≥ a

γ

log2 γ

9 The homology of M is of dimension twice the genus on an orientable surface.
10 Do not confuse this weak covering trick with the very strong doubling trick of

theorem 108 on page 335, which does not apply to general metric spaces.
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a short basis for
the homology

Fig. 7.27. A short basis for the homology

(the constant a being of course universal, i.e. independent of the metric g
and the choice of surface M). For the proof, see 6.4.D’ of Gromov 1983 [618]
(where the wrong factor log γ appears) and 2.C of Gromov 1992 [632], or
4.C of Berger 1993 [165] for very sketchy idea of the proof. This a very hard
result, using Gromov’s technique called diffusion of cycles. See also VIII. 9.
B. 2 and IX. 4. 4. A detailed proof would most welcomed. Gromov can prove
that asymptotically the ratio

a
γ

log2 γ

is optimal (unpublished). �

Let us consider where the subject currently stands. There are many things
to say. Here are the more important and natural. The first remark is that
elementary geometry is solving a problem for surfaces that complex function
theory was unable to solve. This is exceptional, to our knowledge. We turn
now to two natural questions:

Question 126

1. For a given surface, what is the optimal systolic ratio?
2. For which metrics is it attained?

Above we saw that both questions are solved for the torus, the projective
plane and the Klein bottle. As far as we know, both questions are open for
any other compact surface. There are only partial answers.

The first is in section 5.6 of Gromov 1983 [618]

Theorem 127 The infimum systolic ratio is attained by some metric, but
for a Riemannian metric with singularities.

The relevant kind of singularity is quite hard to grasp. This is an abstract
statement. The value of the lowest systolic ratio and the metric achieving it
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are not known today. But very hard work was done by Calabi (see below).
A result of Jenni 1984 [762] gives the best constant but within the restricted
class of metrics of constant curvature (for example, curvature equal to -1)
and for hyperelliptic surfaces of genus 2 and 5 only. Recall from §§6.3.2 that
these space forms are very important mathematical objects. A good reference
is the recent book Buser 1992 [292]. Also see Bavard 1993 [120] and of course
Ratcliffe 1994 [1049].

Note 7.2.1.3 A metric of negative curvature will never achieve the best
ratio. The philosophy for this was explained at the end of the preceding
section (see figure 7.28). In fact, when the curvature is negative, periodic
geodesics are isolated by the second variation formula, and then one can
always reduce the volume without changing the systole. But if one decides
to work within the world of Riemann surfaces, i.e. Riemannian surfaces of
constant curvature, the game is different; see Buser 1992 [292]. �

sys(g)

small modification here

Fig. 7.28. Systoles on negatively curved surfaces

Note 7.2.1.4 We come back now to the general case. In general, when look-
ing for the minimum of some quantity, the natural approach since the ap-
pearance of calculus is to look for minima among the cases where the first
variation is zero. Then one studies the case at hand directly or computes the
second variation, etc. We did that amply for geodesics and for the isoperi-
metric inequality. But systoles are not accessible to calculus, in some sense
because of their nature, or perhaps because we lack the required tools. How-
ever Calabi 1992 [304] succeeded in (partly) reducing the problem to studying
a partial differential equation. However, analysis of this equation is still in
progress. Of course, the first case to look at is genus 2, but it does not seem
to be simpler than, say, genus 4. �

Let us mention a simply stated plane geometry problem which, according
to Calabi 1992 [304], is linked with the above. Consider the first Besicovitch
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theorem 144 on page 377 applied to a square in the plane: consider all possible
Riemannian metrics on the square having the property that the Riemannian
distance between any pair of points sitting in opposite sides of the square is
always at least one. Then the Riemannian area of this Riemannian square
is at least one, and equality can occur only when the square is the standard
Euclidean square. One can compare this with the no-boundary torus case of
Loewner.

Conjecture 128 (Calabi) Suppose we take a hexagon and impose a metric
on it so that the side lengths are at least one unit, and so that any pair of
points on opposite edges are at least one unit apart. See figure 7.29. He has a
conjecture for which we refer again to Calabi 1992 [304]: the extremal metric
inside the hexagon looks like “a fried egg;” see figure 7.30 on the facing page.
It will have regions with curvature of either sign, with singularities at the
junctions.

We have mentioned Besicovitch’s result because it seems to have a very
promising future in Riemannian geometry, since it was revived by Gromov
in section 7 of Gromov 1983 [618]. This is essentially studying Riemannian
manifolds with boundary; see §§ 14.5.1 on page 702 for more on this topic.
One more remark: the story is really only about surfaces and one dimensional
systoles, since Besicovitch 1952 [181] proves that for a cylinder, there are
metrics with arbitrarily small volume even when both the infima of the length
of the curves joining the two boundary disks and the area of disks whose
boundary belong to the cylinder itself are larger than one.

≥1

≥1

≥1

Fig. 7.29. What is the smallest possible area of our hexagon with at least unit
distance between opposite sides, and which metric has that area?

7.2.1.3 The Sphere The notion of systole on the sphere does not make
sense at first glance since the systole is the least length of noncontractible
curves, and all curves on a sphere are contractible. But the systolic value
is achieved by periodic geodesics. So now forget about topology and retain
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Fig. 7.30. Calabi’s fried egg

only periodic geodesics. Consider a Riemannian metric g on S2 and take the
smallest periodic geodesic. It is not obvious that there is one. There is, but
it is hard to prove and will be amply treated in §§10.3.1. Let Λ

(
S2, g

)
be the

length of that smallest periodic geodesic. You might feel that forces the area
Area

(
S2, g

)
to be large. This question was asked by Gromov in 1980. The

conjecture is

Conjecture 129 For any Riemannian metric g on S2

Area
(
S2, g

)
Λ (S2, g)2

≥ 1
2
√

3
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and equality can be achieved only by the singular metric corresponding to a
doubly covered equilateral triangle.

Today there is only a partial answer by Croke 1988 [417] with the constant
1/961. For higher dimensional spheres, one needs to restrict to metrics with
some condition on the curvature; see Wilhelm 1997 [1264], Rotman 2000
[1072].

Comparing the Birkhoff closed geodesic and the shortest one, see Nabu-
tovsky & Rotman 2002 [960], Sabourau 2002 [1079, 1080, 1081] and Rotman
2000 [1072].

again three families and meeting at 2π/3

Fig. 7.31. The smallest area that a topological 2-sphere can have with fixed length
for the smallest period geodesic occurs for the doubly covered equilateral triangle

7.2.1.4 Homological Systoles We defined the systole of a surface in terms
of the curves which are not homotopic to zero (noncontractible). But in topol-
ogy, a closed curve defines a homology class, and even a noncontractible curve
can have vanishing homology class.

Definition 130 The homological systole

SysH1 (M, g)

of a surface M with Riemannian metric g is the lower bound of the lengths
of the closed curves whose homology is nonzero.

For the torus, the Klein bottle, or the real projective plane, the two notions
coincide.11

11 Be careful with the nonorientable case, where you will have to decide whether
you prefer to work with the integral or the Z2 homology.
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But starting at genus two, the homological systole is radically different
from the previously discussed free homotopy systole. Figure 7.32 presents a
famous picture of a noncontractible small closed geodesic which is homologous
to zero.

this closed curve is homologous 
to zero but not homotopic to zero

Fig. 7.32. The closed curve drawn is homologous to zero, but not freely homotopic
to zero.

The closed curve drawn there is homological to zero as is visibly obvious
since it bounds a subsurface, but (also visibly obvious) it is noncontractible.
In Gromov 1992 [632] it is proved, by a nice induction argument starting with
the torus and and without too much difficulty, that for surfaces of any genus,
theorem 124 on page 357 is still valid (asymptotically) for the homological
systole. The idea of the proof is to use induction, by cutting the surface
along a periodic geodesic as in figure 7.33 on the following page. Close the
two pieces with a hemisphere. This will not change the systolic ratios. One
piece is a torus and we apply to it Loewner’s theorem 119 on page 351 and
the induction hypothesis to the second piece. Finally, note that

γ

log2 γ

behaves essentially additively in γ.
This result is surprising since, starting with genus 2, the homology group

is much smaller that the homotopy one. The homology of a compact surface
is abelian and of finite dimension, while the homotopy group is infinite, and a
little like a free group (so with exponential growth). In conclusion one would
have been expecting a much smaller ratio for

Area(M)
SysH1 (M)2

than for
Area(M)
Sys (M)2

since many homotopically nontrivial curves are homologically trivial.
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systole

torus γ = 2

γ = 3

Fig. 7.33. Inductively obtaining asymptotics of homological systoles

7.2.2 Systolic Inequalities for Curves in Higher Dimensional
Manifolds

7.2.2.1 The Problem, and Standard Manifolds Consider now compact
Riemannian manifolds of dimension d larger than two and only nonsimply
connected ones. For such a manifold M we still have the general notions of
systole Sys (M) and of course the volume Vol(M). But, thinking of §§§7.2.1.4
above, we have to be careful to distinguish between homology and homo-
topy. We will make a distinction between SysH1 (M) and Sys (M) only when
needed and leave the reader in temporary confusion. He will soon discover
that the distinction is insignificant (sadly enough).

There is no universal lower bound for

Vol(M)

Sys (M)dimM

(independent of the manifold M). Consider the manifold

M = S1 × Sd−1 .

Taking product metrics for which the circle S1 keeps length at least 1 and
the volume of the Sd−1 factor goes to zero, the systole will be equal to 1 and
the volume will be as small as you like.

What was preventing us from employing this technique on a surface?
Algebraic topology: on any surface other than the sphere S2, the fundamental
group (or the first homology group) generates the fundamental class. The
systole represents the first homology and the volume the fundamental class.
If they are dissociated as in the example above there is of course no hope
to get an inequality. If you do not know what the fundamental class of a
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compact manifold M is, you can consider it as the top dimensional class in
the de Rham cohomology group HdimM

dR (M) as described in §§4.2.2.12

We have then to restrict the potential manifolds. The simplest examples
which come to mind are tori T d and the real projective spaces RP

d. Also,
we can look at space forms of negative curvature type. In those three cases,
the first homology generates the fundamental class. No one could prove any
systolic inequality for these spaces before Gromov cracked the nut in the
very important article Gromov 1983 [618] which is the basic reference for
everything we will present here. See also Gromov 1992 [632].

Before presenting a sketch of Gromov’s many new ideas, we look at a naive
question which we almost skipped in the two dimensional case. Consider first
a flat (locally Euclidean) torus and ask what is the systole and what is the
volume? Denote by Λ the lattice yielding this flat torus as presented in §§4.4.3.
Geodesics being projections of straight lines, the periodic ones are represented
by segments joining the origin to some nonzero point of the lattice Λ and the
volume is equal to the determinant of Λ. The systole is then equal to the
smallest possible norm for a nonzero element of Λ. Our question is to find
what is the best possible ratio for various lattices in Ed of the determinant
to the dth power of the smallest nonzero element of the lattice.

In two dimensions, the best ratio was depicted in figure 7.22 on page 350.
For a general dimension d this is a famous problem in the field of mathematics
called geometric number theory. Compactness shows quite easily that there
is a optimal lower bound and that it is achieved by some lattices, called
critical lattices. They are completely known in vector spaces of all dimensions
up to and including eight dimensions. After eight dimensions, neither the
best ratio nor the lattices achieving it are explicitly known, but extremely
good asymptotic values are known. We refer the reader to Berger 1993 [165],
Gromov 1992 [632] and the various references there. We just want to note
that the above bound is extremely small in d; its order of magnitude is

1
dd/2

.

The best references in our opinion are Gruber & Lekkerkerker 1987 [660] and
Conway & Sloane 1999 [403]. Erdös, Gruber & Hammer 1989 [491] could be
also useful.

An even more special case of flat tori is of great interest in algebraic
geometry and number theory, namely we consider the so-called Jacobian va-
rieties of Riemann surfaces. They are flat tori of (real) dimension 2γ if the
genus of the surface is γ. Jacobians have a natural (flat) metric depending on
the conformal structure on the given surface. It is a long standing problem
to characterize Jacobians among flat tori (or equivalently, to characterize the
lattices in Cγ which yield Jacobians). There are some very algebraic and com-
plicated solutions of that problem; see Beauville 1987 [123]. Buser & Sarnak
12 This is true for orientable manifolds. For unorientable manifolds, one has to work

with Z2 homology.
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1994 [297] proved that the order of magnitude of the systole is very different
from the general case where the order of the systole which can go up to

√
γ,

namely the systole has maximal order log γ. See on page 376 for a geometric
characterization of Jacobians using 2-systoles.

In our beloved KP
n, the only case to consider is the real projective space

(with its canonical metric) for which things are trivial: there is only one metric
on projective space of constant curvature and since we know the geodesics
and the total volume we are done.

7.2.2.2 Filling Volume and Filling Radius Gromov proved the existence
of a positive lower bound for the systolic ratio

Vol(M)
Sysd (M)

for any compact Riemannian manifold M whenever M has sufficient 1-
dimensional topology to generate its fundamental class. The exact condition
will be expressed in §§§7.2.2.3. Before describing that condition, we will now
introduce the concepts needed for the proof. These concepts have already
much geometric interest and raise many open questions.

The difficulty in the topic—at least with current knowledge—is that one
cannot avoid working in infinite dimensional vector spaces. The starting point
is to construct the map

Definition 131
f : M → L∞(M)

where L∞(M) is the space of all bounded functions on M endowed with the
sup norm and where the map f is given by the various distance functions

f : m �→ d (m, )

M L∞ (M)

m

m

n
d(m,n)

m m'

n

| d(m,n) - d(m'n) | ≤ d(m,m')

 d(m,m') - d(m'm') = d(m,m')take n = m'

sup {| d(m,•) - d(m'•) |} = d(m,m')

Fig. 7.34. The map taking a point m ∈ M to the distance function d (m, ) ∈
L∞(M)

For the two metric spaces M and L∞(M), the map f is an isometry.
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Definition 132 The filling radius of a compact Riemannian manifold M is
the smallest positive number ε for which the image f(M) in L∞(M) bounds
in its ε tubular neighborhood.13

f(M)

ε ε

f(M) does not bound here in its ε-neighborhood 

f(M) bounds here in its ε-neighborhood 

ε

ε

ε

Fig. 7.35. (a) f(M) does not bound in its ε neighborhood. (b) f(M) bounds here
in its ε neighborhood.

This filling radius is a geometric invariant which at first glance appears
very simple. In fact its value is known only for the standard spheres Sd, the
standard projective spaces RP

d and the complex projective plane CP
2, but

is still unknown for the remaining KP
n as well as for any other Riemannian

manifolds (in particular, any of the above manifolds with nonstandard met-
rics); see Katz 1983,1991 [792, 793] and Wilhelm 1992 [1261]. For the filling
radius of the sphere, see Sabourau 2002 [1079, 1080, 1081].

Definition 133 The filling volume of a compact Riemannian manifold M
of dimension d is the infimum of the volumes of the d + 1 dimensional sub-
manifolds in L∞(M) whose boundary is f(M).

Today there is not a single manifold whose filling volume is known, not
even the circle (for which Gromov conjectures the value is 2π). These two
invariants are promised a future in Riemannian geometry. For example the
filling radius is used in Greene & Petersen 1992 [592] to improve the recent
finiteness theorems mentioned in §§ 12.4.1 on page 640. But some inequalities
(due to Gromov of course) are valid for any compact manifold; namely

Theorem 134 There are two positive constants a(d) and b(d) such that for
every compact d dimensional Riemannian manifold M
13 The term “to bound” comes from algebraic topology and means that there is a

cycle of one higher dimension whose boundary is the object under consideration.
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Vol(M)d+1 > a(d) (Filling volume of M)d

Filling volume of M > b(d) (Filling radius of M)d+1

The proofs are hard, especially since one is working in infinite dimension.
But as seen in ordinary space they are quite reasonable. The first inequality
is classical in the standard Euclidean setting, say of dimension N . You have a
compact d dimensional submanifold M in RN and you span it with a minimal
submanifold H of dimension d+1 with the boundary ∂H = M equal to your
original manifold. Then there is an isoperimetric inequality in Michael &
Simon 1973 [918] to the effect that

Vol(M)d+1

Vol(H)d
> a(d)

for some universal constant a(d) (independent of M and H).

Hf(M)

N = ∂H

H

r

y

ε
ε

ε

∂H = N

S(y;ε)

∂B(y;ε)

S(y;r)

∂B(y;r)

=

=

Fig. 7.36. There is a isoperimetric inequality of classical character for minimal
submanifolds and their boundaries

We will continue to imagine this picture in a finite dimensional Euclidean
space RN of M as the boundary

∂H = M

of a d+1 dimensional minimal submanifold H of RN . (Of course, things can
be more subtle in infinite dimensions.) Now we will use the definition of the
filling radius ε. This means exactly that there is some point y ∈ H such that
the metric ball B (y, ε) is filled up nicely with the spheres ∂B (y, r) for every
r < ε. Compare this with the proof in theorem 123 on page 355. Using this
and the minimality we see that volume should grow at least as quickly as in
the flat case.
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Note 7.2.2.1 Filling radius and filling volume have been introduced here,
not only because they are basic ingredients in Gromov’s proof, but because
it seems highly probable that they will play an important role in the future
of Riemannian geometry. �

7.2.2.3 Gromov’s Theorem and Sketch of the Proof First we state the
technical formulation of the heuristic notion of the first dimensional homology
generating the fundamental class.

Definition 135 A topological space is said to be aspherical if except for di-
mension one all the homotopy groups vanish.

Definition 136 A compact Riemannian manifold M is said to be essential
if there is some map

g : M → X

into some aspherical space X such that the induced map

g∗ : H∗ (M) → H∗ (X)

at the homology level maps the fundamental class of M into a nonzero ele-
ment:

g∗[M ] �= 0 .

Theorem 137 (Gromov 1983 [618]) There is a positive constant c(d)
such that for every essential compact d dimensional Riemannian manifold
M one has

Vol(M)

Sys1 (M)d
> c(d) .

(where Sys1 (M) is the homotopic 1-systole).

Using theorem 134 on page 367 the proof is finished with

Theorem 138 For any essential compact Riemannian manifold M

Filling radius(M) ≥ 1
6

Sys1 (M) .

This is the key point in the proof and it goes by contradiction assuming
that

Filling radius = r <
1
6

Sys1 (M) .

We first identify M with its isometric image f(M) inside L∞(M) . Then we
know that M is the boundary of some cycle H which is contained in the r
neighborhood of M, since r is the filling radius of M. This means that the
inclusion map acts on homology
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ι∗ : Hd (M) → Hd (K)

trivially on the fundamental class of M :

ι∗[M ] = 0.

Let
η : M → X

be a continuous map into an aspherical space X which is not trivial on the
fundamental class of M at the dth dimensional homology:

η∗ : Hd (M) → Hd (X)
[M ] �→ η∗[M ] �= 0.

We claim that under the assumption above we can extend η to a map

η : H → X.

This will be the desired contradiction, since M is a boundary in H .

a' b'

c'

a
b

c

f(M)

=

M

≤ r ≤ r ≤ r

≤ ε

≤ ε

≤ ε

M
μ

K

Ν

 ∪

[ ] ≠ 0

0

Fig. 7.37. Extending a continuous map from M to a higher dimensional cycle
containing M

We note that we have only to carry out such an extension at the two
dimensional level sinceX is aspherical. To do this we triangulateH (including
M) in such a way that every edge is of length smaller than ε with

3ε+ 6r < Sys1 (M) .

To extend η to H , we associate to each vertex a ∈ H in the triangulation
another vertex a′ ∈M with distance
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d (a, a′) < r.

Let {a, b, c} be any triangle of the triangulation and {a′, b′, c′} the corre-
sponding triangle in M. The segments which are the sides of {a′, b′, c′} are
geodesics in M since we have an isometric embedding. We draw the sides of
{a, b, c} and this gives us an extension from the original η up to the 1-skeleton.
Now we remark that by our construction and the triangle inequality

perimeter of {a′, b′, c′} ≤ perimeter of {a, b, c} + 6r < Sys1 (M) .

By the very definition of the systole, the perimeter of {a′, b′, c′} is contractible
in M. In order to extend η to the interior of {a, b, c}, we have only to make
a point to point correspondence with a contraction in M of the perimeter of
{a′, b′, c′}. This yields the desired extension of η to the 2-skeleton.

Note 7.2.2.2 The above theorem applies to every torus, to every negative
curvature type space form (see §§6.3.2) and also to the projective spaces RPd.
To see this you need to know that the infinite dimensional real projective
space RP

∞ is aspherical. �

We are left with three questions. First:

Question 139 What is the optimal value and if “extremal metrics” exist
who are they?

For this, besides the “Filling paper” of Gromov 1983 [618], see Calabi 1992
[304] and Gromov 1992 [632]. But in dimensions three and higher, there is to
our knowledge no existence theorem of an optimal systolic metric (possibly
with singularities) on any type of manifold. Nor is any optimal ratio known.
It is not clear today if it is reasonable to conjecture that for the tori T d and
the projective spaces RPd the best ratio is attained for flat and standard
metrics and only for them (see §§§7.2.2.1). The first cases to look at would
be T 3 and RP3. A classical idea is to sit at the standard metric g for RP3 or
a flat one g for T 3 which is optimal among flat metrics and try to compute
a variation of the systolic ratio

Vol(M, g)
Sys3 (M, g)

.

This is difficult because the systole is not directly accessible to calculus: see
question 126 on page 358. The volume is accessible to calculus. One still can
show that the first variation is always zero but the second variation seems
hard to work with. See Besse 1978 [182] 5.90 for a result in this spirit.

The second question:

Question 140 What characterizes compact manifolds for which we have
such a universal inequality for
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Vol(M, g)

Sys1 (M, g)dimM
?

This is studied in Babenko 1992 [91] for the homotopical

Sys1 (M)

associated to the fundamental group. Such a result can be seen as a “systolic”
characterization of a topological property.

The third question concerns the homological systole:

Question 141 What characterizes compact manifolds for which we have
such an universal inequality for

Vol(M, g)

SysH1 (M, g)dimM
?

Things are completely solved positively in Babenko 1992 [91] (but not every-
thing figures explicitly in the text, and be careful about the nonorientable
case).

7.2.3 Higher Dimensional Systoles: Systolic Freedom Almost
Everywhere

Everything in the last section concerned closed curves in a Riemannian man-
ifold. But there is no reason not to consider closed submanifolds of any di-
mension. For simplicity, we will stick from now on with homology (no longer
homotopy). References are Berger 1993 [165], Gromov 1992 [632], chapter 4
and appendix D of Gromov 1999 [633] and references there. Interesting exam-
ples of systolic freedom occur in Freedman 2000 [521], where they are related
to quantum computing; this relationship is still being developed. See Nabu-
tovsky & Rotman 2002 [960], Katz, Kreck & Suciu 2002 [797], Katz & Suciu
2001 [799], Bangert & Katz 2002 [113], and Katz 2002 [796] for relations with
calibrations (see §§§14.2.1.3).

We define the k dimensional systole

Sysk (M, g)

of a Riemannian manifold M with Riemannian metric g as the lower bound
of the volume of the closed k dimensional submanifolds of M which are not
homologous to zero. We will ask

Question 142 Is there, at least for some compact d dimensional manifolds
M, a constant a(M) and an inequality

Vol(M, g)k

Sysk (M, g)d
≥ a(M)

for any Riemannian metric g on M?
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We might ask this for example for the KPn or various products like

Sk × · · · × Sk

M ×N

for
Vol(M ×N)

Sysp (M) Sysq (N)

etc. One will find in the two above references the state of affairs today. But
we will now be extremely brief for the following reason. It might well be the
answer to question 142 on the facing page is no for every compact manifold
and every k ≥ 2.

For higher dimensional systoles, negative results started to appear in Gro-
mov 1992 [632]. They were intermediate results. Gromov’s example of (1, 3)
softness on S1 × S3 is elementary and consists simply in gluing on a copy of
[0, 1]× S3 after twisting enough with the Hopf fibration. We have now a ex-
tremely large category of negative examples in Bérard Bergery & Katz 1994
[146], Babenko & Katz 1998 [93] and Babenko, Katz & Suciu 1998 [94]; also
see Katz’s appendix in Gromov 1999 [633] and Pittet 1997 [1031]. One says
that a manifold Md is systolically (k, d − k) soft (or systollically (k, d − k)
free) if the infimum of the quotients

Vol(M, g)
Sysk (M, g) Sysd−k (M, g)

among all metrics g on Md is zero. The above authors proved softness in the
following cases:

1. For any orientable (k − 1)-connected d dimensional manifold with

d ≥ 3, k <
d

2
, and k not a multiple of 4,

there is (k, d− k) softness.
2. For simply connected manifolds of even dimension Md=2n with d ≥ 6,

provided Hn (M) is torsion free, there is (n, n)-softness.

The Sk × Sk (for k ≥ 3) and HP2 are startling examples. The (4, 4)-
softness of HP

2 is most surprising, since the projective lines fill up the whole
space in the most geometric possible fashion and should have been “sniffing
around enough” to prevent softness. The “freedom” can be very large, for
example on S3 × S3 one can even restrict attention to only homogeneous
metrics and still see the freedom. It is not clear today if the various topological
restrictions are really necessary as well as the dimension ones. In fact there
is no known example of a hard inequality as soon as the involved systoles
are in dimension 2 or more. The dimension 4 case was solved in Katz 1998
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[795]. Even earlier, Katz had shown that S2 × S2 and CP2 are systolically
soft. Of course the case of CP

2 is even more surprising, just as for all KP
n but

especially because Gromov proved hardness for metrics close to the canonical
metric, announced in Gromov 1985 [619]. The recent Katz & Suciu 1999 [798]
and Babenko 2000 [92] completely finishes the proof of middle dimensional
freedom on even dimensional manifolds.

All the above results are very geometric. We will give a flavor of the ideas
and refer to the Appendix D of Gromov 1999 [633] for more details. We start
with Gromov’s initial example:

Proposition 143 On the manifold M = S1 × S3 there are Riemannian
metrics g whose quotient

Vol(M, g)
Sys1 (M, g) Sys3 (M, g)

is arbitrarily small.

Proof. We will play with a real number R which will soon start to get larger
and larger. Consider M the product of the sphere S3(R) of radius R with the
interval [0, 1/R] with the two boundary spheres identified

S3(R) × {0} and S3(R) × {1/R}

under the “Hopf rotation” map

S3(R) → S3(R).

A Hopf rotation is the following map: we choose some Hopf fibration on S3(R)
by great circles and then push any point by a unit distance along the fiber
through it. Then the total volume of the resulting Riemannian manifold (a
local product) is

2π2R3 · 1
R

= 2π2R2.

Controlling the systoles is easy:

Sys3 (M) = 2π2R3

and

Sys1 (M) =

√
1 +

1
R2

.

Vol(M)
Sys3 (M) Sys1 (M)

∼ O

(
1
R

)
→ 0 as R → ∞

This counterexample metric is not very wild, since it is homogeneous.
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S3(R) S3(R)

1/R

1

0 1/R

√1
 +

1 / R
2

1

1/R

Fig. 7.38. The construction of a homotopically soft 4-manifold

To determine systoles on some more general manifolds, one performs
surgery in such a manner that one can control the systole and the volume,
employing quite a few subtle results of algebraic topology. Technically, one
also uses calibrated geometry; see §§14.2.1. Using the concept of calibration,
one can relate homological systoles to differential forms, which is not the
case in general. When there are topological restrictions, it is because they
are needed to be able to employ various algebraic topology results.

Note 7.2.3.1 (Stable systoles) There are results similar to those we have
already studied, but for the so-called stable systoles. For details see chapter 4
of Gromov 1999 [633] or section 8 of Berger 1993 [165]. We briefly explain the
theory of stable systoles. The story here is really in the realm of homology. As
an introduction, let us consider the case of some Riemannian surface (you can
think of a torus for example). Let γ be the smallest homologically nontrivial
periodic geodesic. Travel along it twice; call this 2γ. Can you find some new
curve σ which is homotopic to 2γ but of smaller length? An old theorem of
Morse says that this is impossible, the reason being that the new curve will
necessarily intersect itself and then will not be a shortest curve by the first
variation formula. But in higher dimension, there is room enough to avoid
self-intersections. This was already mentioned in Hedlund 1932 [695]. But if
we write

lengthα

for the infimum of the lengths of all closed curves in homology class α ∈
H1 (M), then nonetheless one can prove that there is a positive limit for the
real number

Stab SysH1 (M) = lim
n→∞

inf {length (nα) |α ∈ H1 (M)}
n
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which number which we call the stable 1-systole of the compact Riemannian
manifold M .

One can define the same way the stable systole of any dimension k in any
compact manifold M, denoted Stab SysHk (M) .

It turns out that stable systoles enjoy the inequality one would naturally
expect, e.g. for the KPn and for products of manifolds. The reason at the
heart of this is that the stable systole can be related to various norms of
exterior differential forms on a Riemannian manifold, which is not true for
standard systoles as is clear from the counterexamples above. One has at ones
disposal the exterior product, Stokes’ formula, etc. This is to be found only
in chapter, 4, section D of Gromov 1999 [633]. In particular, for CP

n we see
an inequality with the optimal constant

Vol (CP
n, g)

Stab SysH2 (CP
n, g)n

≥ Vol (CP
n,Fubini–Study)

Vol
(
CP

1,Fubini–Study
)n

for any metric g on CP
n. For products, one still finds inequalities but, at least

today, with poor constants:

– For any Riemannian metric g on
∏n Sk

Vol
(∏n

Sk, g
)

Stab SysHk (
∏n

Sk, g)n
> c > 0

– For any Riemannian metric g on a product of compact manifolds Mp×N q

Vol (M ×N, g)
Stab SysHp (M, g) Stab SysHq (N, g)

> c > 0

�

Note 7.2.3.2 k-systoles with k > 1 are interesting objects. In 2.E of Gro-
mov 1992 [632], Gromov uses some 2-systoles to give a purely geometrical
characterization of Jacobians of curves among flat tori, already met for the
1-systole in §§§7.2.2.1. �

Note 7.2.3.3 For simply connected manifolds, it makes sense as in §§§7.2.1.3
to consider the volume and the length of the smallest periodic geodesic. Today
one can get results if one adds some curvature conditions, see Rotman 2000
[1072]. �

Note 7.2.3.4 (Besicovitch’s results 1952 [181]) We imagine that the
reader is surprised by the theory of systoles, which one can sketch as: for
curves, one has very good positive results, but as soon as one works with
submanifolds of dimension two or more, one has softness, i.e. rather weak
results. In fact this is not surprising, in view of two results of Besicovitch for
Riemannian manifolds with boundary:
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Theorem 144 (Besicovitch 1952 [181]) Take the standard topological cube

C = [0, 1]d

but put inside it any Riemannian metric. If Li denotes the infimum of the
length of any curve having its ends in the opposite faces

Ei = {xi = 0} ∩ C Fi = {xi = 1} ∩ C

for i = 1, . . . , d then the total volume VolC satisfies

VolC ≥
d∏
i=1

Li

with equality if only if the metric we have imposed on C is the standard
Euclidean cube metric.

Theorem 145 (Besicovitch 1952 [181]) Consider a cylinder

C = D × [0, 1]

where is D is a disk. Put any Riemannian metric inside and define L to be
the infimum of the length of the curves with one end in the disk

D × {0}

and the other in the disk
D × {1}

and denote by S the infimum of the area of surfaces in C whose boundary
lies in the surface

S1 × [0, 1].

Then the ratio
VolC
LS

can be made arbitrarily small (softness).

For more see Gromov 1983 [618]. �

7.2.4 Embolic Inequalities

7.2.4.1 Introduction, Questions and Answers To our knowledge, the
content of the present section is treated in book form only in chapters 6 and 7
of Chavel 1993 [326], and not completely even there. One might also consult
Sakai 1996 [1085] chapter VI.
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≥ 1

≥ 1

≥ 1 area

≥ L

≥ S

volume can be as small as wanted

Fig. 7.39. (a) Area ≥ 1 (b) Volume can be as small as desired

Fig. 7.40. Volume and injectivity radius

Looking at the above two pictures and also remembering the dichotomy of
Klingenberg’s theorem 89 on page 296, one is tempted to say that forcing the
volume to be small will force the injectivity radius to be small. For example
think of a flat torus or of a sphere.

This is easily seen on any surface; we apply the technique of equation 7.3
on page 356 as follows. Pick up any point m ∈ M and look at the ball
B (m, ι/2) where ι = Inj (M, g) . That ball is nicely covered by the exponential
map, by the definition of injectivity radius. For any t < ι/2 and any geodesic
γ through m = γ(0) the two points γ(r) and γ(−r) cannot be joined by a
curve of length smaller than 2r, once again by the definition of the injectivity
radius. In conclusion, the circle C(m, r) = ∂B (m, r) is always made up of
two pieces, each of length not smaller than 2r. By integration one finds as in
equation 7.3 on page 356
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VolB (m, ι/2) ≥ ι2

8
.

Since one can cover M with two such balls we know that

Vol(M, g) ≥ Inj (M, g)2

4
(7.4)

≥ 2r

≥ 2r

r
r

Fig. 7.41. Relating the injectivity radius of a surface to its volume

This technique is very primitive. Indeed one never has equality (proof is
left to the reader). Moreover it does not extend to higher dimension, since
in higher dimensional manifolds, the boundary of a ball B (m, r) is a sphere
S (m, r) = ∂B (m, r) which is no longer a curve and its area is almost impos-
sible to control, at least by any simple mechanism.

We still can ask some natural questions. The first two stem directly from
what we have just considered.

Question 146 Is there a positive constant a(d) such that for every compact
Riemannian manifold M of dimension d, any point m ∈ M and any r ≤
Inj (M) /2, the volumes of balls satisfy

VolB (m, r) ≥ a(d)rd?

If so, what is the largest possible choice of a(d)?

Question 147 Is there a positive constant b(d) such that for every compact
Riemannian manifold of dimension d the volume of the manifold satisfies

Vol(M) ≥ b(d)Inj (M)d?

If so, what is the largest possible choice of b(d)?

Today there are some pleasing results, but not all of these questions an-
swered. Here is what we know:
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Theorem 148 (Berger 1980 [160]) Question 147 has a positive answer.
The largest possible constant is

b(d) =
σ(d)
πd

(recall that σ(d) denotes the volume of the standard sphere and that π is
its injectivity radius). Moreover equality is attained only for standard round
spheres.

Theorem 149 (Croke 1980 [411]) Question 146 has a positive answer
with the (not optimal) bound

a(d) =
2d−1σ(d − 1)d

ddσ(d)d−1
.

Theorem 150 (Croke 1984 [415]) Question 146 has a positive answer
with an optimal bound “on average.” Namely, for every r < Inj (M) ,

1
Vol(M)

∫
M

VolB (m, r) dVM (m) ≥ σ(d)
rd

πd

and equality occurs if and only if M is isometric to a standard sphere and
r = Inj (M) .

The bound a(d) in theorem 149 is certainly not optimal, in that equality
can never be attained. It is not clear if it is reasonable to conjecture for the
optimal bound the value obtained for standard hemisphere, namely

a(d) =
σ(d)

(π/2)d

with equality only for standard hemispheres.

Definition 151 For a compact manifold M of dimension d its embolic con-
stant14 is

Emb(M) = inf
g

Vol(M, g)

Inj (M, g)dimM

where the infimum is taken over all Riemannian metrics g on M .
14 The term embolism comes from the Greek for insertion and refers in physiology

to a bubble or blood clot blocking an artery. We want to think of the injective
image of a ball under the exponential map as our embolism, “blocking” the
manifold in the sense that it strikes into itself, and this is the relevant analogy.
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By theorem 148 on the preceding page we know that this is a positive constant
which is not smaller than

σ(d)
πd

.

Imagine the subset of R+ made up by the different embolic constants of
the various compact manifolds of a given dimension d. Notice the major
result: theorem 267 on page 533 which is a direct corollary of theorem 377
on page 649.

Question 152 Compute Emb(M) for various standard compact manifolds
e.g. the tori T d, the various KP

n, etc. In case one is able to compute the
embolic constant, we may also wonder for which metric is it attained ?

Question 153 Is the value
σ(d)
πd

isolated or not in the set of possible embolic constants for manifolds of a given
dimension?

Question 152 is completely open today, even for projective spaces RP
d or tori.

Except for Emb
(
Sd
)

not a single embolic constant Emb(M) is known when
d ≥ 3. As an exercise, the reader can find the embolic constants of RP

2, the
two dimensional torus and the Klein bottle (use Klingenberg’s theorem 89 on
page 296). If the embolic constant of KP

n turns out to be the one obtained
for the standard metric then this will help to answer (and probably com-
pletely answer) the outrageously open question 97 on page 310 concerning
Riemannian manifolds M with

diam(M) = Inj (M) .

But there is a satisfactory answer to question 153:

Theorem 154 (Croke 1988 [418]) Every manifold M of dimension d which
is not a sphere satisfies

Emb(M) > Emb
(
Sd
)

+ c(d)

where c(d) is an explicitly described positive constant depending only on the
dimension d.

Note 7.2.4.1 (Best metrics) We have introduced a remarkable invariant
of (smooth) compact manifolds: the embolic constant. This invariant comes
from Riemannian geometry. In chapter 11 we will introduce two other ones:

– the minimal volume and
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– the infimum of the integral ∫
M

‖R‖d/2dVM .

Riemannian metrics achieving the lowest bound for a reasonable functional
are, in some sense, the best possible on a given compact manifold. �

7.2.4.2 Starting the Proof and Introducing the Unit Tangent Bun-
dle We will give the ideas for the proofs of theorems 148 on page 380, 149 on
page 380, 150 on page 380, and 154 on the page before when the manifold in
question is a surface. We will just mention the technical difficulties for pass-
ing from surfaces to higher dimensional manifolds. But the main steps are
already present in studying surfaces. In passing, we will now introduce the
unit tangent bundle of a Riemannian manifold, which will also play various
important roles in the future (for example, see chapter 10).

First, normalize the metric g in order that

Inj (M, g) = π.

We consider various balls B (m, r) of radii r < π. We can be sure that these
balls are nicely covered by the exponential map. In such a ball, the ds2 is
written as

ds2 = dt2 + f2(u, t)du2.

Consequently, we see

AreaB (m, r) =
∫
u∈UmM

∫ r

0

f(u, t) dt dVUmM (u) (7.5)

UmM

B(m;r)

f(u,t)
f(u,r)

u

m

Fig. 7.42. Measuring the volumes of balls via the exponential map

Moreover, we can consider u as a unit tangent vector atm running through
the unit sphere UmM. If we denote by γu the geodesic with

γ′u(0) = u
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then the function f is given along γu by the Gauß–Jacobi equation

f ′′ +Kf = 0. (7.6)

The general idea is to take some kind of “mean value” of areas of all the
balls when m runs through M and r ranges from 0 to π. This will involve
four integrations:

1. in t from O to r
2. in r from 0 to π
3. in u running through UmM and finally
4. in m running through M.

The last two integrations are better packaged into one by introducing

Definition 155 The set of all unit tangent vectors to a Riemannian man-
ifold M is called its unit tangent bundle and is denoted by UM. It is a
subbundle of the full tangent bundle TM. The canonical projection is denoted
by

p : UM →M.

The bundle UM is automatically oriented, and endowed with a canonical
Riemannian metric (see §15.2) which moreover makes p : UM → M a Rie-
mannian submersion (see §§4.3.6). In particular, it has a canonical volume
form which is denoted by ω. The geodesic flow on UM is the one parameter
group Gt of diffeomorphisms of UM defined as follows:

Gt(u) = γ′u(t).

Theorem 156 (Liouville) The volume form ω is invariant under the geodesic
flow (see chapter 10).

In its canonical metric, the trajectories of the geodesic flow are themselves
geodesics and (see on page 259) project down onto the geodesics of M.

A physicist might consider UM as the phase space of free particles on M .
It is helpful to look at the geodesics as trajectories of a flow in UM because
in UM they fill up the space and do not intersect each other. This will turn
to be very important in chapter 10.

7.2.4.3 The Core of the Proof The next idea in proving the theorems 148
on page 380, 149 on page 380, 150 on page 380, and 154 on page 381 is to
apply Fubini’s theorem many times. The starting point is to integrate things
(i.e. the various functions figuring in equation 7.5 on the preceding page)
first along a given geodesic segment of length π. To do this, we decorate the
function f with a subscript as fu when we want to describe its restriction to
γu. We have to compute the double integral :
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UmM

u

M
m

UM

u

G(s)(u)

γ'u(s)

γ'u(s)

γu(s) γu

Fig. 7.43. The geodesic flow lines in UM project to the geodesics of M

UmM
UnM

m n

Fig. 7.44. (a) Geodesics in UM upstairs (b) Geodesics downstairs in M

I(u) =
∫ s=π

s=0

ds

∫ t=π

t=s

dt f (Gs (u) , t) (7.7)

The basic idea of the proof is that the various f(Gs(u), t) (when s varies)
can be explicitly computed as a function of f(u, t). This is because they all
are solutions of the Gauß equation

f ′′ +Kf = 0 (7.8)

It is essential here that f(u, t) does not vanish between 0 and π. This is be-
cause of the results on cut points which we found in §§6.5.1. Now elementary
theory of ordinary differential equations yields

f (Gs(u), t) = f(s)f(t)
∫ w=t

w=s

dw

f2(w)
(7.9)

where
f(s) = f(u, s).

We might guess that there will some kind of compensation of the following
sort. Assume for example that f is very small on a large interval. If f were
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moreover a constant then this will implyK = 0. But then, on such an interval,
f (Gs(u), t) will be linear and as such will get large. This guess is correct

0 s t
π

f

f(G(s))

0 s t

f(G(s))

f

Fig. 7.45. Behaviour of the Jacobi field

and the sphere yields the minimal compensation since

Lemma 157 (Basic lemma)

I(u) ≥ π

with equality only if f is proportional to sin t, i.e. if

K ≡ 1.

The proof is very clever, but completely elementary; see Berger 1977 [156]
if you are stuck. What you have to prove is that for any function φ vanishing
at 0 and π ∫ x=s

x=0

dx

∫
y=x

y = sdy

∫ t=y

t=x

dt
φ(x)φ(y)
φ2(t)

≥ s3

π2

and equality happens if and only if φ is proportional to the sine function.
The proof of theorem 148 on page 380 is now finished as follows. To every

u ∈ UM one attaches the picture in figure 7.46.

m r

B(m; r)

π - r n

B(n; π - r)

Fig. 7.46. Two balls sitting astride each other

By the definition of the injectivity radius, for every u ∈ UM and every
r < π, the two balls
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B (m = p(u), r) and B (n = p (Gπ(u)), π − r)

are disjoint. This show that

Area(M) ≥ AreaB (m, r) + AreaB (n, π − r) . (7.10)

We integrate this inequality on the whole of UM, and for r running from 0 to
π/2, using equation 7.5 on page 382. Then we apply the Fubini theorem and
on the way apply Liouville’s theorem 156 on page 383. and finally lemma 157
on the preceding page. This yields theorem 148 on page 380. It is easy to
identify the manifold when we have equality in our inequality: we are forced
to have equality in lemma 157 on the preceding page and this forces the
curvature to be constant and equal to 1. We are then on a sphere: apply the
results of §§6.3.2 and we remark moreover that M cannot be a nontrivial
quotient of the standard sphere since its injectivity radius is

Inj (M) = π.

When the dimension is higher than two, as we have seen in equation 6.11
on page 271 the Gauß ordinary differential equation

f ′′ +Kf = 0

has to be replaced by the vector Jacobi equation

Y ′′ +R(γ′, Y )γ′ = 0

and the function f by the determinant

det (Y1, · · · , Yd−1)

of Jacobi fields. We replace the scalar equation 7.9 on page 384 above by the
following one, which an endomorphism equation (or a matrix equation, if you
prefer)15

A (G (s) (u) , t) = A (s)
(∫ t

s

(
At (r)A (r)

)−1
dr

)
At (s)

For this relation, as well as for a detailed proof, one can consult for example
section VI.2 of Sakai’s book Sakai 1996 [1085], or appendix D of Besse 1978
[182]. With a clever trick, the classical inequality for integrals of convex func-
tions, one has finally to replace the basic lemma 157 on the page before by
the following inequality:

Lemma 158 (Basic inequality) If

15 Clearly, the order of matrix products is significant.
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ρ : [0, π] → R+

is any function satisfying
ρ(π − t) = ρ(t)

then for any nonnegative function φ∫ π

0

dr

∫ π

r

ds

∫ t

r

φ(r)φ(t)
φ2(s)ρ(t − r)

≥ “the value the same expression takes for φ = sin”

and with equality if and only if φ is proportional to the sine function.

This very subtle inequality was proven by Kazdan in 1978: see section 5.3 of
Chavel 1993 [326] or appendix E of Besse 1978 [182] or section VI.2 of Sakai
1996 [1085]. It is an open problem to find a proof of it with a clear underlying
concept; one would expect interesting generalizations and applications of such
a proof.

7.2.4.4 Croke’s Three Results We now sketch the proof of theorem 149
on page 380. The proof is a mixture of the basic inequality in lemma 158
on the preceding page with Santalo’s equation 7.11 on the following page
which was already used in §§§7.1.2.3 by Croke to prove the conjecture for the
isoperimetric profile of four dimensional manifolds of nonpositive curvature.
Santalo’s formula is proven in section 5.2 of Chavel 1993 [326].

The proof is concerned with balls of radius r < π/2. The sphere which is
the boundary of this ball will be denoted

S (m, r) = ∂B (m, r) .

This sphere is smooth because we are within the injectivity radius. Moreover,
for any point n ∈ B (m, r) , the injectivity radius at n, Inj (n) , is not smaller
than π, which has the effect that the geodesics through n will nicely sweep
out over the whole ball B (m, r) . And there will be no conjugate points on
these geodesics inside B (m, r) .

This implies that we can compute

VolB (m, r)

from the viewpoint of n, using an integral over UnM of suitable determinants
of Jacobi fields. We now carry out these integrals over all n running through
B (m, r) and exchange the order of integration to integrate along the various
geodesics γu where u runs through the unit tangent vectors U+

q M where, for
a point of the sphere q ∈ S (m, r) , the half tangent unit sphere U+

q M is that
made of the vectors pointing inside B (m, r) .

We use now Kazdan’s inequality from lemma 158 on the preceding page
and Liouville’s theorem just as in Santalo’s formula below. Consider in some
compact Riemannian manifold M a precompact piece of smooth hypersurface
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n'

n
m

n''

B(m;r)

rearrange

the

as seen

B(m;r)

TqB(m;r)q

uU+M

Fig. 7.47. (a) Sweeping out the whole ball about m from any point n inside it.
(b) Sweeping out geodesics inside the ball from a point of the boundary.

N having a side, so that we can talk about U+N. Consider an arbitrary
positive function ψ(u) on U+N, but small enough that

ψ(u) < Cut (u)

(smaller than the cut value) and any integrable function f defined on the set
D made up by the geodesic flows G(s)(u) where u runs through U+N, and s
runs through the interval [0, ψ(u)]. Denote by cos(u) the cosine of the angle
between the vector u and the normal vector to N. Then one has Santalo’s
formula∫

D

f(v) dv =
∫
U+N

(∫ ψ(u)

0

f (Gs(u)) cos(u) ds

)
dVU+N (u) (7.11)

The proof is nothing but Fubini’s theorem and the change of variables for-
mula; for details see page 286 of Berger 1965 [151] or Santalo 1976 [1093].

Un
+N

u

n

N TnN

cos(u) G(s)(n)

s
u

u

n
N

M

Fig. 7.48. Santalo’s formula in pictures
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All together this results in the following inequality between the volume
of the ball B (m, r) and that of its boundary S (m, r) :

VolS (m, r)d ≥ a(d)VolB (m, r)d−1 (7.12)

But
VolS (m, r) =

∂

∂r
VolB (m, r)

so that this last inequality is a differential inequality which by integration
from 0 to π/2 furnishes theorem 149 on page 380. That this inequality is cer-
tainly not optimal is left to the reader. The proof of theorem 150 on page 380
is a refinement of that of theorem 149, still largely using only Santalo’s for-
mula and the basic inequality.

The proof of theorem 154 on page 381 now follows theorem 149 inequality
with the following elegant modification:

Lemma 159 Assume that M is not a sphere. Then for every u ∈ UM and
every r ∈ [0, π/2] there is some q ∈M such that

B (γu(0), r) ∩B (γu(π), π − r) ∩B (q, r) = ∅

and in particular

VolM ≥ VolB (γu(0), r) + VolB (γu(π), π − r) + VolB (q, r) .

r
π - r

m
n

q
r

M

Fig. 7.49. Three balls that don’t fill up all the whole manifold

Croke’s result is obtained by contradiction, resting on the folk theorem
that if a manifold can be covered by only two balls, then it is a sphere: see
for example theorem 4.1 of Milnor 1963 [921]; this theorem is essential in the
proof of theorem 297 on page 580. But assume there is no such point q. This
means (by the triangle inequality) that M is covered by the two balls

B (γu(0), 2r) and B (γu(π), π) .

When one integrates the inequality in lemma 159 over all unit vectors u,
as in the proof in §§§7.2.4.3, the two first terms yield exactly the volume of
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M but the third terms—thanks to theorem 149 on page 380—add up to a
positive constant which is universal in the dimension d and this is exactly
theorem 154 on page 381.

Such an inequality is certainly not optimal since the proof leaves a lot of
room between the third ball and the other ones. Contrarily, for the standard
spheres the two first balls never leave any room for a third.

Note 7.2.4.2 As Croke remarks in his work, the above proof admits with no
modification the following generalization. The category of a compact manifold
is the minimum number of topological balls needed to cover it. By the way,
the category of a d dimensional manifold never exceeds d + 1. The desired
result is

Emb(M) ≥ Emb
(
Sd
)

+ c(d)(category(M) − 2).

See more on this in §§11.2.3. �

7.2.4.5 Infinite Injectivity Radius From corollary 55 on page 250 and
definition 85 on page 292 we know that the exponential map

expm : TmM →M

is a covering for every m ∈M if and only if M has no conjugate points (for
any interval and on any geodesic). For example, this happens on a manifold
of nonpositive curvature; see §§ 6.3.3 on page 277. But there are Riemannian
manifolds with no conjugate points but with parts having positive curvature
(not too much).

For various reasons (some of them are explained in chapter 12), Rieman-
nian manifolds without conjugate points are of great interest. Let M be such
a manifold and consider its universal Riemannian covering M̃. It is simply
TmM endowed with the pullback metric exp∗

m g : see the proof of corollary 55
on page 250. Now of course M̃ is not compact, but is complete and its injec-
tivity radius is infinite. In particular, for every positive r and every point m̃
the ball B (m̃, r) is diffeomorphic to Rd and nicely covered by the geodesics
emanating from m̃. Since the deck transformations are isometries, in partic-
ular two points m̃, ñ ∈ M̃ having the same projection m ∈ M yield balls
B (m̃, r) and B (ñ, r) which have the same volume. So one can refer without
ambiguity to the volume

VolB
(
m, M̃, r

)
as if it were attached to the point m ∈M downstairs.

When the curvature is nonpositive, we have seen in theorem 103 on
page 330 that the volume of balls at any point grow with their radius r
as fast as in Euclidean space Ed. Can one expect the same conclusion, but
with the weaker hypothesis that the manifold has no conjugate points? In
1991, Croke 1992 [421] discovered that this is the case. There are two results:
a pointwise one and an averaging one:
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Theorem 160 (Croke 1991 [421]) Let M be a compact manifold without
conjugate points. Then for every r > 0

1
VolM

∫
VolB

(
m, M̃, r

)
dr ≥ ωdr

d

with equality if and only if M is flat (where ωd is the volume of the unit ball
in d dimensional Euclidean space).

Theorem 161 For every r > 0 and for every point m ∈M

lim inf
r→∞

VolB
(
m, M̃, r

)
ωdrd

≥ 1

with equality if and only if M is flat.

These results are applied in §10.11. The proofs of the above results use
some of the same inequalities we used above but also much more sophisticated
ones and subtle limit arguments. We refer the reader to Croke’s paper.

7.2.4.6 Using Embolic Inequalities and Local Contractibility Be-
sides being very natural in the study of relations between curvature and
topology, results of embolic nature are essential for some other reasons. We
mention them here briefly before meeting them again later on.

Embolic results permit good, even optimal, constants in Sobolev inequal-
ities; see theorem 118 on page 349. and the survey Hebey 1996 [690]. Various
inequalities for the eigenvalues of the Laplace operator make essential use of
Croke’s local inequality from theorem 149 on page 380. One also finds embolic
inequalities in the C∞ compactness of isospectral moduli (see §§9.12.3). An
optimal embolic inequality for CP

n will solve the question of §§10.4.2. The
optimal inequality in theorem 148 on page 380 is used to solve the Wieder-
sehnmannigfalthigkeiten problem; see theorem 257 on page 520.

The essential property of (open) balls of radius smaller than or equal to
the injectivity radius is that they are contractible. For example the inequality
in theorem 149 on page 380 has the following immediate corollary (use the
covering trick of lemma 125 on page 357):

Theorem 162 A compact manifold of a given dimension d can be covered
by a number of contractible sets, and this number is universally bounded in
terms of the total volume and the manifold and its injectivity radius.

We will see in §§§12.4.1.2 how important this corollary is. But luckily one can
do surprisingly many things with a weaker notion of contractibility, which first
appeared in Gromov 1981 [613]:
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Definition 163 A contractibility function for a metric space is a function

ρ : [0, R] → R+

with R > 0, so that
ρ(r) → 0 as r → 0

and
ρ(r) ≥ r

for all r ∈ [0, R]. A metric space is said to be locally geometrically con-
tractible with contractibility function ρ, written symbolically LGC (ρ) ,if ev-
ery metric ball B (x, r) is contractible in the ball B (x, ρ(r)) for every point
x and every radius r ≤ R. The space is said to be geometrically contractible
if the function ρ is actually defined on all R+ and the space is LGC (ρ) for ρ
restricted to [0, R] for any number R > 0.

Thinking along the lines of theorems 148 on page 380 and 149 on page 380, we
would like to have analogies of these results in the realm of local or global con-
tractible metric spaces. For (complete) noncompact Riemannian manifolds,
on page 43 of Gromov 1983 [618] it is proven that geometric contractibility
implies, via infinite filling volume, infinite volume. The local version of this
sort of result for LGC (ρ) Riemannian manifolds was proven in Greene & Pe-
tersen 1992 [592]: in a complete noncompact LGC (ρ) manifold16, the volume
of balls grows at least linearly; but if moreover

ρ(r) ≥ cr

then the volume of balls of radius r grows at least as fast as

VolB (m, r) ≥ Crd.

The concept of filling radius (defined on page 367) plays an important role.
We will find the LGC(ρ) condition entering essentially in §§§12.4.1.2. This
notion is becoming increasingly important in various spaces more general
than Riemannian manifolds; for example see Semmes 1996 [1122].

16 With R finite; otherwise it wouldn’t be interesting.
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8.1 Spectral Geometry and Geodesic Dynamics

Toward the end of chapter 1, we met the heat and wave equations on com-
pact regions of the plane. We also met billiard balls travelling in those re-
gions, bouncing off of the sides. In §§1.8.6 we asked whether there might be
links between these two completely different mathematical stories: elemen-
tary physics of fields in planar regions and long term geometry of billiard ball
trajectories.

These two stories can be told on Riemannian manifolds just as easily as
on planar regions. In the Euclidean plane, the geodesics are straight lines,
giving us the planar billiard balls, while on Riemannian manifolds with no
boundary we can consider the geodesics as the analogues of billiard ball paths.
The periodic billiard ball paths have as analogue the periodic geodesics. Be
aware that the phrase closed geodesic can be ambiguous, although it is fre-
quently employed. It can either mean a mere geodesic loop, or a truly periodic
geodesic. See figure 8.1 on the following page.

Thanks to the uniqueness of solutions of ordinary differential equations, in
particular for the geodesic equations, periodicity of a geodesic occurs precisely
when the geodesic is a loop with the same initial and final velocity. Using the
point of view from the unit tangent bundle, and the notion of geodesic flow,
the periodic geodesics are precisely the periodic flow lines of the geodesic flow.
Note that a periodic geodesic is permitted self-intersections. Those without
self-intersections are called simple.

The natural perspective to take in studying periodic geodesics is to think
of a Riemannian manifold as a dynamical system. The viewpoint of dynamical
system leads us to many natural questions:
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(a) A periodic
geodesic

(b) A geodesic loop

Fig. 8.1. Geodesic loops may not always return with the same velocity, and so
might not be periodic

– What can we say about a geodesic over large intervals of time?
– Are nonperiodic geodesics everywhere dense? Or somewhere dense?
– How many periodic geodesics are there?
– Where are the periodic geodesics situated?
– How many periodic geodesics have length less than a given number?

These geometric questions will be the subject of chapter 10.
We turn our attention to the physical fields of temperature and electro-

statics, and to waves. These are less geometric questions, and so less natural
from our perspective. We would like to have analogues of the heat, wave
and Laplace equations on Riemannian manifolds. Then we want to relate the
ideas we have formed already about eigenvalues and eigenfunctions to the
resulting theory on Riemannian manifolds.

On any Riemannian manifold, there essentially a natural differential op-
erator acting on functions on the manifold1 called the Laplace–Beltrami oper-
ator, or Laplace operator or Laplacian, and denoted Δ. This operator enjoys
all of the nice properties of the Laplace operator from Euclidean space. For
the analyst, it is a positive definite second order elliptic operator. Moreover,
one can prove the existence of eigenfunctions very cheaply, because they are
the critical points of the Dirichlet quotient

f �→
∫
M ‖df‖2

dVM∫
M
f2 dVM

. (8.1)

More details are given in chapter 9. The central idea is that on any Rie-
mannian manifold, there is a complete orthonormal system of eigenfunctions,
1 And, if we demand a few simple properties from it, then it is unique.
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yielding a “Riemannian Fourier series” for any function. This brings the en-
tire apparatus of classical analysis to hand. Moreover, we know very good
(in some situations, optimal) asymptotics for the eigenvalues (which are the
squares of the frequencies of vibration of our manifold) and the asymptotic
behaviour of the eigenfunctions (the component vibrations themselves). Fol-
lowing the point of view of §§1.8.1, we can say that this is picture of a
Riemannian manifold as a quantum mechanical world.2

In sharp contrast with the quantum mechanical point of view, the dy-
namical system point of view (the classical mechanics arrived at from the
classical limit) is considerably more difficult. Perhaps this is surprising at
first glance—soon it will be almost obvious. Indeed we hope the reader will
be in awe of the tremendous difficulty of the results gathered in chapter 10.
For example, it is known that every Riemannian metric on S3 must have a
periodic geodesic, but not known if it must have more than one. Needless to
say, we know very little about the distribution of geodesics, or the number
and location of periodic geodesics, in all but a handful of manifolds. Com-
pact manifolds of negative curvature (especially those with constant negative
curvature) are exceptionally well understood, which is paradoxical since they
are are hard to construct (see §§6.6.2). We can summarize by saying that
classical mechanics is more difficult than quantum mechanics, or that geom-
etry is more difficult than analysis. It is for this reason that we treat analysis
first, in chapter 9, before treating geometry in chapter 10.

The underlying reason for the simplicity of spectral geometry compared
to geodesic dynamics is that the Dirichlet quotient in equation 8.1 on the
preceding page is a quadratic function on the vector space of functions on
our manifold M . This vector space is infinite dimensional, but we are still
within the realm of linear algebra. On the other hand, one certainly can
express the periodic geodesics as critical points of some functional (and we
will proceed in this fashion), but this functional is defined on the space of
closed curves on the manifold, which is not a vector space. The space of closed
curves is in fact an infinite dimensional manifold. This will cost us dearly.

8.2 Why are Riemannian Manifolds So Important?

One reason for the importance of Riemannian manifolds is that they are
generalizations of Euclidean geometry—general enough but not too general.
They are still close enough to Euclidean geometry to have a Laplace oper-
ator. This is the key to quantum mechanics, heat and waves. The various
generalizations of Riemannian manifold which will be briefly mentioned in
§14.5 do not have a simple natural unambiguous choice of such an operator.

Another reason for the prominence of Riemannian manifolds is that the
maximal compact subgroup of the general linear group is the orthogonal
2 Or thermodynamical, or fluid mechanical, or electrostatic. Indeed, analogies of

many different physical theories can be implemented in Riemannian geometry.
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group. So the least restriction we can make on any geometric structure3

so that it “rigidifies” always adds a Riemannian geometry. Moreover, any
geometric structure4 will always permit such a “rigidification.”

Similarly, if we were to pick out a submanifold of the tangent bundle of
some manifold, distinguishing tangent vectors, in such a manner that in each
tangent space, any two lines could be brought to one another, or any two
planes, etc., then the maximal symmetry group we could come up with in a
single tangent space which was not the whole general linear group would be
the orthogonal group of a Riemannian metric. So Riemannian geometry is
the “least” structure, or most symmetrical one, we can pick, at first order.

8.3 Positive Versus Negative Curvature

As the next two chapters proceed, we will often meet the dichotomy of pos-
itive and negative curvature. Currently there is no result in either geodesic
dynamics or spectral geometry which presents a unified picture of both neg-
atively curved and positively curved manifolds.

3 In the sense of Cartan’s theory of G structures.
4 Again, in the sense of G structures.
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9.1 History

While harmonic analysis on domains in Euclidean space is a long established
field, as seen in §1.8, the study of the Laplace operator on Riemannian man-
ifolds (together with the heat and wave equations, and the spectrum and
eigenfunctions) seems to have begun only quite recently. Some of the ear-
liest accomplishments were the computation of the spectrum of CPn (see
§§9.5.4) and Lichnerowicz’s inequality for the first eigenvalue (see §§9.10.1).
The first paper to address the Laplacian on general Riemannian manifolds
was Minakshisundaram & Pleijel 1949 [930]. More narrowly, Maaß 1949 [889]
investigated the Laplacian on Riemann surfaces. Also, one can turn to Avaku-
mović 1956 [90]. But a spark was lit in the 1960’s when Leon Green asked if
a Riemannian manifold was determined by its spectrum (the complete set of
eigenvalues of the Laplacian).

In the special case of Riemann surfaces, a deep study of the spectrum can
be found as early as 1954 in Selberg 1954 [1120, 1121] and 1955 in Huber
1956,1959,1961 [744, 745, 747].

Green’s isospectral question was answered in the negative in Milnor 1964
[922]. Kac 1966 [775] in 1966 was also very influential. But the two major
events were the papers of McKean & Singer 1967 [910] and Hörmander 1968
[734]. We will meet them below; let us just say that the first paper pio-
neered the study of the heat kernel expansion in Riemannian geometry, and
its consequences. The second was more general, treating the case of a gen-
eral elliptic operator, without reference to any Riemannian structure on the
manifold under consideration. But it introduced the wave equation technique,
microlocal analysis and symplectic geometry. This technique is indispensable
when studying the relations between the spectrum and the geodesic flow; see
§9.9. Thereafter the subject became a vast field of inquiry.

Note 9.1.0.3 (On the bibliography) As we go on in this book, we will
have to give less and less detail, in order to keep the book of reasonable size.
Then the reader will want to ask for more and more references, especially



9.2 Motivation 399

those of general character, as opposed to research articles. There are now
quite a few books which addressing the topic of the present chapter. Some
people still like Berger, Gauduchon, & Mazet 1971 [174] for an introduction
and basic facts. But on most of the more advanced topics that book is com-
pletely outdated. New texts are: Chavel 1984,1993 [325, 326], Buser 1992,1997
[292, 293] which discusses only the spectral geometry of surfaces, Sakai 1996
[1085] chapter VI, Gilkey 1995 [564] (try to get this second edition), Bérard
1986 [135] which is very expository but outdated on some advanced topics,
Guillemin & Sternberg 1977 [670]. In particular, Gilkey 1995 [564] is impor-
tant and contains an amazing collection of mathematics in a single book, e.g.
the η invariant which is hard to find in books. The heat equation, in a very
general context, is also analyzed in Berline, Getzler & Vergne 1992 [179] and
in Gilkey, Leahy & Park 2000 [566].

There are few completely expository books on the wave equation tech-
nique and microlocal analysis. The bible of Hörmander 1983 [737, 738] is
hard to read, but Trèves 1980 [1198, 1199] is very informative. With a view
toward physics, Guillemin & Sternberg 1977 [670] is fascinating. Note also
that Bérard 1986 [135] contains a very extensive bibliography, but up to date
only to 1986. �

9.2 Motivation

Why should a geometer, whose principal concern is in measurements of dis-
tance, desire to engage in analysis on a Riemannian manifold? For example,
pondering the Laplacian, its eigenvalues and eigenfunctions? Here are some
reasons, chosen from among many others. We note also here that the exis-
tence of a canonical elliptic differential operator on any Riemannian manifold,
one which is moreover easy to define and manipulate, is one of the motiva-
tions to consider Riemannian geometry as a basic field of investigation. For
Laplacians on more general spaces, see §14.5 and §14.6.

Riemannian geometry is by its very essence differential, working on man-
ifolds with a differentiable structure. This automatically leads to analysis.
It is interesting to note here that, historically, many great contributions to
the field of Riemannian geometry came from analysts. Let us present a few
names (we do not pretend to be exhaustive). Hadamard’s contribution in
quotation 10.1 on page 458 goes back to 1901 and Poincaré’s in §§10.3.1 to
1905. Élie Cartan was an analyst; see Chern & Chevalley 1952 [368]. More
recently, let us mention Bochner, (see theorem 345 on page 621), Nirenberg
(see §§4.6.1), Chern, Calabi, Aubin, Yau and Gromov.

We will see deep links between the spectrum (especially the first eigen-
value λ1) and periodic geodesics in §9.9 as well as in theorem 205 on page 471.
The proof of Colding’s L1 theorem 76 on page 286 rests essentially on anal-
ysis, as we have briefly seen there. Harmonic coordinates turn out to be a
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godsend when studying convergence of Riemannian manifolds: see §§6.4.3 and
§§12.4.2.

The deformation of a Riemannian metric via a parabolic evolution equa-
tion, which is based on hard techniques from the theory of partial differential
equations, is extremely useful. We will see this in more than one instance:
see §§11.4.3, the smoothing techniques in §§12.4.2 and the new proof of the
conformal representation theorem 70 on page 277. This is one of many evo-
lution equations arising in Riemannian geometry. Another type of evolution
equation is the heat equation which will turn out not only to be useful in
establishing the existence and some of the first properties of the spectrum
and of the eigenfunctions (see §1.8), but has become a basic tool in a large
number of contexts; see §9.7.

Finally let us mention harmonic maps (see §14.3), minimal submani-
folds (e.g. for the theorem on manifolds with positive curvature operator
in §§§12.3.1.4), and the use of geometric measure theory. And do not forget
harmonic coordinates.

From the point of view of theoretical physics, it is very natural to consider
the semiclassical limit , which is the limiting behaviour of the solutions of the
Schrödinger equation

i�
∂ψ

∂t
= �2Δf

as � → 0. In Euclidean space, this is equivalent to rescaling the spatial coor-
dinates outward, looking at the large scale physics. The hope is that classical
mechanics will emerge from this limit in some sense. This suggests looking
at the asymptotic expansion of the eigenvalues λi as i → ∞. This explains
why we so often mention results such as theorems 164 on page 410, 172 on
page 426, 174 on page 428, and 175 on page 428.

Every manifold is COMPACT and connected unless otherwise
stated.

9.3 Setting Up

9.3.1 Xdefinition

Recalling §1.8 and §1.9, even before tackling the heat equation, the first thing
to do is to define the Laplacian Δ on a Riemannian manifold M with metric
g. It is a second order elliptic differential operator, attached intrinsically to
M . It is not surprising that one can give many equivalent definitions of it.
We start with the most natural, as soon as one knows that the Riemannian
metric enables us to define an intrinsic second derivative (which is not the case
for a manifold with “only” a smooth structure). To every smooth numerical
function

f : M → R
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we attach its Hessian
Hess f

which is the bilinear symmetric quadratic differential form made up by the
second derivatives of f. Namely, using the covariant derivative D, we set

Hess f = Ddf

(see §15.5 if needed). To get a numerical function from this Hessian, we need
only take its trace with respect to the metric g. For technical reasons, we add
a minus sign. Beware that this is a matter of convention, and the convention
depends on the author. The negative sign insures us that the eigenvalues will
be nonnegative (in fact, positive except the 0th whose eigenvalues are the
constant functions). The Laplacian of f is then defined as

Δf = −traceg Hess f .

Since along geodesics, the (covariant) second derivative coincides with
the ordinary numerical second derivative, by the definition of the trace with
respect to g, the geometer will define the Laplacian of f at a point m ∈ M
as

Δf(m) = −
d∑
i=1

d2

dt2
f (γi(t))

∣∣∣∣
t=0

where the γi are geodesics through m whose velocities at m form an or-

0m

w
m γw

||w||

w
||w||

(||w||)

Fig. 9.1. Calculating the Laplacian by differentiating along an orthogonal system
of geodesics and taking the sum

thonormal basis of TmM. In particular, at the center m of a system of normal
coordinates, this is written

Δf(m) = −
d∑
i=1

∂2f

∂x2
i

(m) .

This cannot be used as a definition directly, since one needs to show that such
a description yields a well defined differential operator. Two other definitions
can be given. The first uses the Hodge ∗ operation applied to differential
forms, which will be defined in §§9.3.2. Then
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Δf = − ∗ d ∗ d .

Using any definition, in general coordinate systems we find

Δf = − 1√
det g

∑
j,k

∂

∂xj

(
gjk

√
det g

∂f

∂xk

)
(9.1)

where
det g = det (gij)

and the gjk are the matrix elements of the inverse matrix to gjk. We won’t
need to use this complicated formula. From all of these definitions, one sees
that this Δ extends to any Riemannian manifold the Δ of Euclidean space
as defined in equation 1.27 on page 107 and the Δ of the sphere defined
in equation 1.28 on page 110. In this formula, one sees that the Laplacian
involves the metric g and its first derivatives; this makes it an invariant which
is not C0 robust, only C1 robust. However, §9.4 will show that the spectrum
is C0 robust. This is the beginning of spectral analysis for more general
geometries; see §14.5 and §14.6.

If you are familiar with the notion of symbol of a differential operator,
then the best way to define and to see the uniqueness of the Laplacian is to
say that Δ is the second order differential operator whose principal symbol is
−g (the quadratic form giving the metric g) and which has no term of order
zero.

If we construct a function measuring distance from some point then, when
written in polar geodesic coordinates centered at that point, the Ricci cur-
vature comes into the formula giving the Laplacian of this distance function.
We employed this fact when proving Colding’s L2 theorem 77 on page 288:

d

ds
Δf ◦ γ +

1
d− 1

(Δf ◦ γ)2 ≤ −Ricci (γ′, γ′) .

9.3.2 The Hodge Star

To present many of the foundational facts in spectral geometry1 we need the
definition of the Laplace operator Δ on differential forms and the concept of
adjoint operator. We first denote by Ωp (M) the space of differential forms
of degree p on the differentiable manifold M, which is defined on any differ-
entiable manifold, without need for a Riemannian metric; see §§4.2.2. But if
M is moreover equipped with a Riemannian metric and oriented, then there
is an linear operator

∗ : Ωp (M) → Ωdim(M)−p (M)

called the Hodge star operator. Choosing a positive orthonormal basis
1 For example, theorems 338 on page 616 and 405 on page 691; also see §9.14.
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{ei}i=1,...,d

for the tangent space TmM at a point m ∈M, define

∗α (ep+1, . . . , ed) = α (e1, . . . , ep) .

This turns out to be independent of the choice of oriented orthonormal basis.
The square of ∗ is plus or minus the identity on Ωp (M):

∗2 = (−1)p(dim(M)−p) .

The differential operator d is transformed by ∗ into another first order
operator, denoted by d∗ (sometimes also by δ)

d∗ = (−1)1+d(p+1) ∗ d∗

which is not dependent on the choice of orientation, hence is intrinsic. The
reason for the notation

δ = d∗

is that it is the adjoint of d:∫
M

dα ∧ β =
∫
M

α ∧ d∗β (9.2)

for any
α, β ∈ Ωp (M)

and any p = 0, . . . ,dim(M). We can define a Laplacian for exterior forms of
any degree by

Δ = − (dd∗ + d∗d) = − (d+ d∗)2 . (9.3)

For the moment, we will only use the Laplacian on functions, i.e. p = 0.
This Δ is the same as the one previously defined in this chapter. A useful
formula, valid for any pair of functions, is∫

M

gΔf =
∫
M

〈df, dg〉

=
∫
M

fΔg (9.4)

in particular ∫
M

Δf = 0

for any function f.
When using integrals like the above on compact Riemannian manifolds,

we will often omit the Riemannian canonical measure:∫
M

f =
∫
M

f dVM .
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9.3.3 Facts

The Laplacian on any compact Riemannian manifold provides us with all the
tools of Fourier analysis on our Riemannian manifold. Let us call a function
φ an eigenfunction with eigenvalue the number λ if

Δf = λf .

The set of all eigenvalues of Δ is an infinite discrete subset of R+ called the
spectrum of Δ

Spec (M) = {λk} = {0 < λ1 < λ2 < . . .} (9.5)

with λk tending to infinity with k.
For each eigenvalue λi, the vector space of eigenfunctions φ satisfying

Δf = λif

is always finite dimensional and its dimension is called the multiplicity of λi.
Once we have a basis of the eigenfunctions with this eigenvalue written out,
it is trivial to find an orthonormal basis

{φk}

(where k runs from 1 to the multiplicity) of eigenfunctions. Here the orthonor-
malcy is to be understood for the global scalar product

〈f, g〉L2(M) =
∫
M

fg .

Note that equation 9.4 on the preceding page shows (a classical fact) that
eigenfunctions with different eigenvalues are automatically orthogonal. Unlike
the domains in Euclidean space which we treated in chapter 1, our compact
Riemannian manifolds have no boundary. This explains why we get the “ex-
tra” eigenvalue

λ0 = 0

whose eigenfunctions are the constant functions.2

Note 9.3.3.1 Beware now that there are two different ways of writing the
eigenvalues and the eigenfunctions when making sums. In the first one, we
understand that a sum over the spectrum sums each eigenvalue a number
of times given by its multiplicity. In the other notation, the indices are not
those used in equation 9.5, but instead the index moves up at each eigenvalue
through the entire multiplicity. Which sort of summation is required will
always be clear from the context, as in what follows for example. �
2 Since the manifold M is assumed to be connected, the multiplicity of λ0 is exactly

one.
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As for classical Fourier series, any reasonable function

f : M → R

has Fourier coefficients
ai =

∫
M

fφi

and f is recovered from these coefficients by the converging series

f =
∑
i

aiφi .

In the same spirit, the scalar product of two functions is the sum of products
of their coefficients: ∫

M

fg =
∑
i

aibi

where

f =
∑
i

aiφi

g =
∑
i

biφi .

9.3.4 Heat, Wave and Schrödinger Equations

We will follow the same steps that we did in §1.8: defining heat, wave and
Schrödinger equations on Riemannian manifolds. The heat equation for the
heat f(m, t) at time t at a point m of the Riemannian manifold M is

Δf = −∂f
∂t

. (9.6)

The wave equation for the height f(m, t) of the “water” after time t at a
point m is

Δf = −∂
2f

∂t2
. (9.7)

where if M were a surface, you would consider M covered in a thin sheet
of water, or for M of three dimensions, M is a place through which sound
is propagating. The wave equation can also be considered as describing the
manifold M as a vibrating membrane object. Finally the Schrödinger equa-
tion uses complex valued functions and is written

�2Δf = i�
∂f

∂t
(9.8)

where i =
√
−1 and � is Planck’s constant.
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To solve these equations, at least formally, one uses the same trick as in
§§1.8.1. To solve such an equation depending both on time t and a point m ∈
M, the initial idea is to use the fact that, roughly by the Stone–Weierstraß
approximation theorem, we need only to consider product functions

f(m, t) = g(m)h(t) .

One will subsequently consider series of them (as in the theory of Fourier
series). Look for example at the heat equation. The function f = gh satisfies
the heat equation precisely when the functions g and h satisfy

Δg

g
= −h

′

h
(9.9)

where
h′(t) =

dh

dt

is the usual derivative.
Since the first fraction depends only on the point m ∈M and the second

only on the time t their common value has to be a constant, call it λ. Then
the function

g : M → R

is an eigenfunction of Δ with eigenvalue λ, while h is an exponential decay
at rate λ. If all eigenfunctions and eigenvalues of Δ are known, we can then
solve the heat equation explicitly. Note that the time dependence h(t) is

h(t) =

⎧⎪⎨⎪⎩
e−λt for the heat equation
eiλt for the Schrödinger equation
ei

√
λt for the wave equation.

Physically, the product motions g(m)h(t) are the stationary ones—they are
the ones we can observe through some kind of “Riemannian stroboscopy.”

As we did in Euclidean space, we will begin our analysis with the funda-
mental solution of the heat equation, denoted K(m,n, t). One also calls it the
heat kernel. It is a function

K : M ×M × R+ → R .

It has the property that the solution f(m, t) of the heat equation with initial
temperature f(m, 0) at time zero is

f(m, t) =
∫
M

K(m,n, t)f(n, 0) dn

and one can prove that the heat kernel is the sum of the convergent series



9.4 Minimax 407

K(m,n, t) =
∞∑
k=1

φk(m)φk(n)e−λkt. (9.10)

The reader can check this formally, ignoring convergence, by just plugging
the series into the integral. The hard part, which required analysts’ efforts,
is to prove the convergence.

Another way to write the solution f(m, t) with initial temperature f(m, 0)
is to compute the Riemannian Fourier series

f(m, 0) =
∞∑
k=1

akφk

and then

f(m, t) =
∞∑
k=1

akφk(m)e−λkt .

For the wave equation, the fundamental solution similar to equation 9.10
requires imaginary terms, i.e.

ei
√
λkt

which are linear combinations of

cos
(√

λkt
)

and sin
(√

λkt
)
.

But the dramatic difference between the heat equation and the wave equation
is that waves demand not converging series, but distributions. Heat spreads
out uniformly with time, while waves bounce up and down forever. This ma-
jor difference explains why working with the wave equation (in Riemannian
manifolds, but also in Euclidean spaces) is much more expensive mathemat-
ically. We refer to our bibliographical introduction for references. Note that
the conservative nature of waves will provide an amazing source of informa-
tion in §9.8. Another major difference between the heat equation and the
wave equation is that for the waves one does really need to work in the tan-
gent bundle and use the tools of microlocal analysis; a most informative book
on the subject is Trèves 1980 [1198, 1199].

9.4 The Cheapest (But Most Robust) Method to
Obtain Eigenfunctions: the Minimax Principle

9.4.1 The Principle

Analysis and convergence problems (which we will not attempt to explain)
are very well exposed in Bérard 1986 [135]. We will begin as we did in §§1.8.3.
One way to identify and then study the eigenfunctions is as follows. One pulls
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out the first one by the so-called Dirichlet principle. Among all functions, one
looks for one minimizing the ratio

Dirichlet(f) =

∫
M ‖df‖2∫
M
f2

(9.11)

called the Dirichlet quotient.
The infimum value of zero is trivially attained for constant functions.

So we look next to minimize this quotient among functions which are “not
constant,” more precisely among those functions orthogonal to constants, i.e.
functions f with ∫

M

f = 0 .

Let us compute the derivative of this ratio with respect to a variation
f + εg of the function f (assuming it exists) achieving such a minimum, and
use formula 9.3 on page 403 together with the Lagrange multiplier technique.
We find that f necessarily satisfies

Δf = λ1f

for the constant

λ1 = inf

{∫
M ‖df‖2∫
M
f2

:
∫
M

f = 0

}
. (9.12)

Rescale f to have unit norm ∫
M

f2 = 1 .

This yields the first (nontrivial) eigenfunctions together with the first eigen-
value. Unlike a Euclidean domain, where there was only one first eigenfunc-
tion, here there may be a finite dimensional vector space of them; for example
the sphere of dimension d has a d + 1 dimensional space of eigenfunctions
with the same eigenvalue λ1.

To get the next eigenfunctions and values, one just applies the same trick,
but restricting the set of functions f into consideration to the set of functions
which are orthogonal to the first eigenfunctions∫

M

fφi = 0

for φ1, . . . , φh a basis for the eigenfunctions with eigenvalue λ1. And keep
going on in this way.

But this procedure necessitates calculating all of the eigenfunctions pre-
ceding the one that we might be looking for. To get around this obstacle, a
wonderful trick was invented, the minimax principle. We first state the result,
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and then explain it geometrically on ordinary ellipsoids in E3. The eigenvalue
λk+1 is exactly

λk = inf
V

sup
f∈V

Dirichlet(f) (9.13)

where V runs through all k + 1 dimensional vector subspaces of the vector
space of real valued functions on M.

The proof is detailed in the beginning of Bérard 1989 [135]. It involves a
little linear algebra (geometrically pictured in figure 9.2) and of course some
analysis, since we are working in an infinite dimensional space.

In Dirichlet(f) there are two positive definite quadratic forms. In R3,
say that the first has as its unit level set an ellipsoid, and the second is
the Euclidean structure (i.e. its unit level set is the unit sphere). Then the
eigenfunctions correspond to the three principal axes of the ellipsoid, and the
eigenvalues are their lengths. To find the length of the second principal axis,
consider all of the ellipses obtained by cutting the ellipsoid by planes through
the origin. The largest principal axis that occurs among all of the ellipses is
the largest axis of the ellipsoid. The second largest axis of the ellipsoid is the
largest number that occurs among all ellipses as the smaller of the two axes.3

Fig. 9.2. The Dirichlet quotient is a quadratic function on the unit sphere in the
infinite dimensional space of functions

The above method heuristically explains why every function is equal to
a series of eigenfunctions and, since the space of functions is infinite dimen-
sional, why the spectrum goes to infinity.

Note 9.4.1.1 A theoretical, but important, consequence of the minimax
principle is that the spectrum is a robust invariant of the Riemannian metric;
it depends only on the metric g, not on its derivatives (unlike the Laplacian
itself); see equation 9.1 on page 402. Therefore the spectrum can be defined
in a more general context; see §14.6. �
3 It is harder to say than to see.
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9.4.2 An Application

One of the main tasks when studying the spectrum of Riemannian mani-
folds is to relate the spectrum to the Riemannian invariants, for example the
curvatures, the volume, the diameter, the injectivity radius, etc. This is the
central objective of this chapter. So we start right away with an application of
the minimax principle, given in Gromov 1999 [633]; for details, improvement
and explicit constants we refer the reader to Bérard, Besson, & Gallot 1985
[139].

Theorem 164 There is a universal constant

univ(d, r)

depending only on the dimension d of a compact Riemannian manifold M and
the lower bound r of the Ricci curvature, such that for every k the eigenvalue
λk of M obeys the upper bound

λk ≤ univ(d, r)
Vol(M)2/d

k2/d .

The asymptotic behavior in k2/d agrees with that which we will see in theo-
rem 172 on page 426. Upper bounds are in general easier to get than lower
ones. The reason is that the minimax principle, as we are going to see, shows
that one can use upper bounds on the Dirichlet quotient for suitable func-
tions to control the asymptotics of eigenvalues. For the proof, let us think
of large indices k. The idea is to pack in M , as densely as possible, a set of
metric balls

Bi = B (pi, R) .

The number N of balls is controlled first by the usual metric trick of
lemma 125 on page 357: if it is as dense as possible, then the balls

B (pi, 2R)

will completely cover M . This enables us to estimate N with Ricci curvature
thanks to Bishop’s theorem 107 on page 334.

Now on every ballB (pi, R) we define a function fi vanishing at the bound-
ary of B (pi, R) and with a low Dirichlet quotient. This can be done by trans-
ferring (in polar coordinates on B (pi, R)) the first eigenfunction g for the
Dirichlet problem in the manifold with boundary

B

(
Sd

(
r

d− 1

)
, R

)
which is the metric ball of radius R in the comparison space
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Sd
(

r

d− 1

)
of constant curvature and whose Ricci curvature is our lower bound r. Knowl-
edge of Ricci curvature permits us to control the Dirichlet quotient during
the transfer (compare this with the geodesic transfer for Rauch–Toponogov
theorems of chapter 6). This was done in Cheng 1975 [362]. There is a very
nice proof today of Cheng’s result, which is put in a very general context
with a beautiful formula in Savo 1996 [1098]. On these balls in Sd

(
r

d−1

)
the

first eigenvalue is known. This transplantation is similar, but not quite the
same, as that of the Faber–Krahn inequality 1.22 on page 94. One finishes
the estimate by applying the minimax principle to the N dimensional vector
space of functions which is spanned by the fi.

Fig. 9.3. Pack balls into your manifold, and transfer eigenfunctions into them from

space forms Sd
(

r
d−1

)

9.5 Some Extreme Examples

Let us describe the spectral geometry of the most tractable Riemannian man-
ifolds. We will follow more or less the geometric hierarchy of §6.6.

9.5.1 Square Tori, Alias Several Variable Fourier Series

The theory of eigenfunctions on tori, square or rectangular, is very much
like that which we met in equation 1.21 on page 89 for the plane rectangle,
except that now we use a periodic boundary condition, and of course we
work in any dimension d. The variables x1, . . . , xd separate for the Laplacian
and we still have the Stone–Weierstraß theorem enabling us to look only at
product functions

f (x1, . . . , xd) = f1 (x1) · · · fd (xd) .
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Our torus is the quotient of Rd by the group Zd of integral translations (this
means that all sides of the box have unit length). The Riemannian structure
we consider on it is of course the locally Euclidean one just obtained by the
quotient operation. The functions fj (xj) are linear combinations of

cos (2πmjxj) and sin (2πmjxi)

with the mj any integers; the resulting product function is an eigenfunction
of Δ with eigenvalue

4π2
(
m2

1 + · · · +m2
d

)
.

As in the classical theory of Fourier series, these functions are rich enough so
that there are no other eigenfunctions except appropriate linear combinations
of these ones. The set of eigenvalues is thus known. But their multiplicity is
another story; it leads to many problems in number theory, far from being
finished today. Indeed the question of multiplicity is the question as to how
many ways an integer can be written as a sum of d squares: see the Gauß circle
problem on page 89 which is an unsolved problem in number theory. Some
references on the circle problem: Erdös, Gruber & Hammer 1989 [491], Gruber
& Lekkerkerker 1987 [660] page 135, Gruber & Wills 1993 [661], Walfisz 1957
[1227] and Krätzel 1988 [833]. However the first order asymptotic estimate of

N(λ) = number of eigenvalues (with multiplicity) smaller than λ

is very easy geometrically. We look for the number of points with integral
coordinates which are located inside the ball B (0, r) (centered at the origin)
of radius

r =

√
λ

2π
,

see figure 1.84 on page 89. This figure shows that, up to an error term which
becomes negligible because it is “only” of order Rd−1, we find that N(λ) is
asymptotic to the volume of the ball of radius 2πR, namely

β(d)
(2π)d

λ2/d .

Hence the second term in the expansion is again connected to the circle
problem, and so is unknown.

9.5.2 Other Flat Tori

This time we quotient our vector space Rd by any lattice Λ. A lattice is
the set of all integral linear combinations of a basis of Rd. Motivated by the
preceding “cube” case, we look for functions which are eigenvalues of Δ and
Λ periodic. We search for them among the imaginary exponentials of linear
functions, which can be always written in the form
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f(x) = e2πi〈ξ,x〉

where i =
√
−1 and ξ is a vector which we will try to find. We will have Λ

periodicity exactly when the scalar product

〈ξ, x〉

is an integer for each x ∈ Λ. Those ξ form a lattice, called the dual lattice of
Λ and denoted by Λ∗. It is trivial to see that

Λ∗∗ = Λ

and that
Vol

(
Rd/Λ∗) =

1
Vol (Rd/Λ)

The eigenfunctions of Δ are
e2πi〈ξ,x〉

for ξ ∈ Λ∗ and the eigenvalue of this eigenfunction is

4π2|ξ|2 .

But the precise description of the dual lattice is not so easy. It is only in
dimension 2 that the dual lattice is always deduced from the original lattice
by a similarity. Analysts know how to relate Λ and Λ∗, at least theoretically,
with the Poisson formula:

1

(4πt)d/2
Vol(Λ)

∑
λ∈Λ

e−‖λ‖2/4t =
∑
ξ∈Λ∗

e−4π2‖ξ‖2t. (9.14)

Stated another way, the set of eigenvalues of our torus is the set of 4π2

multiples of square norms (distance to the origin) of the points in the dual
lattice Λ∗. It is important for future developments in this book that the
distance to the origin from a point of Λ is precisely the length of a periodic
geodesic of our torus. So the Poisson formula yields a relation between the
spectrum and the length spectrum.

The proof of the Poisson formula is not very difficult. We can explicitly
write down the heat kernel K∗ of Rd (see §9.7). One then puts together the
heat kernel K(x, y) of our flat torus as a summation∑

i

K∗(x, y + λ)

where λ runs through the lattice defining the torus. Using roughly the same
idea, but with considerably more difficulty one can obtain Selberg’s trace
formula for space forms of negative curvature; see §§9.5.5.
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Fig. 9.4. (a) The same periodic geometric geodesic (b) Λ and Λ∗ are similar in
dimension 2 (only)

9.5.3 Spheres

Harmonic analysis on spheres is a small miracle: we explained it in §§1.9.2
but the reader might like to see it again here. A polynomial p of degree k on
Rd+1 is said to be harmonic if

Δp = 0

for the Laplacian Δ on Rd+1. The restriction

f = p|Sd

to the sphere turns out to be an eigenfunction of the Laplacian on Sd with
eigenvalue k(k + d − 1). Its multiplicity is just the dimension of the vector
space of harmonic polynomials of degree d, namely(

d+ k

k

)
−
(
d+ k − 1
k − 1

)
.

Again as above, the Stone–Weierstraß theorem tells us that we have no other
eigenfunctions and a complete orthonormal basis of eigenfunctions. This does
not say that we know everything today about spherical harmonics, even if
many people think we do. We turn now to the next objects in the hierarchy
of §6.6.

9.5.4 KP
n

Fourier analysis on CP
n goes back to Élie Cartan in his 1931 monograph

Cartan 1992 [322]. The trick is the same as for the sphere, but here one
starts with Cn+1 and uses harmonic polynomials in the variables

zj, z̄j .
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Details can also be found in Berger, Gauduchon & Mazet 1971 [174].
Unhappily this trick does not work with the quaternions. This is linked

with the following fact which we mention here because it is rarely known. It
is impossible to define on Hn useful quaternionic derivatives analogous to the
complex derivatives

∂

∂z
and

∂

∂z̄
.

A related phenomenon: quaternionic structures on manifolds can be inte-
grable only in the flat case. For all this, and a good notion of quaternionic
functions, see Joyce 1997 [773] and the references there or the note 13.5.3.1
on page 680.

There are at least two ways to compute the spectra of the remaining KP
n.

One is to use a very general formula due to Hermann Weyl, and valid for all
symmetric spaces. But the formula is explicit only in the sense that it is a
summation over the roots of a certain Lie algebra. To get explicit expressions
is hard. The other way is to use the general link between periodic geodesics
and the spectrum, a quite deep result (unavoidably using the wave equation)
which we will meet in §9.9.

The explicit result for all KPn can be found on page 202 of Besse 1978
[182]. It is important to note the spectrum. Its square roots are in all cases
included in intervals whose centers make up an arithmetic progression:

Spec (KP
n) ⊂

∞⋃
k=0

[
2π
L

(
k +

α

4

)2

−M,
2π
L

(
k +

α

4

)2

+M

]
(9.15)

where L is the common length of all of the geodesics (which are all periodic),
M is some fixed constant and the “index” α is

α (KPn) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 K = R

1 K = C

3 K = H

7 K = Ca

.

As for the sphere, the multiplicities are very high but this is necessary to
match the asymptotic behaviour of equation 9.20 on page 421. We will meet
this special form of spectrum, as in equation 9.15, again in theorem 177 on
page 430.

0

Fig. 9.5. The spectrum Spec (KPn)
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9.5.5 Other Space Forms

The spaces whose spectra we will look for include not only symmetric spaces
of higher rank, but also space forms of negative curvature (any rank). For
space forms of positive curvature and more generally for homogeneous spaces,
the spectrum can be more or less handled in various cases, or only controlled
in some instances. We do not give any details; they can be found in the
various references which we will give later on.

The very hard but fascinating case is that of space forms of negative
curvature. Then one needs to understand not only the Lie group and Lie
algebra but also the discrete subgroup of isometries of the simply connected
forms (of negative curvature) which yield compact quotients under study.
The basic tool was discovered in 1956: it is the Selberg trace formula. This
an entire subject in itself, intimately connected with number theory. We can
only afford to give references on the subject. We choose to offer more or less
expository references as opposed to partial results. We suggest for the Selberg
trace formula on surfaces, which is quite special and exceptionally powerful:
Buser 1992 [292] chapter 9, but the formula permeates a great deal of the
book. Add of course the references given there. For higher dimensions, see
Bunke & Olbrich 1995 [279]. For more about hyperbolic surfaces see §§9.13.2.

9.6 Current Questions

We can either concentrate on the eigenvalues or on the eigenfunctions. In
each case, we can then ask how to derive information about the eigentheory
from geometric information, and vice versa.

9.6.1 Direct Questions About the Spectrum

A typical result about eigenvalues is theorem 164 on page 410. It provides
practically perfect upper control on the eigenvalues. It is optimal in the sense
that none of the ingredients can be removed. Simple examples show that one
needs a lower bound on the Ricci curvature and on the volume to obtain
upper bounds on eigenvalues.

So the next natural question is to look for lower bounds. We will see below
that lower bounds involve the diameter instead of the volume, and beyond
that no more than a Ricci curvature lower bound; see §§9.7.3.

As explained in §9.2, the main question, vital for many physicists, is the
asymptotic behavior of the spectrum. We will see that the first order term
in the asymptotic expansion is easy to get. The next order term is another
story, as we already saw for the flat torus case. The repartition of the spectrum
about the asymptotic formula, the way the eigenvalues arrange themselves,
is of equal significance in physics. Whatever a precise definition might be,
one feels that the KP

n spectra given in equation 9.15 on the preceding page
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is an atypical distribution, with very high multiplicities, and poorly behaved
if we want to tell different vibrations apart by hearing how they differ in
frequencies. Looking at that equation, one might be led to wonder about
gaps in the spectrum. We will meet some answers to this question, but some
elementary questions of this sort are still completely open. Another important
problem, also interesting for applications, is to have a lower bound for the
first eigenvalue λ1. It controls “resonances” and can prevent them. Control
of all of the spectral data we have just discussed cannot be obtained only
with a lower bound on Ricci curvature, volume and diameter. One will need
to know more on the curvature, the injectivity radius, etc. For the behaviour
of the spectrum when the metric varies, see Lott 2000 [881].

9.6.2 Direct Problems About the Eigenfunctions

There are very few results about eigenfunctions. It is natural to ask for control
on the sup norm of the eigenfunctions, which amounts among other things
to studying the asymptotic behavior of∫

M

φ2
iφj

for a fixed i with j going to infinity. The nodal sets, defined to be the zero
sets of eigenfunctions, are of clear physical significance. Outside singularities,
the nodal sets are hypersurfaces in the manifold. Do they have large measure
(say d− 1 dimensional Hausdorff measure)? How are they located? Think of
the spreading out of nodal sets as a kind of even repartition in space. Today’s
harvest is quite meager: see §9.11.

9.6.3 Inverse Problems on the Spectrum

The literature on recovering Riemannian geometry from the spectrum is im-
mense, this subject having excited people tremendously when it was triggered
by Milnor 1964 [922]. There it was proven that two Riemannian manifolds
which are not isometric can have the same spectrum. We will give below a
brief account of the state of affairs today.

A completely different (still inverse) topic is to try to recover the Rieman-
nian manifold from its geodesic flow. This can be asked in different ways.
Suppose you know the lengths of all of the periodic geodesics (this is the
so-called length spectrum); can you find the metric? But you might know
even more, namely the complete structure of the flow on the unit tangent
bundle (the phase space). See §9.12 and chapter 10 for the state of current
knowledge.
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9.7 First Tools: the Heat Kernel and Heat Equation

9.7.1 The Main Result

Theorem 165 (Minakshisundaram 1953 [929], McKean & Singer 1967 [910])
Let M be a compact Riemannian manifold. There is a function

K : M ×M × R∗
+ → R

which is C∞ and

1. Given any initial data f : M → R the solution of the heat equation

−∂F
∂t

= ΔF

with
F (x, 0) = f(x)

is given by

F (x) =
∫
M

K(x, y, t) f(y) dy

2. K is given by the convergent series

K(x, y, t) =
∑
i

exp (−λit)φi(x)φi(y)

(where the eigenfunctions φi of the Laplace operator Δ are chosen so that
they form an orthonormal basis of the square integrable functions on M)

3. For every x ∈M there is an asymptotic expansion as t→ 0 of the form

K(x, x, t) ∼ 1
(4πt)d/2

∞∑
k=0

uk(x)tk

where the uk : M → R are functions given by universal formulae ex-
pressing uk(x) in terms of the curvature tensor of M and its covariant
derivatives at the point x.

The three argument function K is called the fundamental solution of the heat
equation on M , or the heat kernel of M .

If one assumes existence of the heat kernel, it is easy to check the proper-
ties 1 and 2. Note the surprising symmetry, which has no reason a priori to
hold:

K(x, y, t) = K(y, x, t) .

We recall that the physical interpretation of the heat kernel is the following:
K(x, y, t) is the temperature at time t and at the point y when a unit of heat
(a Dirac δ function) is placed at the point x.
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To find the proof and to get a feeling for why property 3 is reasonable,
we recall what we saw in equation 1.26 on page 101, namely that the funda-
mental solution of the heat equation for the Euclidean plane was explicitly
determined as

K∗(m,n, t) =
1

4πt
e−‖m−n‖2/4t

For a Euclidean space of general dimension d it is also explicit and easy to
find by formal computation, namely:

K∗(x, y, t) =
1

(4πt)d/2
e−d(x,y)

2/4t (9.16)

where we have replaced the square norm by the distance. To study heat
on more general Riemannian manifolds, the idea is to get some function
analogous to the above on a compact Riemannian manifold. It makes sense
to consider equation 9.16 in any Riemannian manifold, provided we cut it
with a step function η. So we will set

H0 = hS0

for
S0 = K∗

above and measure distance according to our Riemannian metric. This is
a sort of first order approximation of the K that we are looking for. We
have reason to hope that we can carry on in this direction, because the
exponential decays very quickly with time t. In analysis, a function like S0

(which approximates a kernel) is called a parametrix.
The sketch of the complete proof is as follows. We build up an exact

solution in two steps. In the first step, one defines local parametrices with
higher and higher orders of approximation by an induction formula and a
sum as follows:

Sk =
1

(4πt)d/2
e−d(x,y)

2/4t
k∑
i=0

ui(x, y)ti

so that (
Δx +

∂

∂t

)
Sk =

1

(4πt)d/2
e−d(x,y)

2/4tΔxuk (9.17)

But these functions are only define locally. We now define global functions

Hk

on our manifold with the above and a step function η by setting

Hk = ηSk .
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These functions are certainly not what we are looking, since for example
they depend on the choice of η. The trick is to define K again as a series by a
double convolution process which will “forget” the η function. The two vari-
ables in the convolution are the space and the time. We define the convolution
A ∗B of two functions of (x, y, t) by

(A ∗B)(x, y, t) =
∫ t

0

dτ

∫
M

A(x, z, τ)B(z, y, t− τ)dVM (z)

and the desired fundamental solution is

K =
∑
i

(
Δx −

∂

∂t

)
(Hk∗)i (9.18)

which works as soon as k is large enough, namely

k >
d

2
.

For details of the proof we refer to III.E of Berger, Gauduchon & Mazet 1971
[174], Chavel 1984 [325] chapter VI, Gilkey 1995 [564] or chapter 2 of Berline,
Getzler & Vergne 1992 [179]. Formal verification is trivial; the problems are
principally in the convergence of the series and in the smoothness of the
objects; smoothness is where we use the condition

k >
d

2

which will not surprise readers used to Sobolev inequalities; see theorem 118
on page 349.

The universality of property 3 on page 418 is simply due to Élie Cartan’s
philosophy of normal coordinates. We saw one aspect of this philosophy when
commenting on Jacobi’s field equation 6.11 on page 271 in §§6.3.1. The second
aspect is that Jacobi’s equation can be differentiated as many times as we
wish. In the result only the curvature tensor and its covariant derivatives of
various orders will appear, and each of these in some universal polynomial
expression. The Laplacian is also universal, involving only various derivatives
of the Riemannian metric. It remains only to remark that, by construction
of the kernel K in equation 9.18, the uk are the same as in property 3.

We mention here that the heat kernel is explicitly known for some special
manifolds, as is the fundamental solution of the wave equation. Among these
special manifolds are of course Euclidean spaces, spheres, and hyperbolic
spaces. For example, in the case of the hyperbolic plane, these kernels are
employed in Huber’s result (theorem 192 on page 446). For the spheres, we
can find the kernel in Cheeger & Taylor 1982 [355, 356]; see this text for
previous results. For space forms, see the recent Bunke & Olbrich 1995 [279].
For symmetric spaces see Helgason 1992 [704].
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9.7.2 Great Hopes

If in theorem 165 on page 418 we integrate over the manifold M and use
property 2 we get the basic formula∑

k

e−λkt ∼ 1

(4πt)d/2
Vol(M) as t→ ∞ (9.19)

which gives us the first order term of the asymptotic behavior of the eigenval-
ues (counted with multiplicity). This is called the Hermann Weyl estimate,
although Weyl was only interested in domains with boundary in Euclidean
spaces as seen in §§1.8.5. If one is only interested in obtaining this estimate,
it can be obtained less expensively with the minimax principle.

Regarding inverse problems, the knowledge of the spectrum gives you the
dimension of the manifold and its volume.

As in §§1.8.5, the Hardy–Littlewood–Karamata theorem applies to yield
what we are really interested in, namely

N(λ) = # {λi < λ}

=
β(d)
(2π)d

Vol(M, g)λd/2 + o
(
λd/2

)
(9.20)

as λ→ ∞. From here, completely elementary calculus yields

λk ∼
(

(2π)d

β(d)Vol(M, g)

)2/d

k2/d (9.21)

Note the perfect compatibility of this formula with theorem 164 on page 410.

Fig. 9.6. The Weyl asymptotic for surfaces

The function N(λ) is a step function. The next natural question on the
spectrum is

Question 166 How does the function N(λ) distribute itself around the con-
tinuous function giving the asymptotic behaviour?
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Today we know very little about this question. But we will see in §9.9 that
with the wave equation technique one can replace the little o by a capital

O
(
λ(d−1)/2

)
.

This will permit some rudimentary control, on the gaps for example.
There is also a heuristic principle to the effect that there is a deep relation

between the jumps in the spectrum and the lengths of the periodic geodesics.
See §9.9, theorem 176 on page 429, note 9.9.0.1 on page 432, the proof of
theorem 189 on page 444, and §§§ 9.13.2.1 on page 451.

The reader might wonder why we did not use the full asymptotic expan-
sion obtained from parts 2 and 3 of theorem 165 on page 418. Let us look at
it:∑

k

e−λkt ∼ 1
(4πt)d/2

(
Vol(M, g) + U1t+ U2t

2 + · · ·
)

as t→ ∞ (9.22)

where
Uk =

∫
M

uk .

We did not do so first because the Hardy–Littlewood–Karamata theorem
does not provide any information beyond the first order term. That is to say,
the knowledge of the Uk is strictly useless for finding the higher order terms
in N(λ). We will need more than the above expansion—either a much more
subtle analysis of the heat kernel or, better, the wave equation.

Still one can try to use theorem 165 on page 418 and see what one can
extract from it. As expected the first uk expressions should be simple. In fact
various authors have computed the two first; if we write scalar for the scalar
curvature of our manifold, and R for its Riemann curvature tensor, then

u1(x) =
1
6

scalar(x)

u2(x) =
1

360
(
2‖R‖2 − 2‖Ricci ‖2 + 5 scalar2

) (9.23)

Beginning with the third term, the expressions become more and more com-
plicated. For example, the third term involves the covariant derivative of the
curvature tensor. We refer for those and their applications to: the end of
this section for the uniqueness of the spectrum of low dimensional spheres,
to theorem 188 on page 443 for the compactness of the sets of isospectral
metrics on compact surfaces, to Gilkey 1995 [564] and Berline 1992 [179] for
very general references.

If you integrate u1 you get

1
6

∫
M

scalar .
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If M is a surface, the Blaschke–Gauß–Bonnet formula 28 on page 155 yields

1
6

∫
M

scalar =
π

3
χ(M) .

Although this is of no use for calculating N(λ), it is very helpful for the
inverse problem—it implies that the knowledge of the spectrum (1) tells you
that you are on a surface (see above) but moreover (2) we now know its
genus.

An important (but which will turn out eventually to be a “useless”) re-
mark: the fact we get a topological invariant, in particular an invariant of
rescaling the metric, is not surprising because U1t has to be divided by
t2/d = t here, so it is dimensionless. So the natural question is: is U2 a
topological invariant of four dimensional manifolds? This question brought
great excitement to spectral geometry in 1966, and was one of the reasons
for serious study of the Uk. The answer is no. A simple reason is that the
generalization of the Gauß–Bonnet theorem in four dimensions (see §§11.3.6
or §15.7) is

χ(M) =
1

32π2

∫
M

‖R‖2 − 4‖Ricci ‖2 + scalar2 (9.24)

Asking U2 to be invariant as well (even if not linked to the characteristic) is
too much, as trivial examples show.

From the opposite point of view, it is easy to apply equations 9.23 on the
facing page to a surface to prove that the round (constant curvature) sphere
S2 is characterized by its spectrum, as are flat tori. On the other hand, we will
see in §§9.13.2 that there are isospectral nonisometric Riemannian surfaces of
constant negative curvature. Still, using the higher Uk, it is proven in Tanno
1980 [1181] that round spheres of up to six dimensions are characterized by
their spectra. The same question for higher dimensional spheres is still open
today. This shows how far we are today toward understanding the spectra of
Riemannian manifolds. Another nice application of the Uk is to be found in
§§9.12.3.

Note 9.7.2.1 (Spectra of space forms) Let us reconsider that the knowl-
edge of the spectrum yields the knowledge of all the Uk integrals. Look at
the case of space forms (of constant sectional curvature). Then all the uk
are known and in particular the Uk are all known as soon as one knows the
volume of the manifold. This does not yield the space form (up to isometry)
except in one dimension. �

The spectral determination of the Euler characteristic χ above for surfaces
is exceptional: today there is no known topological information in the spec-
trum in dimensions three and higher. Of course, so far we are discussing the
spectra of the Laplace operator on functions. For the spectra of the Laplace
operator on more general tensors, e.g. differential forms, see §9.14.
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Note 9.7.2.2 (Futility of the Uk) Besides the theoretical interest of es-
tablishing a solid foundation for Fourier analysis on a Riemannian manifold,
at this moment the heat equation technique seems to be of little use. It might
seem that this is because the curvature appears in the asymptotic expansion
in a too algebraically complicated manner. Except for the second term, the
expansion involves not only the curvature but also its covariant derivatives;
in particular geometric invariants (the volume excepted) like the diameter,
the injectivity radius, the geodesic flow, do not enter into it. But one “ex-
planation” for the impotence of the Uk is given by the following, which is a
strong generalization of theorem 186 on page 439:

Theorem 167 (Lohkamp 1996 [874]) Consider any compact manifold M
of dimension larger than two, and any infinite sequence of positive numbers

0 < λ1 < λ2 < · · · .

Then there is a sequence of metrics gm on M of fixed volume and fixed integral
of scalar curvature such that not only does the spectrum of gm coincide with
the given sequence from 0 to λm, but all of the U2k go to +∞ and all of the
U2k+1 go to −∞. Under the same conditions, there is also another sequence
of metrics with the same spectral condition but this time the volume is fixed
and the Ricci curvature satisfies

Ricci (gm) < −m2 .

This explains the near inefficacy of the Uk and the poverty of the hypothesis
of negativity of Ricci curvature (see §§12.3.5). For the nature of the proof,
see §§9.12.1. �

There is also an important geometric formula which deserves to be men-
tioned, even if at the moment it has no geometric application:

Theorem 168 (Varadhan 1967 [1206])

lim
t→0

t logK(x, y, t) = −d (x, y)2

2

for any x, y close enough.

Varadhan’s formula works within the injectivity radius. What happens when
y moves to the cut locus of x is the subject of Malliavin & Stroock 1996 [890];
dramatic changes take place, for example on the standard sphere strange
events occur at antipodal points. But theorem 168 is fundamental to modern
probability theory, and in particular to the Malliavin stochastic calculus on
infinite dimensional Riemannian manifolds (e.g. path spaces).

Exterior differential forms are canonically attached to a differentiable
manifold and a Riemannian metric also provides a Laplace operator on them.
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But more generally there are other kind of bundles one can look at, as well as
suitable differential operators. Some are canonical, as in the case of spinors,
while others are built up with various techniques e.g. twisting canonical ones,
etc. In this context the heat equation method works and yields important re-
sults. Some are of interest in themselves; these will be described briefly in
§14.2. Some are basic tools for Riemannian geometry; we will meet such ap-
plications twice in §§12.3.3.

Still thinking about heat, we mention the recent notion of heat content
of a domain in a Riemannian manifold. This notion has various applications,
even in the Euclidean case, and probably some future: see Savo 1998 [1099].

9.7.3 The Heat Kernel and Ricci Curvature

In §§9.4.2, we used the minimax principle to get upper bounds on the spec-
trum. Lower bounds are more difficult. The case of the first eigenvalue λ1

is treated separately in §9.11. We will now address the question of a lower
bound for every eigenvalue. An optimal result can be found in Bérard, Besson
& Gallot 1985 [139]; see the book Bérard 1986 [135] for a detailed exposition.
To formulate their result we introduce some notation.

Definition 169
Z(t) =

∑
k

e−λkt

which we will write as
ZM,g(t)

when we need to specify which Riemannian manifold M and metric g is being
invoked. Similar notation is used to specify the manifold and metric when
discussing the heat kernel:

Definition 170
KM,g(x, y, t) = K(x, y, t)

Then we can state:

Theorem 171 There is a universal constant

c = univ(inf Ricci, dim, diam)

(where inf Ricci is the lower bound of the Ricci curvature, dim the dimension
and diam the diameter of a Riemannian manifold M) such that for any time
t

ZM (t) ≤ Vol(M) sup
x,y∈M

KM (x, y, t) ≤ ZSd (ct)
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This is a very strong result since it is a bound for the whole heat kernel. Since
the spectrum of the standard sphere Sd is known, one gets immediately:

Theorem 172 There is universal constant such that all eigenvalues satisfy
the lower bound

λk ≥ univ(inf Ricci, d, diam)k2/d .

The term k2/d agrees with Weyl’s asymptotic 9.19 on page 421 for the
power of k but not for the volume. Moreover, simple examples show that the
diameter, not only the volume, is really needed. Examples also show that
these results are optimal as far as the ingredients (see how they enter more
explicitly in Bérard, Besson & Gallot 1985 [139]. Finding optimal explicit
values is an open problem. The authors’ values are explicit but not optimal,
especially in the case of negative Ricci curvature. This will be seen from the
proof.

The proof is very geometrical. Look again carefully at the proof of the
Faber–Krahn inequality 1.22 on page 94 for the fundamental tone of a plane
vibrating membrane. There we used function symmetrization—a transplan-
tation, going from the membrane D under study to the circular membrane
D∗ having same area. From any function on D, a function on D∗ was con-
structed. Then the key ingredient (besides Fubini’s theorem and a change of
variable) was the isoperimetric inequality for plane curves.

Bérard, Besson & Gallot 1985 [139] enact a double generalization of the
same ideas. First we symmetrize the whole heat kernel as a function (which
depends on three variables). Second we use the result on the isoperimetric
profile obtained in theorem 114 on page 343 which needs precisely a lower
bound on Ricci curvature and diameter. The transplantation here goes from
M to a sphere whose radius is precisely defined as a function of inf Ricci, the
dimension and the diameter. It is then clear that on a manifold of negative
Ricci curvature, the comparison sphere cannot be optimal.

The proof is then concluded by expensive and technical details. In partic-
ular it uses the maximum principle for parabolic partial differential equations
(because the heat equation is parabolic). Time is taken in account as follows.
The heat equation for the symmetrized kernel becomes an ordinary differen-
tial equation and one then applies Sturm–Liouville theory, in some sense as
for Jacobi fields in §3.2. One can find this technique in Bandle 1980 [109].
Details of the above results can be found in chapter V of Bérard 1986 [135]
or in Berger 1985 [163].

Brownian motion on Riemannian manifolds is very closely related to the
heat equation. The “propagation speed” of Brownian motion “is the Ricci
curvature.” The reader will enjoy Stroock 1996 [1164], Elworthy 1988 [489],
and Pinsky 1990 [1029, 1028].
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9.8 The Wave Equation: the Gaps

Put together, the bounds from theorems 172 on the facing page and 164 on
page 410 frame the λk between two asymptotic curves. This is reasonable
control, but does not say much about how the eigenvalues are distributed.
Questions can be asked about the “jumps,” about the evenness of the distri-
bution, and more simply about the gaps. The formulas 9.15 on page 415 for
the spectrum of the spheres and the KP

n show spectra which are not evenly
distributed, since they are concentrated in intervals. The heat equation is not
a deep enough tool to get information on the gaps—we need to analyze the
wave equation on our Riemannian manifold.

0

0

Fig. 9.7. Spectral gaps

This is like climbing Jacob’s ladder. To get information on the mani-
folds “downstairs” we have to travel to the unit tangent bundle UM and to
work with distributions. Downstairs, a function only has a gradient, but a
distribution on UM has a wavefront, which is nothing but the set of its di-
rectional singularities. The first result is that under time evolution the wave
front evolves exactly by the action of the geodesic flow: “the waves (the light)
travel along geodesics.” We cannot say more about the wave equation, it will
need an entire book. Today this topic is called microlocal analysis. It involves
subtle notions such as Fourier integral operators and canonical transforma-
tions. To our knowledge, there are no “popular” expositions of microlocal
analysis; the most picturesque, and closest to Riemannian geometry, is that
of Guillemin & Sternberg 1977 [670]. The four volumes of Hörmander 1983
[735, 736, 737, 738] are complete and encyclopedic (get the second edition
of volume I); Tréves 1980-82 [1198, 1199] is also very informative. The wave
kernel ∑

k

cos
(√

λkt
)
φk(x)φk(y)

is no longer a function (only a distribution) but in exchange it carries much
more information. It can also be remarked that microlocal analysis involves a
lot a symplectic geometry, which takes place in T ∗M , the cotangent bundle. It
is better to ignore the fact that (thanks to the Riemannian structure) T ∗M is
canonically isomorphic to TM (see §15.2). One also works with the canonical
contact structure on the unit tangent bundle UM (which is Sasakian): see
page 56 of Sakai 1996 [1085].
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The following result is part of a very general theory which applies to
any elliptic operator on a compact manifold; we employ it here only to the
Laplace operator.

Theorem 173 (Hörmander 1968 [734]) The number N(λ) of eigenval-
ues smaller than λ obeys the asymptotic law

N(λ) =
Vol(M)β(d)

(2π)d
λd/2 +O

(
λ(d−1)/2

)
It should be mentioned that such a result had been obtained in Avakumović
1956 [90] in three dimensions using a technical study of the parametrix. The
immediate corollary (by the very definition of a “capital O” and elementary
calculus) is the one we are after:

Theorem 174 For any Riemannian manifold M there is a constant CM
such that for any real numbers a and b with b − a large enough, the set of
eigenvalues λ of the Laplacian in the interval [a, b] satisfies

#
{√

λ ∈ [a, b]
}
> CM (b − a)ad .

Note that such gap results cannot be too general; think of theorem 186 on
page 439 to the effect that there is always a Riemannian manifold whose
spectrum is any chosen finite subset of the real numbers.

For the geometer there is major drawback in Hörmander’s result. The way
the constant is found in Hörmander’s proof is not constructive; the geometry
of the Riemannian manifold does not come in. But we would like to be able to
estimate C(M, g) as a function of the geometric invariants of (M, g). At the
moment there is no such result obtained by working with the wave equation
on a Riemannian manifold. But the following recent result is to be found
in section 6 9

10 of Gromov 1996 [631]. The proof is extremely intricate, and
uses the Kac–Feynman–Kato inequality. This formula bounds the spectrum
of any elliptic operator on any bundle on a Riemannian manifold with the
spectrum downstairs of the manifold itself, and was always used the other way
around. But Gromov looks at suitable bundles over a compact Riemannian
manifold and uses various tools from Vafa–Witten, Bochner–Lichnerowicz
and Atiyah–Singer. See chapter §14.2 for a brief survey of those tools. Using
that incredibly high climb up Jacob’s ladder one has:

Theorem 175 (Gromov 1996 [631]) In any odd dimensional Riemannian
manifold whose sectional curvature satisfies

|K| ≤ 1

and whose injectivity radius is larger than 1, the spectral gaps are controlled:
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#
{√

λ ∈ [a, b]
}
> Cd(b− a)d Vol(M)

for any positive real numbers a, b such that with

b > a+ C′
d

where Cd and C′
d are universal constants in the dimension d.

We leave the reader to use appropriate scaling to replace Cd by a constant
depending on sup |K| and Inj (M). Let us remark that some geometric control
is required in view of theorem 186 on page 439. It seems to be an interesting
question to prove the above result by working only with the wave equation
“down” on the manifold itself. Note also that one knows more (but not ev-
erything) about the distribution of the spectrum on the real line for certain
special manifolds; see §9.13.

9.9 The Wave Equation: Spectrum and Geodesic Flow

In the pioneering paper Balian & Bloch 1972 [99], which we have discussed
in §§1.8.6, the authors suspected a relation between the spectrum of a plane
domain and its length spectrum.4 The fact that compact plane domains have
a boundary rendered this study difficult. This is one reason why people turned
first to compact Riemannian manifolds (without boundary of course). We
speak now about general Riemannian manifolds; the special case of space
forms will be taken care of in §9.13. Relations between the spectrum (of
functions) and the length spectrum will be met again in §9.12. For flat tori, we
met a perfect link between the spectra furnished by the Poisson formula 9.14
on page 413 So the problem is to find, if possible, various generalizations of
this formula.

For the general case, the first result was Colin de Verdière 1973 [389],
but the proof was very tricky, using the heat kernel and the stationary phase
technique. Soon after it was realized that the wave equation is the more
powerful and elegant technique: Chazarain 1974 [327] and Duistermaat &
Guillemin 1975 [465]. This yielded:

Theorem 176 For any Riemannian manifold M the series∑
i

cos
(√

λit
)

defines a distribution whose singular support is contained (besides the value
0) in the set of the lengths L of the periodic geodesics of M . For a generic

4 Recall that the length spectrum of a plane domain is the set of lengths of its
periodic (billiard or light) trajectories.
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Riemannian manifold, this singular support is a sum of distributions TL, with
L ranging over lengths of periodic geodesics, and where each TL has support
located in a small neighborhood of L. Moreover each TL can be expressed
with the sole help of the Poincaré return map (see the definition 10.4.3.2 on
page 494) associated to the periodic geodesics of length equal to L and the
holonomy map (the effect of parallel transport) along these geodesics.

interference

a periodic geodesic

Fig. 9.8. (a) A periodic geodesic (b) Interference

Here is a very primitive explanation for theorem 176 on the page before;
it is not even an idea of a proof but just help for the reader who needs to
visualize things to get some grasp of them. We look at a surface and, like
throwing a stone in a pond, look for the wave generated by this action. The
picture in figure 9.8 shows what is happening at the beginning: no problem
occurs at small distances, but as in §§9.7.2 we might expect trouble at the cut
locus. Two waves meeting transversally generate only nice interferences—this
has been known for a long time. But the wave interferences are different when
the two waves come one against the other in exactly opposite directions; this
will be the case for any periodic geodesic. If moreover their common frequency
is of the form 2πnL, where n is any integer and L is the length of the periodic
geodesic under consideration, then we will have (probably) a resonance or,
say, a tidal wave. This is the cause of singularities in the series above. Note
that this does not happen for geodesic loops—they do not produce enough
resonance.

We come back to more standard mathematical notation. First, there is a
kind of reciprocal of the formula 9.15 on page 415:

Theorem 177 (Colin de Verdière 1979 [391] and Duistermaat & Guillemin 1975 [465])
If all the geodesics of a compact Riemannian manifold M are periodic with
common length equal to L then for k large enough one has the inclusion

Spec (M) ⊂
⋂
k∈N

[
2π
L

(
k +

α

4

)2

−M,
2π
L

(
k +

α

4

)2

+M

]
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and moreover the number of eigenvalues in every one of these intervals is
polynomial in k.

We will see in §§10.10.2 the significance of the α which can only equal 0, 1, 3,
or 7 (the reader can—and should—think of the KP

n).
The end of theorem 176 on page 429 was very imprecise about the Poincaré

and holonomy maps and in particular was only passing from the singularity
of TL to the Poincaré map. Recall that TL was defined in theorem 176 on
page 429. Further recall that this Poincaré map has to be viewed in the
unit tangent bundle UM (at some starting point) and is the differential at
the origin of the return map after going once around a periodic geodesic.
After various partial answers, strong results became available only recently
in Guillemin 1993 [665] and 1996 [666]. In those works, the singularity of
TL is completely determined by the Poincaré map, this being done in terms
of the so-called Birkhoff canonical form. This is moreover carried out for a
general elliptic linear differential operator, with the periodic geodesics being
replaced by the periodic bicharacteristics.

Fig. 9.9. (a) The Poincaré map works in UM |γ⊥ (b) The holonomy map works

in (γ′)⊥

Our information about the gaps and relations with periodic geodesics
(for general manifolds, see §9.13 for special manifolds) is still quite meager.
Looking again at the picture in figure 9.6 on page 421, one can consider N(λ)
as a step function. Not only the repartition, but also the jumps are of interest.
The common belief today is that those jumps are related in some way yet to
be discovered to the length of the periodic geodesics (this set of lengths is
called the length spectrum). This belief was initiated in Balian & Bloch 1972
[99]. But today we are still missing formal results. In exchange, there are
many numerical computations, mainly done by theoretical physicists. This
because they are extremely interested in the the semiclassical limit (see more
about this on page 400). Recent numerical experiments and thoughts about
them can be found in Sarnak 1995 [1095], Luo & Sarnak 1994 [885], Luo &
Sarnak 1995 [886], Rudnick & Sarnak 1996 [1074] and the bibliographies of
those articles.
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The most baffling case will be seen in §§9.13.2; it is the case of nega-
tive curvature space forms. The idea is that we know that those forms are
chaotic in the good sense: the geodesic flow is very ergodic, the behavior of
periodic geodesics and of the geodesic flow are extremely well understood.
Briefly speaking, the geodesic flow is extremely evenly distributed in the
phase space UM . Because of theorem 176 on page 429, one would expect that
the eigenvalues are evenly distributed as a subset of the reals. The answer
should be that the spectrum looks like the eigenvalues of a random Gaussian
symmetric matrix. This major question is almost completely open today; see
§§9.13.2. There is a good result on the distribution of the eigenfunctions; see
theorem 185 on page 437.

Question 178 What is N(λ) for a generic Riemannian manifold? Is it in

o
(
λ(d−1)/2

)
instead of the extreme

O
(
λ(d−1)/2

)
?

We know only of the following intermediate result:

Theorem 179 (Bérard 1977 [132]) If a compact Riemannian manifold
has no conjugate points or has nonpositive sectional curvature then as λ→ ∞

N(λ) =
Vol(M)β(d)

(2π)d
λd/2 +O

(
λ(d−1)/2

logλ

)
Note 9.9.0.1 (Quasimodes) An interesting link between the spectrum
and the periodic geodesics is that of the quasimodes. The story started in
Babich & Lazutkin 1967 [95] and is far from being finished today, remaining
quite mysterious; see Colin de Verdière 1977 [390]. Briefly speaking, to one
given periodic geodesic (satisfying certain conditions), one can associate a
series of numbers which approach quite a few eigenvalues. The idea of the
proof is to build up approximate solutions of the wave equation which will
propagate along the geodesic.

Question 180 Are they many cases for which one can obtain the whole spec-
trum in this fashion?

The answer is that this possibility is exceptional and happens only when
the geodesic flow is integrable. In general, the hyperbolic zones between the
KAM tori will yield a contradiction. The entire book Lazutkin 1993 [852] is
devoted to this topic. �

Note 9.9.0.2 For scars, see §§§ 9.13.2.1 on page 451. �
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9.10 The First Eigenvalue

9.10.1 λ1 and Ricci Curvature

The first nonzero eigenvalue λ1 is of essential importance. It controls the
Dirichlet quotient of functions of mean value zero, and it also controls reso-
nances. Indirectly it controls even the pure metric geometry of the manifold—
via the distance functions—as seen in Colding’s formula 77 on page 288. Again
lower bounds are the true prize; upper bounds can be useful but definitely
are less useful and much easier to get. We now present results which are not
simply a special case of theorems 164 on page 410 or 172 on page 426.

The first result on λ1 to our knowledge is the following which is hidden on
page 135 of Lichnerowicz 1958 [865] and used there to study transformation
groups of Riemannian manifolds.

Theorem 181 (Lichnerowicz [865]) If the Ricci curvature is larger than
or equal to d − 1 (that of the standard sphere of dimension d) then λ1 is at
least as large as the λ1 of the sphere, namely d. Moreover equality happens
only for manifolds isometric to the sphere.

The proof is beautifully simple, based on Bochner’s formula theorem 346
on page 622 (or equation 15.8 on page 733), applied to the 1-form which is
the differential df of the first eigenfunction f . This df is not harmonic but

Δf = λ1f

is the trace of the Hessian
Ddf = Hess f .

Bochner’s formula as applied to df becomes, after integration over the man-
ifold and using Stokes’ theorem:

0 =
∫
M

‖Hess f‖2 − λ1

∫
M

‖df‖2 + intM Ricci(df, df)

The proof is concluded by using Newton’s inequality

‖Hess f‖2 ≥ (Δf)2

d

since after diagonalization at a point,

‖Hess f‖2 = a2
1 + · · · + a2

d

and
(Df)2 = (a1 + · · · + ad)

2 .

The equality is obtained quite easily tracing back each inequality, and ap-
peared first in Obata 1962 [971] (also see Cheng 1975 [362]). This result should
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be compared with Myers’ theorem 63 on page 268. We will come back to this
in §§12.2.5. The general result of theorem 172 on page 426 as applied only to
λ1 is an improvement of theorem 181 on the preceding page since it involves
moreover the diameter (think for example of real projective space). But its
main source of interest is that it can be applied when the Ricci curvature is
nonnegative or negative.

For those who love Riemannian pinching, we mention Croke 1982 [413]
for pinching λ1, and the recent Petersen 1999 [1020].

9.10.2 Cheeger’s Constant

A somewhat intermediate result between Lichnerowicz’s theorem 181 on the
page before and theorem 172 on page 426 is based on Cheeger’s constant hc
introduced on page 339.

Theorem 182 (Cheeger 1970 [329]) On any compact Riemannian man-
ifold

λ1 >
1
4
h2
c .

It was proved in Buser 1978 [291] that this inequality is optimal, but equality
never occurs for a smooth metric. For more on this and the role of λ1, see
§§9.13.1. There is a huge literature on λ1 but still it seems that there has never
been any practical application to various questions concerning “vibrations
of great structures,” or “nondestructive and noninvasive tests.” There is a
relation obviously, but vibration today is largely an experimental area of
mechanical engineering. Bell casters have always used tests of the sound of a
bell to check for possible cracks; see Bourguignon 1986 [238].

9.10.3 λ1 and Volume; Surfaces and Multiplicity

Despite theorem 164 on page 410 (which used Ricci curvature and volume),
there cannot exist an upper bound involving only the volume. This was proven
in Dodziuk 1993 [453], by simply building up suitable examples (of course of
larger and larger diameter, and this only for dimension larger than or equal
to 3). The question was raised because the case of surfaces is exceptional. In
fact:

Theorem 183 (Hersch, 1970) The first three eigenvalues of any Rieman-
nian metric on the sphere S2 obey the inequality

1
λ1

+
1
λ2

+
1
λ3

≥ 3
8π

Area
(
S2, g

)
with equality only for the standard sphere. In particular

λ1 <
8π
3

1
Area (S2, g)

.
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The proof is beautiful. It mixes three facts

1. the minimax principle of §§9.4.1,
2. the fact that the Dirichlet quotient of a surface is invariant under confor-

mal change and finally
3. the fact that the conformal group of S2 is large enough to transform any

density on the sphere into a one whose center of mass is the origin.

m'

m
initial center 
of mass

Fig. 9.10. Under radial conformal transformations sending all but one point into
it, one can cover the whole ball with the initial center of mass

For other compact surfaces, various authors found an upper bound in-
volving only the area, with a constant depending on the genus. The optimal
constant is still a pending problem. On this topic recent references can be
found in the bibliographies of Dodziuk 1993 [453] and Nadirashvili 1996 [964].

The question of the highest possible multiplicity of λ1 is also interesting
for surfaces. Discard higher dimensions, thanks to the Colin de Verdière re-
sult 186 on page 439 to the effect that, starting in dimension three, any finite
subset of the reals—including multiplicities—can always be realized as the
beginning of the spectrum of a suitable Riemannian manifold. But for sur-
faces, the multiplicity of λ1 is bounded with the genus of the surface. Results
are optimal today for the sphere (triple) and the torus (sextuple). Optimal
constants are still to be discovered for other surfaces. There is definitely a
relation between this multiplicity and the chromatic number of the surface;
see the definition on page 439.

To prove such an upper bound, one relies on the structure of the set of
nodal lines, i.e. the set where an eigenfunction vanishes. Except at a finite set
of singular points, the zero set is made up of regular curves. More important
is that at singular points the curves meet with a set of tangents which are
the directions of the diagonals of a regular polygon. Using this result of Bers
the proof is concluded with arguments of algebraic topology; references are
Besson 1980 [187], Yang & Yau 1980 [1289].
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9.10.4 Kähler Manifolds

Mathematicians never stop asking questions. For example, can we have an
upper bound on the first eigenvalue depending only on the volume when
the manifold is “special”? Considering the geometric holonomy hierarchy
introduced in chapter 13, the case to look at is that of Kähler manifolds
(see §13.6). Indeed it is natural to wonder about the general spectrum of a
Kähler manifold. One answer is the following extension to CP

n of Hersch’s
theorem 183 on page 434 for S2:

Theorem 184 (Bourguignon, Li & Yau 1994 [245]) For any Rieman-
nian metric g on CP

n

λ1 ≤ (n+ 1)πn/n!
Vol (CPn, g)

.

We recall (see §§9.5.4 and §§§7.1.1.2) that the volume of the canonical metric
of CP

n is
Vol (CPn,Fubini–Study) = πn/n!

and its first eigenvalue is n + 1. For the proof, the conformal group of the
sphere is replaced here by the group of all biholomorphic transformations
of CP

n. In Bourguignon, Li & Yau 1994 [245] and Gromov 1992 [630] one
will find generalizations of this result to various algebraic manifolds, and to
the whole spectrum. For the big picture of the subject, it is important to
remark that the spectrum is a robust invariant, while being Kähler is not:
see note 9.4.1.1 on page 409 and §13.6 and §14.6.

The extremely important case of “Riemann surfaces”, that is to say of
constant curvature -1, whether or not compact, will be studied at large in
§§9.13.1. In the spirit of §9.12, we are far from being able to recognize the
spectra of Kähler manifolds.

9.11 Results on Eigenfunctions

9.11.1 Distribution of the Eigenfunctions

It seems hopeless to search for any general result valid for “any” Riemannian
manifold. But one can hope for a regular distribution of the eigenfunctions
when the manifold is generic (in any sense). A regular distribution would
be one for which in any domain D of the manifold and for eigenfunctions
with larger and larger eigenvalue, one finds the integral of the square of that
function over that domain is in a proportion to the integral over the whole
manifold which is closer and closer to the ratio of the volumes of D and M .
To our knowledge there is not a single result in that direction; compare with
the periodic geodesic result in §§10.3.5.
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But if the manifold is “ergodic” (see §§10.5.1), then there are partial
results. The conjecture is that ergodicity implies an even distribution of the
eigenvalues and the eigenfunctions. Concerning the eigenfunctions one has
only:

Theorem 185 For an ergodic Riemannian manifold M , there is a sequence

{i(k)}

of integers, of full density in the integers, such that for every D ⊂ M with
eigenfunctions φi(k) being normalized:

lim
k→∞

∫
M

φ2
i(k) =

Vol(D)
Vol(M)

.

Measure theory aficionados would prefer to write this as

lim
k→∞

φ2
i(k)dVM = dVM

Full density means that the number of points in question in [0, λ], compared
to the whole spectrum, has a ratio closer and closer to one when λ goes to
infinity. The latest general reference on this topic is Colin de Verdière 1985
[392] for our compact case, which completed the attempt of Shnirel′man 1973
[1137]. For the noncompact see Zelditch 1987 [1302] and Zelditch 1992 [1303].
The proofs involve a deep theorem of Yuri V. Egorov on Fourier integral
operators and belong therefore to microlocal analysis. So again, the wave
equation is used even if it disappears in the final statement. For the very
special case of space forms of negative curvature, see further references in
§9.13, but the results are still incomplete today.

9.11.2 Volume of the Nodal Hypersurfaces

Another way to look at regularity of eigenfunctions is to study their nodal
hypersurfaces, namely the subsets of the manifold where they vanish. When
the manifold is a surface, these subsets are curves. A reasonable behaviour
to expect is that the volume of the φ−1

λ (0) will grow as λ → ∞, with some
asymptotic order. The reader can check on examples (flat tori being the
simplest) and also looking at spherical harmonics (see §§9.5.2 and §§9.5.3)
that an eigenfunction with eigenvalue λ behaves like a polynomial of degree√
λ. If this is more or less true for any compact Riemannian manifold, then

one will have Vol
(
φ−1
λ (0)

)
roughly behaving like

√
λ. It was conjectured by

Yau in 1982 that for every Riemannian manifold M with Riemannian metric
g there are constants c = c(g) and c′ = c′(g) such that

c
√
λ ≤ Vol

(
φ−1
λ (0)

)
≤ c′

√
λ (9.25)
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for every eigenvalue λ. The intuitive idea behind Yau’s conjecture was that
eigenfunctions for λ behave roughly like polynomials of degree

√
λ, which is

the case for the standard sphere for which the eigenfunctions are the restric-
tions to the sphere of the harmonic polynomials of Euclidean space. After the
partial result of Brüning 1978 [266], this was proven in Donnelly & Fefferman
1988 [461]. The volume is to be understood as the (d− 1) dimensional Haus-
dorff measure to be sure to make sense. The proof is extremely hard, and
involves various results from analysis. One needs to know the local behaviour
of the eigenfunctions, their local sup norm and the distribution of their sin-
gular zeroes. Another basic fact is the analyticity of the eigenfunctions of an
elliptic operator (here the Laplacian). And the proof tells us even more about
the eigenfunctions.

The story does not end here for at least two reasons. The first in that the
proof we need the analyticity of both the manifold and the metric. But for
the geometer the major drawback is that the two constants c(g) and c′(g) are
unknown. They come from an atlas and its coordinate changes. The geometer
would like to be able to express c(g) and c′(g) as functions of Riemannian
invariants of (M, g) (and of course the cheapest possible ones). We know
of no work on this. Let us mention a recent paper addressing noncompact
manifolds: Donnelly & Fefferman 1992 [462]. Also see Savo 2001 [1101].

9.11.3 Distribution of the Nodal Hypersurfaces

Figure 1.98 on page 105 shows the extraordinary regularity of a nodal line.
There is some reason to believe that when the geodesic flow of a Riemannian
manifold is ergodic, the nodal sets are evenly distributed. In saying that nodal
lines are evenly distributed, we mean something like asking that given any
domain D ⊂M

lim
λ→∞

Vol
(
D ∩ φ−1

λ (0)
)

Vol
(
φ−1
λ (0)

) =
Vol(D)
Vol(M)

.

Today there are only numerical experiments. Nodal sets might also be con-
nected to periodic geodesics by some mysterious phenomenon called scarring;
see figure 1.100 on page 108. For a discussion of scars, we refer to Sarnak 1995
[1095], also see §§§9.13.2.1.

9.12 Inverse Problems

The general scheme is to try to understand the map

(M, g) �→ Spec (M, g)

from Riemannian structures on a manifold M to the set of all discrete subsets
of the positive real line:
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Spec : RS (M) →
{
discrete subsets of R+

}
By a Riemannian structure, recall that we mean a point in the quotient set
of the set of Riemannian metrics by all possible diffeomorphisms. We do not
want to distinguish between two isometric Riemannian manifolds (metrics).
The first question is to determine the image of this map, the second is about
its inverse: is it one-to-one, and if not what can be said about the preimages
of various points in the image?

9.12.1 The Nature of the Image

We are far today from being able to guess a sufficient condition for a subset
of the reals to be realizable as the spectrum of some Riemannian manifold;
we know only of Omori 1983 [973]. Of course all of the results above can be
viewed as necessary conditions, the most typical one being Weyl’s asymptotic
as made precise in Hörmander’s result 173 on page 428, as well as its gap
corollary. But for a finite set to be realized as the beginning of a spectrum
(including imposed multiplicities) there is no obstruction:

Theorem 186 (Colin de Verdière 1987 [393]) For any compact mani-
fold M of dimension larger than or equal to 3 and for any finite subset of
the positive real numbers, indexed with finite multiplicities, there exists some
Riemannian structure on M whose spectrum begins with that subset.

The proof is nice. It consists in putting points on the manifold, considering
them as oscillators with the desired frequency and multiplicity. Then one
joins them by nonintersecting curves, building up a tubular neighborhood of
that structure and controlling everything to keep this finite spectrum. One
can also see this result as first finding a (finite) graph whose spectrum for
its standard graph Laplacian is the desired finite piece under consideration,
and then playing some kind of “tunnel effect” along the edges. Technically
the multiplicities give troubles, which can finally be controlled by a subtle
transversality argument. But for infinite subsets of the reals, the question of
sufficient conditions seems completely open; however see note 9.12.1.1 on the
following page.

It is when joining the points by nonintersecting curves that the condition
on the dimension appears. This is of course impossible without extra condi-
tions when the dimension is 2, since then some of those curves can be forced
to meet. In fact this fits perfectly with the restriction on the multiplicity of
λ1 that we met in §§9.10.3. For the interested reader we mention here that
pursuing this topic in the case of surfaces Colin de Verdière discovered re-
cently a fascinating application to electrical circuits: see Colin de Verdière
1996 [396]. He was also led to make the following conjecture. For a compact
surface M define its chromatic number Chrom(M) as the largest integer N
so that there is an embedding into M of the complete graph with N vertices.
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Fig. 9.11. Colin de Verdière’s proof that one can choose any finite part of the
spectrum of the Laplacian

Conjecture 187 (Colin de Verdière) For any surface M , the highest pos-
sible multiplicity of λ1 of any Riemannian metric is equal to Chrom(M)−1.

See page 601 of Colin de Verdière 1987 [393] for more on that.

Note 9.12.1.1 In theorem 167 on page 424 we saw a dramatic improvement
of Colin de Verdière’s results. The scheme for Lohkamp’s proof is as follows:
modify Colin de Verdière’s construction by suitable “attachments of met-
rics”. These constructions are hard and subtle—in particular the author uses
Besicovitch’s coverings and the technique of “crushed ice”. �

9.12.2 Inverse Problems: Nonuniqueness

We have been studying direct problems: I know the manifold and some of its
invariants. What can I say about the spectrum? Inverse problems have the
form: I know various things about the spectrum, what can I recover of the
metric? The first question is the uniqueness: are two isospectral manifolds
necessarily isometric ?

The first time the author heard about this question was in letter written
to him by Leon Green around 1960. In this letter, Green also remarked on
an almost straightforward fact: if one knows not only the eigenvalues but
also the eigenfunctions, then one knows the metric (two such manifolds can
be called homowave or homophonic). This is because the completeness of
the eigenfunctions (see §§9.3.3) implies knowledge of the Laplacian acting on
functions, and then from the explicit formula of the Laplacian in coordinates,
one recovers immediately the gij .

The isospectral question was a strong incentive in the sixties. In the case
of Riemann surfaces, uniqueness was conjectured in Gel′fand 1962 [553]. For
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plane domains, we already met this question in §§1.8.4. The first counterex-
ample came in Milnor 1964 [922]. It consists in two tori of dimension 16 with
exactly the same spectra. By the results of §§9.5.2, we know the spectrum of
a flat torus as soon as we know the lattice defining it. Then two lattices Λ
and Λ′ in Rd will yield isospectral tori if and only if the number Nm of points
in them having a given norm m is always the same. The set of these numbers
is completely encoded in the theta series of the lattices. Namely one defines
the theta series of the lattice Λ by

ΘΛ(z) =
∑
x∈Λ

qx·x =
∑
m

Nmq
m (9.26)

(where q = exp(πiz)) defined for suitable values of the complex variable
z. These functions have been exhaustively studied for purposes of number
theory. An excellent presentation is 2.3 (pages 44–47) of Conway & Sloane
1999 [403]. There one will found out how to compute the theta series of
various lattices, depending how they are defined.

Milnor’s examples were the two lattices calledE8×E8 and E16. The lattice
E8 is the famous lattice attached to the exceptional Lie group denoted also
by E8. It can be defined as the set of tuples (n1, . . . , n8) where all ni are
integers or integers plus 1/2 and with the extra condition that

∑
i ni is even.

The lattice E16 is then simple to construct. What is subtle is to compute their
theta series and to show that they are identical; a very good exposition of
this is to be found in Serre 1973 [1125]. Checking that they are not isometric
(congruent) is the trivial part.

It is a easy exercise to show that isospectral 2-dimensional lattices are
congruent (i.e. they can be rotated into one another in the Euclidean sense).
Various people found isospectral flat tori of various dimensions. We refer
the reader to Conway & Sloane 1999 [403] for them. The dimension can go
as low as four. For this dimension one will find on page xxi of the preface
(of the second edition) of Conway & Sloane unbelievably simple examples,
depending moreover on four parameters. The case of dimension 3 was finally
solved positively in Schiemann [1103]; indeed one only needs to know that
the eigenvalues are not too large.

Then people got more and more examples of different types. Using number
theory (quaternionic number fields) Gel′fand’s 1962 conjecture of uniqueness
for Riemann surfaces was disproven in Vignéras 1980 [1216]. Thereafter the
field blew up so much that we just give few references permitting the reader
to go back to all of them. The landmark Sunada 1985 [1168] put things in the
right context, at least when considering space forms obtained by quotienting
by discrete subgroups. One then finds a sufficient algebraic condition between
two such groups to yield isospectral quotients. Then Gordon 1993 [575] gives
very geometric methods (using transplantation techniques, see Bérard 1989
[137] which can also be used as a survey) to construct isospectral Riemann
surfaces. It is interesting to note that the plane isospectral domains, men-
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tioned in §§1.8.4, were found using isospectral abstract Riemann surfaces
with no boundary (compare figures 9.12 and 1.94 on page 100).

(a)

(b)

Fig. 9.12. Constructing isospectral plane domains out of isospectral surfaces of
constant curvature

It is a natural instinct to search for more and more general examples;
the preceding ones were all space forms. People found locally homogeneous
spaces, then nonhomogeneous ones and even one parameter deformations;
see Bérard & Webb 1995 [141], Gordon & Webb 1994 [578], Gordon 1994
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[575], Gordon 2000 [576], Gordon & Mao 1994 [577], Gornet 1998 [582], and
Schueth 1999 [1112].

In Szabo 2001 [1174], very interesting pairs of isospectral metrics are
constructed on spheres; they can be made as close to the canonical metric as
you like.

We will see in §9.14 that there is a natural Laplacian for exterior dif-
ferential forms of any degree, hence associated spectra for each degree. We
naturally meet the question of obtaining isospectral, nonisometric metrics at
the level of differential forms. Today one has examples of different types. For
instance, the counterexamples with flat tori are always isospectral for differ-
ential forms of any degree, since the eigenvalues for differential forms coincide
trivially with those for numerical functions, with only the multiplicities being
multiplied by the fixed constant which is the binomial number

(
dimM
p

)
. In the

opposite direction, one will find in Gornet 1996 [581] examples distinguishing
between isospectrality for functions and for differential forms.

9.12.3 Inverse Problems: Finiteness, Compactness

Since the geometry with a given spectrum is not unique, we can still try to
have information on the possible geometries, i.e. sets of Riemannian struc-
tures having the same spectrum. How large can these sets be? Do they have
any kind of structure, in particular are they “finite dimensional” in any rea-
sonable sense or “compact”? To our knowledge, the finite dimensionality is
a completely open problem (unlike the case of Einstein metrics as we will
see in theorem 286 on page 559). The infinitesimal isospectral deformation
equations in the space of metrics look hopeless; we will just meet a few ex-
ceptions.

But there is a nice result for surfaces:

Theorem 188 (Osgood, Phillips & Sarnak [979]) For any choice of spec-
trum, the set of Riemannian structures (i.e. Riemannian metrics up to dif-
feomorphism) with that spectrum is compact.

The proof is hard but two of its ingredients are of great importance for
other purposes. The first is the collection of curvature terms which appear in
the asymptotic expansion of the heat kernel; see theorem 165 on page 418.
The second ingredient is new for us: it is the determinant of the Laplacian.
Formally, it is defined as

detΔ =
∏
i

λi (9.27)

Approached naively, as it is written, this product is not convergent, but one
can define it anyway, using various regularization tricks. The most common
trick is to take its logarithm: consider the ζ function of the spectrum:
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ζ(s) =
∑
i

1
λsi

and compute formally ζ′(0). You will find the determinant. All the effort now
focuses on rendering this analysis rigorous. We refer to Osgood, Phillips &
Sarnak [979] for details of the proof and also for references on this determi-
nant. Recall that we mentioned on page 99 a compactness result that was
obtained for isospectral plane domains. This determinant is also used for an
extraordinary proof of the conformal representation theorem 70 on page 277
using Ricci flow; see references and the current state of affairs in Chow [378].

The use of the determinant cannot be avoided. The heat invariants are
certainly not enough. This can be seen simply because all of these invariants
coincide in the case of constant curvature metrics, as already remarked in
note 9.7.2.1 on page 423. On the other hand the Teichmüller space of all
Riemann surfaces of a given genus is not compact. In particular, (at least
for higher genus) one cannot prove compactness inside the set of metrics
conformal to a given metric, a case which is much simpler since it only involves
scalar functions instead of metric tensors; namely they involve only the Gauss
curvatureK and its various iterated LaplaciansΔmK. But in two dimensions,
extensive study shows that the heat invariants are simple enough when they
are controlled by the determinant of Δ. For this determinant as a functional
of Riemannian metrics, see Sarnak [1096].

The above proof suggests the conjecture that, in two dimensions, there
can be only a finite number of metrics isospectral to a given metric. This is
certainly false in higher dimensions, since there are one-parameter isospectral
deformations.

The compactness of higher dimensional isospectral sets is open. One rea-
son is that the proof above involves controlling the nature of the heat invari-
ants, which are so much simpler for surfaces. However there are good partial
results, in dimensions 3 and 4: Osgood, Phillips & Sarnak [980], Anderson [41]
and Brooks, Perry & Petersen [264]. For topological finiteness of isospectral
sets, see Brooks, Perry, & Petersen [263, 262]. Also see Gordon 2000 [576].

9.12.4 Uniqueness and Rigidity Results

We already saw on page 423 the uniqueness of the spectra of the standard
spheres up to dimension 6. The analogous question is open for higher dimen-
sions. But there are good results:

Theorem 189 (Guillemin & Kazhdan 1980 [667] and Croke & Sharafutdinov [422])
On compact manifolds of negative curvature, there are no isospectral defor-
mations.

The proof for surfaces is beautiful and we explain it in some detail because
it seems to us that this technique could be used more widely. It is a kind of
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double Fourier analysis leading to a contradiction. There are three steps.
One looks at the derivative of a deformation of metrics on the unit tangent
bundle UM . This bundle has fibers which are circles, which leads to Fourier
analysis for functions UM → R. If the Fourier subspaces are called Hi then
the deformation function

t : UM → R

belongs to the direct sum
H−2 ⊕H0 ⊕H2

because Riemannian metrics are quadratic forms. Now one invokes theo-
rem 176 on page 429 to the effect that the lengths of periodic geodesics are
preserved under our deformation since it is isospectral. A periodic geodesic
when lifted up to UM is now a periodic trajectory of the geodesic flow. An
easy computation, the “first variation formula for changes of metric,” shows
that the integral of the deformation function t is zero along any periodic
geodesic. But a manifold of negative curvature has a lot of periodic geodesics,
dense in the best possible sense (see §10.6). This explains (although it is not
a proof) a result of Livtsic to the effect that there exists a new function
s : UM → R such that t is the derivative of s along the geodesic flow. It
remains now to look at how the geodesic vector field behaves with respect
to the Fourier analysis above. The negativity of the curvature implies that
differentiating in G lowers the rank in Fourier analysis. In particular s′ = t
implies that

s ∈ H1 ⊕H0 ⊕H−1 .

But s also should be like t in H2 ⊕H0 ⊕H−2 and this finishes the proof: t
has to be constant along the fibers. The proof of Croke & Sharafutdinov 1997
[422] for higher dimensions is somewhat different.

9.12.4.1 Vignéras Surfaces The Vignéras examples of surfaces with the
same spectrum appeared in Vignéras 1980 [1216] The recent basic unique-
ness and rigidity result Besson, Courtois & Gallot 1995 [189], which will be
addressed in detail in theorem 251 on page 510, has already had so many
applications that its authors are conjecturing (see 9.20, page 780) a result
which would be in some sense the best possible:

Conjecture 190 Isospectral, compact, negatively curved manifolds of di-
mension larger than 2 are isometric.

Question 191 Is isospectrality a nongeneric phenomena? Otherwise stated:
are generic Riemannian manifolds spectrally isolated (solitude)?

A third remark concerns the length spectrum, i.e. the set of length of peri-
odic geodesics. From theorem 176 on page 429 one is certain that isospectral-
ity implies coincidence of the length spectra; but Vignéras counterexamples
in §§§9.12.4.1 show that different Riemann surfaces can have the same length
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spectrum. In §10.11 we will see that is not the case for the marked length
spectrum. This is true for example for negative curvature manifolds of di-
mension higher than 2 and supports the conjecture just presented: see 9.14
in Besson, Courtois & Gallot 1995 [189].

9.13 Special Cases

9.13.1 Riemann Surfaces

By a Riemann surface we understand a compact orientable surface of constant
curvature −1. In our hierarchy they are the negative space forms of dimension
2. This means we exclude the sphere and the torus.

Riemann surfaces have been studied since Riemann in great detail, for
their intrinsic interest. They appeared originally in complex variable theory,
in algebraic geometry and in number theory. Recently they became a favourite
object for theoretical physicists, in particular in string theory. It is then not
surprising that we have many strong results for them, including for their
spectra. The book Buser 1992 [292] is a very complete exposition of the
subject at that date. A more recent survey is Buser 1997 [293]. We just note
that in Buser 1992 [292] the question of the regularity (randomness) of the
spectrum and that of the eigenfunctions (compare with §9.9 and theorem 185
on page 437) are still not well understood, we will discuss them in §§9.13.2.

The first basic fact is that for Riemann surfaces theorem 176 on page 429
can be inverted. What theorem 176 says is that the function spectrum of the
Laplacian determines the length spectrum (the set of lengths of the periodic
geodesics). But the converse is false in general; one needs much more that
the length spectrum, namely essentially the Poincaré map and the parallel
transport of periodic geodesics. But in the case of Riemann surfaces, the
parallel transport is always the identity since the dimension is two and we
have orientability. The Poincaré map is also known because the curvature is
constant. This explains (but of course does not prove):

Theorem 192 (Huber 1959 [745, 747]) On a Riemann surface, the spec-
trum of the Laplace operator on functions determines the length spectrum and
vice versa.

The proof is based on a formula for Riemann surfaces which is a gener-
alization of the Poisson formula 9.14 on page 413 which was valid for flat
tori. The formula computes the heat kernel by a suitable summation formula
involving the length spectrum. It is possible simply because there is an ex-
plicit formula for the heat kernel K∗ of the total (noncompact!) hyperbolic
space Hypd, and in particular for Hyp2. Our surface is a quotient of Hyp2 by
a discrete group of hyperbolic isometries. It is enough to know the primitive
elements of this group. Being without fixed points, they have to consist in
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a gliding along an hyperbolic line (called the axis and denoted by γ). The
length of the gliding corresponds exactly to the length of a periodic geodesic
downstairs. As a matrix of the group Isom

(
Hyp2

)
that length is exactly the

trace of this matrix. This explains the name “trace formula.” This formula
of Huber is a particular case of Selberg’s trace formula which we will meet
below. The proof is finished by remarking that the heat kernel downstairs is
a suitable summation of the type

K =
∑
γ

K∗ (x, γy)

for the axis γ above; details are to be found in chapter 9 of Buser 1992 [292].
We now present to the reader a choice of results that we find especially

appealing; most of them are in the book Buser 1992 [292]. The heuristic
possibility of these results comes from Huber’s theorem, as explained in the
preface of the book:

This theorem does not show only that the eigenvalues contain
a great deal of geometric information, it also indicates that spectral
problems may be approached by geometric methods. . . .

Buser 1992 [292]

These geometric methods rest essentially on the fact that the set of all Rie-
mannian surface structures on a given orientable surface of genus larger than
1 can be encoded in the lengths of the sides of the hexagonal pantaloon hy-
perbolic plane pieces and the twisting angles when one glues them together
as was done in figure 4.10 on page 175. The study is still not too clear concep-
tually in Buser’s book. But in Buser 1997 [293] the author made a decisive
step. He succeeded, at least for a very large class of Riemann surfaces, to find
the surface itself directly and explicitly from the spectrum. This means that
the complete geometry is encoded in the spectrum. Those surfaces are called
solitary because they don’t have nonisometric isospectral companions.

We start with the eigenvalues called small.What is important for a Rie-
mann surface is not only λ1 and its position with respect to 1/4, but also
the set of λ’s which are in ]0, 1/4] (called small). Why 1/4 comes into the
picture cannot be explained briefly; for details we refer the reader to Buser’s
book. From it we extract this. In writing the heat kernel as a summation, it is
convenient to write the eigenvalues λ = r2 +1/4, so that the associated r are
imaginary when λ is below 1/4. A very heuristic reason is that in hyperbolic
geometry, the modular domain is the one in figure 6.36 on page 278 and that

1/4 = (1/2)2 .

Let us just recall that this modular domain is the quotient of the hyper-
bolic plane by the isometries whose matrix is integral. It might be the most
important object of all mathematics, as its is connected with function anal-
ysis, complex variables, number theory, etc. Remember in this context the
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Riemann hypothesis for the zeros of the ζ function which “should” be all on
the line s = 1/2.

Today the situation for small eigenvalues is satisfactory on one hand but
on the other hand some conjectures are still open. Let us also mention that
the small eigenvalues play a basic role in the refined version of the asymptotic
expansion for the counting function of the length spectrum, as will be seen in
theorem 205 on page 471. If we denote by Mγ the set of all Riemann surfaces
of a given genus γ then

Theorem 193 (Buser 1992 [292] 8.1.1) For any γ and any surface in
Mγ,

λ4γ−2 > 1/4 .

Theorem 194 (Buser 1992 [292] 8.1.2) For any γ and any integer n
(think large) and for any ε > 0 (think of ε as small) there are elements
of Mγ with

λn ≤ 1/4 + ε .

Together these two statements look surprising. There is a universal bound for
the number of eigenvalues in [0, 1/4] but not in any [0, 1/4 + ε]. A geometric
reason is offered on page 211 of Buser’s book; it mixes isoperimetric consider-
ations for hyperbolic hexagons and the fact that Mγ is never compact—see
just below.

Theorem 195 (Buser 1992 [292] 8.1.3) For any ε > 0 there is a genus
γ and a surface Mγ with

λ2γ−3 < ε .

Theorem 196 (Buser 1992 [292] 8.1.4) There is a universal constant c >
0 so that for any γ and any surface in Mγ

λ2γ−2 > c .

Although the conjectured value for c is in fact 1/4, today the best known c
is around 10−12. There are many other results for small eigenvalues; see the
Notes at the end of chapter 8 of Buser’s book.

We turn now to the isospectral question. Recall that there are examples
of isospectral but nonisometric Riemann surfaces: see §§9.12.2 and also that
there is a general compactness result: see §§9.12.3. But in the present case
we also have finiteness:

Theorem 197 (Buser 1992 [292] 13.1.1) For a given genus γ there are
at most exp

(
720γ2

)
pairwise nonisometric isospectral Riemann surfaces.
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The last topic we will discuss in this section is Wolpert’s theorem (1977-79).
It says that for Riemann surfaces a certain finite part of the length spectrum
determines the whole spectrum. In Buser’s book the precise statement is
theorem 10.1.4. Then Buser extends the theorem to the function spectrum
as follows:

Theorem 198 (Buser 1992 [292] 14.10.1) For any ε > 0 and any γ
there is a universal constant univ(ε, γ) such that if two Riemann surfaces
S and S′ of the same genus γ both with injectivity radius larger than ε verify
λn(S) = λn(S′) for every n < univ(ε, γ) then they are isospectral for their
whole spectrum.

Some remarks are now in order. First, the lower bound on the injectivity
radius cannot be avoided. The noncompactness of Mγ is directly linked with
the fact that the injectivity radius can go to zero. Conversely, compactness
when there is lower bound on the injectivity radius is a very special case of
the general compactness theorem which we will meet in complete detail in
§§12.4.2 and also theorem 376 on page 649.

Second, the original proofs (both for the length and the function spec-
trum) were extremely expensive, using in particular the theory of real ana-
lytic varieties. Recently in Buser 1997 [293] the results on solitary surfaces
(mentioned above) were used to give a much simpler proof of theorems like
Wolpert’s. Also see Schmutz 1996 [1106].

9.13.2 Space Forms

The preceding section concerned space forms of dimension two and of neg-
ative curvature. The case of zero or positive curvature was treated in sec-
tion §§9.7.2 where we saw that the standard sphere and the standard RP

2

are determined by their spectrum, as are flat tori. This was done using the
asymptotic expansion of the heat kernel.

Looking now at higher dimensions, we saw in §§9.12.2 the state of affairs
for flat tori and for spheres, circumstances being particularly unsatisfactory
for spheres. Let us turn now to the compact manifolds of negative constant
sectional curvature. This is very special case among manifolds of negative
curvature. We saw at large in §9.11 that there are some results on the dis-
tribution of eigenvalues and of eigenfunctions for ergodic manifolds. But also
that those results were very partial, the basic questions being completely
open. Since negative curvature manifolds are ergodic in a very strong sense
(see §10.6) and since we will see extremely satisfying results for them in §10.8
for the length spectrum with optimality for the space forms, it is then natu-
ral to expect for negative curvature space forms much stronger results than
for the general ergodic or negatively curved ones. This was the case for Rie-
mann surfaces as seen just above to some respect, in particular for the small
eigenvalues.
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There is a theoretical answer to every question concerning spectra of
negatively curved Riemann surfaces, namely Selberg’s trace formula, which in
dimension 2 gives back part of Huber’s theorem 192 on page 446. For higher
dimensions, see Bunke & Olbrich [279].

These questions are under very intense study today. The hope is to use
tools from number theory, since these space forms are mostly found by arith-
metic means; see §§6.6.2. The tools are typically modular functions (for the
flat tori in §§9.12.2 they were theta functions). Strong incentives come to this
study from mathematical physics, in particular in what is called the semiclas-
sical limit (see more on page 400) and in the present situation from quantum
chaos.

There is no general picture arising from the various results obtained up to
know. We already said in §9.9 that experts disagree, comparing mathematical
results and numerical experiments (including dimension 2). We mention only
references: Sarnak 1995 [1095], Luo & Sarnak 1994 [885], Luo & Sarnak 1995
[886], Rudnick & Sarnak 1996 [1074]. One should also of course look at the
bibliographies of those. Today a conjecture is the following: there are numer-
ical experiments from which it seems that the distribution of eigenvalues is
not even for some arithmetic Riemann surfaces. That is, the distribution is
not a Gaussian orthogonal ensemble (GOE), i.e. the set of the eigenvalues
of a random N × N symmetric matrix as N → ∞, with the whole business
being rescaled to agree with Weyl’s asymptotic. This negative statement was
mathematically proven in Luo & Sarnak 1995 [886]. In figure 9.13 we see a
picture taken from Sarnak 1995 [1095], comparing, for plane regions, arith-
metic and the nonarithmetic spectra (see more on page 317 for the definition
of arithmeticity in abstraction, but it is not really too much different for plane
domains, and the plane domains are accessible to numerical computations).
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Fig. 9.13. (a) Σ2 for a nonarithmetic triangle (b) Σ2(L) for an arithmetic triangle

However the geodesic flow is ergodic. Today it is believed that the distri-
bution will be GOE for generic Riemann surfaces. And to explain the reason
why arithmetic forms are exceptional, one should remember what was said
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in §9.9, namely that the jumps in the spectrum are linked with the structure
of the length spectrum. But one knows that the length spectrum of an arith-
metic form is very “degenerate” in the sense that the lengths are given by
suitable integers—the reason for this is that we saw that the length shifts of
gliding hyperbolic isometries are represented by the trace of an integral entry
matrix. The asymptotic exponential behavior (see equation 9.19 on page 421)
then forces all of these periodic geodesics to have very large multiplicities,
hence huge jumps in the length spectrum.

In these results, precise descriptions of many quantities are studied for
those space forms, not only the L2 norms but also the sup norm. More: the
behaviour of integrals like∫

M

P (φi1 , . . . , φik) dVM

for various polynomials P of degree k and their asymptotic behavior when
one or more of the eigenvalues goes to infinity is related to possible scarring,
which is the next problem we have to consider.

9.13.2.1 Scars This is linked with the question of whether there are “scars.”
In some numerical experiments, people found that the nodal lines of some
surfaces were, in some sense, accumulating along periodic geodesics. But in
Sarnak 1995 [1095] it is proven that this can never happen for arithmetic
space forms (for some suitable definition of what a scar is). A picture of a
scar in a planar region is presented in figure 1.100 on page 108. This is an
amusing paradox: the arithmetic case implies more regularity, and at the time
it is a less common case (in the realm of space forms). The general state of
affairs still divides experts, since scarring today is only purely experimental
and because the definition of scars varies between authors; see Rudnick &
Sarnak 1996 [1074], Shimizu & Shudo 1995 [1132] and the references there.

9.14 The Spectrum of Exterior Differential Forms

From equation 9.3 on page 403 we know that there is a sensible notion of
Laplacian for exterior forms of any degree p from p = 0 (for functions) to
the dimension p = d = dimM . This time the kernel of Δ, i.e. the set of
differential forms ω such that Δω = 0, is more subtle than for functions.
From theorem 405 on page 691 we know that those forms, called harmonic,
build up in degree p a real vector space isomorphic through the de Rham
isomorphism 34 on page 188 to the cohomology space Hp (M,R), hence of
dimension equal to bp (M), the real p Betti number of M . This for the kernel
of Δ. But Δ on p-forms also has a spectrum, namely the set of its eigenvalues.
We explain now how much information can be extracted, with our present
state of knowledge, from the knowledge of the spectra for all degrees; we will
denote by λp,k the eigenvalues of exterior degree p.
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There are today only two outcomes of spectral considerations for exterior
forms which have a Riemannian geometry flavor; the Kähler case is richer
and was briefly alluded to separately in §§9.10.4 above. First with McKean
& Singer 1967 [910] a firework was ignited and in its brightness one could
see with far greater clarity. We describe it briefly—a complete reference is
Gilkey 1995 [564] (this second edition is very up to date). Roughly speaking
what happens is the following. We look back at the asymptotic expansion in
theorem 165 on page 418 for

∑
k exp (−λkt) with the Uk integrals, which are

universal in the curvature tensor (this will mean always including its covariant
derivatives). People were concerned that Ud/2 is not a topological invariant
as soon as d > 2. Since differential forms also have a canonical Laplacian, we
can do the same (it is not too much more expensive and appeared first in
Gaffney 1958 [536]) with differential forms and get the pointwise invariants,
denoted by up,k(x) arising in the tk term in the asymptotic expansions of
the corresponding heat kernels. They are still universal in the curvature, but
differ in general with various p. Their integrals over M will be denoted by
capitals Up,k and the eigenvalues of the p-spectrum by {λp,k}. Now let us
perform the alternate double sum∑

p,k

(−1)p exp (−λp,kt) .

Because both of the operators d and d∗ commute with the Laplacian Δ,
they transform eigenfunctions into eigenfunctions. The Hodge decomposition
theorem 406 on page 691 of any form into a harmonic part, a closed part
and a coclosed part shows that into this alternate summation everything will
disappear except at the harmonic level: there the zero eigenvalue λp,0 has a
multiplicity equal to the pth Betti number bp (M). So in the alternating sum
of the corresponding asymptotic expansions everything should also disappear
for any k except when k = d/2. Hence the alternate pointwise sums∑

(−1)pup,k(x) ,

when integrated on M and adding after multiplication by tk, will yield iden-
tically the constant ∑

(−1)pbp = χ(M).

This explains McKean and Singer’s dream: a fantastic pointwise cancellation
might well take place in the pointwise up,k functions to yield the forced
integrated cancellation. This was indeed proven in Patodi 1971 [1005].

The rebound was taken first in Gilkey 1973 [562] and then in Atiyah,
Bott & Patodi 1973 [76, 77]. One studies Patodi’s cancellation result, but
puts it in successively more general bundles equipped with suitable elliptic
operators, including the Dirac operator on spinors and uses Gilkey’s results.
It then turns out that those structures are plentiful enough to yield all el-
liptic operators, giving a new proof of the index theorem in §§14.2.3. It is
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important to use the theory of invariants “à la Gilkey” and the functorial be-
haviour of indices. The harvest is large: Hirzebruch’s signature theorem 417
on page 743 can be obtained this way and of course this new insight yields
many results in differential topology. This domain is still blooming; see the
two books already mentioned. One point in this philosophy is that “pointwise
cancellation” shows that local index theorems can exist. But Riemannian ge-
ometry is quite far away. However here comes the second byproduct of the
rebound: the η invariant.

The main trick in the founding papers Atiyah, Patodi & Singer 1975–1976
[81, 82, 83] is to obtain the characteristic χ(M), not as the alternating sum
of the zero eigenvalues of the various Laplacians on the exterior forms of a
given degree on (M, g), but in one shot as the index of the first order operator
B = d− d∗ acting on the total set of exterior forms on M (one just has to be
careful to put the right signs in front of B). The eigenvalues of Δ are of the
form λ2 where λ is an eigenvalue of B but different signs are possible here.
Hence the function

η(s) =
∑
λ�=0

sign(λ)|λ|s

makes sense for suitable s. In an strict sense (as usual for this kind of function)
η(0) is not defined, but with some extra work one can still make sense out of
it. It is then called the η invariant of (M, g) and measures the “spectral asym-
metry.” This invariant is especially interesting for manifolds with boundary.
For a 4k dimensional manifold M ′ with a 4k − 1 dimensional boundary M
(and provided that locally at the boundary the metric is a product) one can
express the signature σ(M ′) by the integral formula

σ (M ′) =
∫
M ′

L(R) − η(M)

where L is the universal curvature integrand for the signature of Hirzebruch’s
theorem 417 on page 743. This invariant has many applications when looking
at the subtle problem of the nonexistence of pointwise invariant integration
formulas for the “signatures.” Besides the original papers we refer the reader
to Atiyah, Donnelly & Singer 1983 [78, 79] and Gilkey 1995 [564]. There are
also relations with the secondary characteristic classes below, also with Â
genus when spinors are in view. The η invariant for 3-manifolds is applied in
deriving the isolation result of Rong 1993 [1064] for the minimal volume in
dimension 4 seen in equation 11.6 on page 546. The η invariant is also used in
number theory: see Atiyah, Donnelly & Singer 1983 [78]. For η invariants of
noncompact manifolds, see Hitchin 1996 [721]; for gluing and the η invariant
see Bunke 1995 [278].

Another invariant based on the spectral analysis of differential forms is
to be found in Ray & Singer 1971 [1052]. The result is that from the linear
combination
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dimM∑
p=0

(−1)ppζ′p(0)

of the ζ′p(0) value of the ζp functions associated to the spectrum of the dif-
ferential forms of all degrees p, one can recover a topological invariant. They
conjectured that their invariant should coincide with the topological invari-
ant called the Reidemeister torsion and gave some evidence for that. The
conjecture was proven independently in Müller 1978 [952] and Cheeger 1979
[332]. The proof is very involved and was one of Cheeger’s motivation for the
study of the spectrum of certain singular manifolds, see Cheeger 1983 [333].

Do not hope that the knowledge of the differential form spectrum for all
p from 0 to the dimension will determine the metric; in Milnor’s examples
discussed on page 441 all of those spectra coincide. For various questions
concerning isospectrality of differential forms, see Gornet 1998 [582]. See Lott
2000 [881] for a subtle study of collapsing and the behaviour of differential
forms.
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10.1 Introduction: Motivation, Problems and Structure
of this Chapter

Following the transition presented in chapter 8, it is now quite natural to
study the geodesic behaviour of a Riemannian manifold. For local metric
geometry it is natural because geodesics are locally the shortest paths. This
point of view was treated in §6.5. But geodesics of any length are of interest for
the geometer. Another strong motivation for the study of geodesic dynamics
comes from mechanics. Since Riemannian manifolds provide a very general
setting for Hamiltonian mechanics, with their geodesics being the desired
Hamiltonian trajectories, we are of course interested in their behaviour for any
interval of time (any length). This perspective mixes dynamics and geometry
and is extremely popular today. People always want to predict the future,
more or less exactly. We will comment more on this below. Dynamics plays
an ever larger role in geometry, even in very simple contexts such as the study
of pentagons and Pappus theorems (see Schwartz 1993,1998 [1114, 1115] and
the important work d’Ambra & Gromov 1991 [426]. Note also that Gromov
1987 [622] introduced dynamical systems into the study of discrete groups.

Let us have a panoply of problems. We note the obvious dichotomy: a
geodesic can be periodic, and then we know exactly what happens when the
time goes to infinity, or it can fail to be periodic, and then it can have many
different possible behaviours: accumulating along some periodic geodesic, or
becoming everywhere dense (in space, or in phase) everywhere or only in
some subset of the manifold.

periodic geadesics and geodegics which get "lost"

Fig. 10.1. Periodic geodesics and geodesics which “get lost”
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We think that the best motivation is to quote the masters. We begin with
Henri Poincaré.

Dans mes Méthodes nouvelles de la Mécanique céleste j’ai étudié
les particularités des solutions du problème des trois corps et en par-
ticulier des solutions périodiques et asymptotiques. Il suffit de se re-
porter à ce que j’ai écrit à ce sujet pour comprendre l’extrême com-
plexité de ce problème ; à côté de la difficulté principale, de celle qui
tient au fond même des choses, il y a une foule de difficultés se-
condaires qui viennent encore compliquer la tâche du chercheur. Il y
aurait donc intérêt à étudier d’abord un problème où on rencontrerait
cette difficulté principale, mais où on serait affranchi de toutes les dif-
ficultés secondaires. Ce problème est tout trouvé, c’est celui des lignes
géodésiques d’une surface ; c’est encore un problème de dynamique,
de sorte que la difficulté principale subsiste ; mais c’est le plus simple
de tous les problèmes de dynamique ; d’abord il n’y a que deux degrés
de liberté, et puis si l’on prend une surface sans point singulier, on
n’a rien de comparable avec la difficulté que l’on rencontre dans les
problèmes de dynamique aux points où la vitesse est nulle ; dans le
problème des lignes géodésiques, en effet, la vitesse est constante et
peut donc être regardée comme une des données de la question.

M. Hadamard l’a bien compris, et c’est ce qui l’a déterminé à
étudier les lignes géodésiques des surfaces à courbure opposées ; il a
donné une solution complète du problème dans un memoire du plus
haut intérêt. Mais ce n’est pas aux géodésiques des surfaces à cour-
bures opposées que les trajectoires du problème des trois corps sont
comparables, c’est au contraire aux géodésiques des surfaces convexes.

J’ai donc abordé l’étude des lignes géodésiques des surfaces con-
vexes ; malheureusement le problème est beaucoup plus difficile que
celui qui a été résolu par M. Hadamard. J’ai donc dû me borner
à quelques resultats partiels, relatifs surtout aux géodésiques fermées
qui jouent ici le rôle des solutions périodiques du problème des trois
corps.

Poincaré 1905 [1034]

We also add

It seems at first that this fact [the existence of periodic solutions]
could not be of any practical interest whatsoever. . . [however] what
renders these periodic solutions so precious is that they are, so to
speak, the only breach through which we may try to penetrate a strong-
hold previously reputed to be impregnable.

Henri Poincaré as quoted in Wayne 1997 [1244]

Wayne adds few lines after
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However, contrary to what Poincaré’s quotation might suggest,
these periodic solutions are not only of theoretical interest but also
have many practical applications.

Wayne 1997 [1244]

We follow on with Jacques Hadamard:

En second lieu, l’importance que ce géomètre a reconnue aux
solutions périodiques, dans son Traité de Mécanique céleste, s’est
manifestée également dans la question actuelle. Ici encore, elles se
sont montrées « la seule brèche par laquelle nous puissions essayer
de pénétrer dans une place jusqu’ici réputée inabordable. »

D’une façon plus précise, elles ont joué pour nous le rôle d’une
sorte de système de coordonnées auquel nous avons rapporté toutes
les autres géodésiques.

Hadamard 1898 [674]

Hadamard’s indispensable text deserves comments. First let us recall that
it is in this paper that the von Mangoldt–Cartan–Hadamard theorem 72 on
page 278 was proven for surfaces. It is profitable to consider the result the au-
thor is alluding to when he says « une sorte de système de coordonnées auquel
nous avons rapporté toutes les autres géodésiques. »

What he proves is that a typical aperiodic geodesic travels along beside
some periodic one for quite a while, then travels through the manifold and
again accumulates along another periodic geodesic, etc. This gives a coding
for describing the geodesic flow; in fact Hadamard is the pioneer of the con-
ception of coding in dynamical systems. Moreover, when the initial direction
of the geodesic changes, the coding changes dramatically, as does the nature
of the geodesic. Hadamard is a pioneer of the modern notion of chaos; more-
over he realized that this picture remains accurate in on compact hyperbolic
surfaces, as he explained in the article Hadamard 1898 [675] on hyperbolic
billiards.

dispersion in a 
hyperbolic billiard

Fig. 10.2. Dispersion in a hyperbolic billiard table

The field of geodesic dynamics presents us with a host of natural questions.
Periodic geodesics are the steady states of our mechanical object, and their
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lengths are the analogues of the frequencies of vibration: the square roots of
the eigenvalues of the Laplacian. So one is led to ask:

1. the asymptotic behaviour of the lengths of the periodic geodesics and
2. the geometric distribution (in phase space UM or in configuration space
M) of these geodesics.

γ "2"γ "3"γ

Fig. 10.3. (a) γ (b) “2γ” (c) “3γ”

We have implicitly assumed that there are infinitely many periodic
geodesics; as we will see below, this is an open question. There is also the
notion of geometrically different geodesics: turning more than once along a
given periodic geodesic is not considered a different geodesic by a geometer,
even if it might be in some sense different for a mechanics expert. The field of
geodesic dynamics is dramatically different from that of spectrum geometry.
The basic reason is that eigenfunctions are the critical points of the Dirichlet
quotient on the (infinite dimensional) vector space of functions on the man-
ifold. Periodic geodesics are the critical points of the length function on the
space of all closed curves of the manifold. Sadly enough, this is not a vector
space but an infinite dimensional manifold: one cannot play linear algebra
with periodic geodesics.

Facing a Riemannian manifold with an infinite number of periodic geodesics,
the basic question (comparing with the asymptotic expansion for the spec-
trum in chapter 9) is to understand the asymptotic behaviour, as the length
L goes to infinity, of the counting function CF (L) which is, by definition, the
number of (geometrically distinct) periodic geodesics of length smaller than
equal to L.

As for the spectrum, we naturally encounter both direct and indirect prob-
lems concerning the geodesic flow.1 Given a Riemannian manifold, with some
special conditions e.g. on the curvature, we would like to have some informa-
tion on the geodesic flow. In particular, is the geodesic flow ergodic? Con-
versely, we will try to deduce geometric data from knowledge of the geodesic
flow. In particular, the uniqueness question:

Question 199 Are two manifolds with conjugate (identical) geodesic flows
necessarily isometric?
1 See page 383 for a precise definition of the geodesic flow.
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As before, we will restrict our enquiries to compact manifolds unless explicitly
stated.

There are few books treating the geodesic flow as their main topic. One
can look at the semi-popularization Berger 1994 [166] for a general treatment
of geodesic flow on surfaces. For general dimensional manifolds, there is the
very good survey Bangert 1985 [110]. There is also a book on the subject of
periodic geodesics: Klingenberg 1978 [814]. But beware that the claim in it of
the existence of at least three geometrically different periodic geodesics is still
not proven, see the Russian translation Klingenberg 1982 [815] for a system-
atic detection of errors. The book Buser 1992 [292] is the essential reference
for surfaces of constant negative curvature. The text book Klingenberg 1982
[815] discusses many topics related to geodesics, especially on ellipsoids, but
should also be read with care. The geodesic flow appears as a special case of
the results in Mañé 1987 [891] and also in the books of the Dynamical Series
of the Russian/Springer Encyclopedia of Mathematical Sciences, for example
Bunimovitch, Cornfeld, Dobrushin, Jakobson, Maslova, Pesin, Sinăı, Sukhov,
& Vershik 1989 [277]. A more recent work, Katok & Hasselblatt 1995 [787],
covers a large number of topics in differentiable dynamics. And there are two
very new works in this field: Paternain 1999 [1002] and Knieper 1999 [822].
A special mention should be made of the very specialized Besse 1978 [182].
Concerning the bibliography and credits we will not be too detailed, in order
to make the text lighter, but the origins of any material presented here can
be found in the various references above.

Let us explain the table of contents of this chapter, which might look
surprising. §10.2 is devoted to various manifolds where geodesic behaviour is
quite well in hand, both for standard and nonstandard metrics. §10.3, starting
with Birkhoff’s proof of the existence of at least one periodic geodesic on any
convex surface, will employ convex geometry as a typical example to introduce
and recall the basics of Morse theory, which is the basic tool to obtain periodic
geodesics. But we will see that this theory is better adapted to the study
of geodesics joining two given points. The results on this problem will be
explained and serve to point out the difficulties in extending Morse theory
to handle periodic geodesics. §10.4 is devoted to what we know today about
periodic geodesics: existence of an infinite number, and more: the asymptotic
behaviour of the counting function. §10.5 will treat the geodesic flow.

10.2 Some Well Understood Examples

10.2.1 Surfaces of Revolution

10.2.1.1 Zoll Surfaces From page 35, we know the geodesics of S2: they
are the great circles. Two questions come to mind: what are all the surfaces
for which

1. all of the geodesics are simple curves, having the same length?
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2. all of the geodesics emanating from a point focus at an antipodal point
after the same interval of time?

There is a great deal known about these questions today. We will treat these
geometric inverse problems in arbitrary dimensions in detail in §10.10. How-
ever, we will now treat these problems on surfaces in order to taste in advance
some flavour of the topic, and also to gather some feeling for the difficulty of
studying periodic geodesics.

Fig. 10.4. Zoll’s surface with singularities

Zoll 1903 [1310] found surfaces of revolution, even real analytic ones,
which are not round spheres and yet all of their geodesics are periodic, simple
and of the same length. We will call a surface enjoying these properties a
Zoll surface (whether it is of revolution or not). In fact, the search for Zoll
surfaces was already considered and their multitude partially demonstrated
by Darboux around 1880. This is possible essentially because, as we saw in
§§1.6.2, geodesics of surfaces of revolution can be obtained by integrating a
numerical function given by the meridians. The proof still needs some clever
change of variables, but no more. This was finally completely mastered by
René Michel in 1978. He completely classified the Zoll surfaces of revolution.
They are as many as any odd numerical functions from the interval ] − 1, 1[
into itself. So Riemannian geometry has many “harmonic oscillators.” Recall
that the physicists use the term “harmonic oscillator” for the motion of a
point under an attraction from a fixed point by a force proportional to the
distance. All of the trajectories are ellipses (hence closed) and with the same
period.

Why are Zoll surfaces of revolution so simple? Remember from §§1.6.2
that geodesics in a surface of revolution oscillate between two parallels. In
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z1

z2

Fig. 10.5. A meridian of a smooth Zoll surface

fact, starting horizontally from the upper parallel and after meeting horizon-
tally again the lower parallel, any geodesic comes back horizontally to the
initial parallel, although not in general at the same point, but with a turn of
some angle α (see figure 10.6 on the facing page), an angle which is the same
for all geodesics with this same parallel (say of latitude λ). By the above
integrability of the geodesic flow, the numerical function α(λ) can be explic-
itly computed by an integral involving the function defining the meridian
(hence the surface). We just want for a Zoll surface to have α(λ) vanishing
identically for all λ. This is an integral equation for the meridian, and Zoll
solved it by a clever change of variables. In Darboux’s time people could only
manage to solve this for a partial range of λ, hence only “bands” of Zoll
surfaces. Michel’s trick is a cleverer change of variable. One difficulty was the
singularity appearing at the north and the south pole.

And now for Zoll surfaces not of revolution. To attack this problem the
idea is to look at deformations of the standard sphere, and linearize the
problem by taking the derivative at the origin of a one parameter family of
metrics. Using the conformal representation theorem 70 on page 277, and an
easy formula for the derivative of the length, Funk 1913 [534] found that any
Zoll deformation of the standard sphere is necessarily given by a function
S2 → R all of whose integrals along all great circles have to vanish. This is
certainly true if the function is odd, namely f(−x) = −f(x). Funk proved
the converse and it is now recognized that was the birth of the so-called
Radon transform. Funk raised a conjecture which he could not prove: that
any odd function gives rise to a one parameter family of Zoll surfaces whose
derivative at the origin is the given function. This was achieved by Guillemin
1976 [664]. A basic tool is to prove that there is a Radon transform theory
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Fig. 10.6. Geodesics on surfaces of revolution

for every Zoll surface. For the Radon transform on the sphere, the basic
references are Helgason 1980 [702] and Helgason 1984 [703].

So today we know something about the set of Zoll surfaces: its tangent
space at the origin (where “the origin” means the standard sphere). But
globally we are lost. It is even difficult to prove that complete periodicity im-
plies a common period and the simplicity of geodesics (no self-intersections).
This is true and proven in Gromoll & Grove 1981 [602] which is the only
paper we know of on the subject. By the way: this paper uses the Lusternik–
Schnirelman theorem 232 on page 492. The first question should be

Question 200 Is the Zoll set connected?

We have forgotten about the additional antipodal property of the sphere.
It is trivial to see that an antipodal Zoll metric on S2 (one for which the
antipodal map is an isometry, and for which the geodesics are periodic) is
equivalent to giving a metric on the real projective plane RP

2 all of whose
geodesics are periodic. This is the problem called the “Wiedersehenfläche
Problem” by Blaschke in the first edition of Blaschke 1921 [203]. There is an
interesting deadly false solution of it in the second edition Blaschke 1924 [204]
and the error is pointed in the third edition Blaschke 1930 [205]. The real
proof waited until 1963 to be found by Leon Green. It is elegant, mixing San-
talo’s integral geometry formula already seen in equation 7.11 on page 388 and
§§§7.1.2.3 with the equation of Jacobi fields and the Gauß–Bonnet formula 28
on page 155. The conclusion then is twofold: an antipodal Zoll metric on S2

has to be the standard one and a Zoll metric on RP2 must be the standard
one (the elliptic geometry). Readers who like projective plane geometry can
enjoy this. It is important to mention that this result is one of the few which
are true in Riemannian geometry but false in Finsler geometry, as shown by
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Skorniakov in 1955. Blaschke’s conjecture also exists in higher dimensions,
and is proven as theorem 257 on page 520.

10.2.1.2 Weinstein Surfaces Consider geodesics of a surface not as curves
on the surface, but as flow lines of a vector field on the unit tangent bun-
dle. To appreciate that such a viewpoint is possible, we can simply write
out the geodesic equation, and think of it this way. Now we may ask what
portion of the unit tangent bundle is taken up by periodic geodesics. For
example, for geodesics of the two dimensional torus, the unit tangent bundle
is a three dimensional torus, and the geodesic flow consists of straight lines.
Those which are periodic are in fact dense. On the sphere, all geodesics are
periodic, so again the periodic geodesics are dense in the unit tangent bun-
dle. Moreover, in theorem 243 on page 504, we will see that all negatively
curved compact Riemannian manifolds have periodic geodesics dense in their
unit tangent bundle. So naturally, one conjectures that this is always the
case. Weinstein 1970 [1248] found counterexamples as follows. From §§1.6.3
we have many surfaces of revolution of constant unit Gauß curvature, hence
they are locally isometric with the standard sphere. In such a surface whose
meridian looks like figure 1.61 on page 59 in the case of singular points of
the axis of revolution, keep the portion S between two of these conical points
p and q and deleting a very tiny part (of revolution) around p and around
q. Replacing (smoothly) these two parts by caps of revolution, one finally
creates a differentiable convex surface of revolution, say M . Now look at the
equator and its length L. By results from §§1.6.3, the number L can be any
number smaller than 2π and two cases are possible: either L/2π is rational or
it is irrational. From our discussion in §§1.6.2, we know the behaviour of the
geodesics which oscillate inside S, namely those which start with a horizontal
velocity contained in S and (by the results of §§1.6.2) stays forever inside S.
From the geometry of the standard sphere, we know that if L/2π is rational,
then all of these geodesics are periodic with the same period L, while if L/2π
is irrational, they never close up. In this latter case, we have a large open set
(of almost full measure) in UM such that any geodesic starting with velocity
vector in it is not periodic, so disproving the former conjecture. Note that
this does not prove that the periodic geodesics are not dense in space, i.e. in
the surface M , since all of the meridians cover M . Note also the dramatic
changes in the global picture of the flow when L changes continuously.

10.2.2 Ellipsoids and Morse Theory

We saw in §§1.6.2 how geodesics behave on an ellipsoid. They are very similar
to the geodesics on surfaces of revolution. Geodesics oscillate between pairs of
lines of curvature, except that they are of two different types. Those coming
back on the same curvature line are in fact described by a numerical param-
eter α (an angle in the so-called action-angle coordinates). And the geodesics
live in bands, of periodic geodesics if α is rational and everywhere dense in
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the irrational case :
 in the band
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 will be everywhe dense

Fig. 10.7. Weinstein spheres: (a) The rational case: in the band, all geodesics
will be periodic. (b) The irrational case: in the band, all of the geodesics will be
everywhere dense

the band if α is irrational. This time α varies with the line of curvature, so
that we get lots of periodic geodesics. The strict counting function is then
always infinite. The counting function for the bands seems not to have been
computed.

In the 1920’s, Marston Morse proved a very interesting theorem; see the
proof in Klingenberg 1982 [815], and if possible see the second edition, Klin-
genberg 1995 [816], section 3.4.7 (of course it is also found in Morse’s work
[see reference in Klingenberg’s book]). One can guess Morse’s result from the
above behaviour. Assume we have an ellipsoid which is very close to a sphere.
The three axis are very close to unit length. Then the above numbers α will
be very close to zero. But a small nonzero rational number has to have a
huge denominator. Hence the associated periodic geodesic will be very long.
Together with Weinstein’s examples this example shows that the behaviour
of periodic geodesics, and of the geodesic flow, can be very weird and very
sensitive.

Theorem 201 (Morse 1934) Given any L (think of L as very large) there
is an ε > 0 such that any three axis ellipsoid whose axis lengths are strictly
between 1 and 1 + ε has all of its periodic geodesics of length larger than L
except for the three sections by the coordinate planes.

The proof of Morse’s theorem is “elementary.” When one writes the equa-
tion of a periodic geodesic in coordinates, the three projections are Sturm–
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Liouville equations:
y′′ + fy = 0 .

which must be periodic equations. One uncovers a contradiction when one
has three different axis. The theorem extends to any dimension d as applied
to the d(d + 1)/2 plane sections of the ellipsoids

d+1∑
i=1

x2
i

a2
i

= 1 .

One might call these very long geodesics ghosts ; you see them less and less as
your surfaces gets closer and closer to a sphere. Another surprising theorem
concerning periodic geodesics will be found in theorem 203 on page 469.

in a three - axis ellipsoid 
close toa sphere periodic
 non - trivial geodesics 
have to be extremely

lengthy

Fig. 10.8. All but three of the periodic geodesics on a nearly spherical three axis
ellipsoid are very long

10.2.3 Flat and Other Tori: Influence of the Fundamental Group

10.2.3.1 Flat Tori Flat tori were defined on page 204. We look first, for
simplicity’s sake, at the two dimensional tori. On the flat two-dimensional
torus R2/Λ defined by the lattice Λ, geodesics are the projections of the
straight lines in R2. Their behaviour is completely understood. The periodic
geodesics downstairs correspond exactly to the lines upstairs which go from
the origin 0 to some point in the lattice Λ. One can suppose we are on
a square torus R2/Z2 since affine transformations of R2 preserves lines. If
the slope of the initial velocity vector is irrational then the geodesic in the
torus is everywhere dense and moreover evenly distributed just as the mod
1 integral multiples of an irrational number. How fast this geodesic fills the
torus is given by the continued fraction expansion of our irrational number.
The fastest filling is given by the golden ratio. If the slope is rational then
the geodesic is periodic. Note that then there is a continuous one parameter
family of periodic geodesics associated to a given one by sliding it transversely
(bands).
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So at this stage one can say that the counting function CF (L) (which
is the number of periodic geodesics of length smaller than L) is infinite for
any L ≥ 1. This will be our point of view in this chapter: we will discard
the estimation of CF (L) as soon as one continuous band exists. In particular
we then do not care about the difference between the various lattices Λ.
However, for its own interest, we note here that the number of bands can
be easily estimated: it is asymptotically quadratic in L and the first term is
given by the area of Λ (its determinant) multiplied by some constant. This
constant is different than the one for the spectrum, because here we want
geometrically distinct bands. In dimension two, we have to divide the count
of the number of points of Λ sitting inside the circle of radius L by the sum∑

n

1
n2

=
π2

6
= ζ(2)

to take into account that only coprime pairs of integers will yield geometri-
cally different bands. We saw in §§1.8.3 that the order of the next term is
still an open question in number theory: the “circle problem.”

For higher dimensional flat tori Rd/Λ, the situation is basically the same:
periodic geodesics come in bands, while nonperiodic ones are everywhere
dense (evenly, moreover) in a subtorus of dimension ranging from 2 to d. For
the counting problem one has only to replace

π2

6
= ζ(2)

(the Riemann zeta-function) by

ζ(d) =
∑
n

1
nd

.

10.2.3.2 Manifolds Which are not Simply Connected Let us consider
now any Riemannian metric on the torus T d = Rd/Zd, and let us look again
for periodic geodesics. In the case of a torus T 2 embedded in R3 it looks
plausible that, if it exists, the smallest curve C in the class of all curves
which are obtained by deformations of the one in the picture should be a
periodic geodesic. The proof is easy: for any two points of C close enough we
know, by §§6.1.3 for example, that C is a piece of geodesic joining these two
points. The deformations alluded to mean that we consider curves in a fixed
free homotopy class of the fundamental group of T 2. We note here that a free
homotopy class is a conjugacy class of the fundamental group π1

(
T 2

)
.

Now the difficulty is to prove the existence of a curve of minimal length.
The space of curves is a space of infinite dimension, and compactness argu-
ments are not available. Such a curve does exist however, and can be shown to
exist quite cheaply for any compact manifold and by various techniques; see
any modern book on Riemannian geometry, or prove it yourself (use cover-
ings, deck transformations and the first variation formula 6.3 on page 247). So
finally we have the simple but fundamental result, already noted in §§§7.2.1.1:
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Fig. 10.10. Even on simply connected Riemannian manifolds, the minimum argu-
ment still yields a periodic geodesic

Theorem 202 Any nontrivial free homotopy class γ on a compact Rieman-
nian manifold contains at least one curve of minimal length, and it is a
periodic geodesic.

This result is often attributed to Hilbert, but it is already in Hadamard 1898
[674] for surfaces. For a proof in general metric spaces, see Choquet 1966
[377], VI.3.11.

When the set of free homotopy classes, denoted by πfree(M), is large, or
infinite, then we have many periodic geodesics. One has only to be careful
about the geometric difference; we will see how to do that for tori just below.
One might say: if you master the structure of πfree, you master the periodic
geodesics. However it was discovered recently that things are in fact much
more complicated. The following was conjectured by Gromov:

Theorem 203 (Nabutovsky 1996 [958]) There are groups G so that if
a compact manifold M has fundamental group π1(M) = G, then for any
Riemannian structure on M , the counting function CF (L) (which counts
numbers of contractible periodic geodesics of length at most L) has exponential
growth.

A closed curve is called contractible when it belongs to the trivial free ho-
motopy class, so that in particular such periodic geodesics cannot be found
by just taking those of minimum length. The idea of the proof is simple,
but shows the intrusion of algorithmics in Riemannian geometry. The groups
under consideration are groups given by generators and relations, such that
it takes “an exponential number of steps to check that an element given by a
word is in fact the neutral element.” The complete proof is very interesting,
as it needs (besides the injectivity radius) Cheeger’s finiteness theorem 372
on page 642, Nash’s isometric embedding theorem 46 on page 238, as well the
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Nash–Tognoli theorem 31 on page 179 that any submanifold of RN can be ap-
proximated as closely as desired by connected components of semi-algebraic
submanifolds.

An important remark, even if trivial:

Lemma 204 If one has exponential growth of the counting function for pe-
riodic geodesics, then there is no need to worry about geometric distinctness
since iteration of a periodic geodesic is linear with respect to its length.

10.2.3.3 Tori, not Flat Let us apply these ideas to a torus with any metric.
The fundamental group is π1

(
T d

)
= Zd, hence

πfree
(
T d

)
= Zd .

For simplicity’s sake let us work first on T 2 and let us try to apply theorem 202
on the preceding page to find an infinite number of periodic geodesics and
if possible evaluate the counting function. A simple argument based on the
compactness of T 2 yields a constant c such that a periodic geodesic whose
homotopy class in Z2 is the couple (p, q) of integers has a length L smaller
than c

(
p2 + q2

)
. By the argument in §§10.2.3.1 for the flat torus, we might

think that the counting function CF (L) is quadratic in L. But there is the
problem of avoiding overcounting geodesics which are not geometrically dif-
ferent. Now here we are saved by the following remark: if p and q are coprime
integers, then a periodic geodesic in the class of (p, q) cannot be an iterated
one of some smaller periodic geodesic (one says that such a geodesic is prim-
itive). And now, as for flat tori, the number of pairs (p, q) which are coprime
and with p2 + q2 < R2 behaves quadratically in R2. In conclusion, for any
metric on T 2, the counting function CF (L) is at least quadratic in L as we
saw in §§10.2.3.1. By the same token, for any dimension and any metric on
T d we have an infinite number of (geometrically distinct) periodic geodesics
and CF (L) grows at least like Ld.

But, even for T 2, today at least, there is not a single metric for which
the exact asymptotic order of CF (L) is known. Note that the flat case is
disregarded because of the presence of continuous bands of geodesics. The
exponential–generic result of theorem 227 on page 491 does not apply–the
torus is a homogeneous manifold. It is not clear for tori, or many other man-
ifolds not covered by theorem 227 if generically CF (L) grows exponentially.
The geodesic flow on tori can be extremely subtle; see Bangert 1988 [111].

10.2.4 Space Forms

10.2.4.1 Space Form Surfaces Having treated the sphere and the torus,
we look now at orientable surfaces of higher genus; we note here that the
nonorientable case does not have a much different behaviour, since we can
look at the oriented covering. The unorientable surfaces are never discussed
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in the literature since the primary interest of mathematicians in surfaces is
in the study of one complex variable, number theory, algebraic geometry, etc.
where all of the surfaces are oriented. We consider first the case of constant
curvature, which we can take to be equal to −1. We expect many periodic
geodesics because we know both that there is a periodic geodesic in any non-
zero free homotopy class and that from algebraic topology the fundamental
group is huge, even a free one. Even without this knowledge one can expect
the counting function to be exponential by the following heuristic argument.
We look at the number of geodesic loops based at some given point m. Lifted
in the universal covering one has to count some number of points in a ball of
radius L in the hyperbolic plane and this is exponential in L like the area of
discs in Hyp2. This is also in disguise the growth function of the fundamental
group. But we are interested in free homotopy classes, for which one needs
to divide the fundamental group by the equivalence relation associated to
conjugation. The answer is still exponential and one has:

lim
L→∞

log CF (L)
L

= 1 . (10.1)

This was first found independently by H. Huber and A. Selberg around 1955.
It can be seen as a group problem or a geometric one. Both are well treated
in Buser’s book [292] and we refer the reader to it for an idea of the proof. Do
not forget lemma 204 on the facing page. However the above result should
shock the reader for two reasons. There are many space forms of dimension
2. Topologically they are of different genera, and for a given genus they can
have different constant curvature -1 structures (moduli, Teichmüller space).

The independence from the genus is the most striking, since pictures seem
to show more periodic geodesic when there are more “holes,” or larger π1; or
because the volume gets larger and larger with the genus, namely the volume
is 2π(γ−1), in view of theorem 28 on page 155. In fact we already mentioned
in §§9.13.1 that the genus and the spectrum both appear (inextricably linked)
when one looks at the next order in the asymptotic expansion of CF (L). Here
is the flavour of the promised formula for the next order of CF (L):

Theorem 205 (Huber 1959 [745], Buser 1992 [292] page 257) Write
x for

x = eL .

For any eigenvalue λ write

s = s (λ) =
1
2

+

√
1
4
− λ .

Then

CF (L) = li(x) +
∑

3/4<s<1

li (xs) +O

(
x3/4

log x

)
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where the notation li stands for

li(x) =
∫ x

2

dt

log t

and the summation is performed over the eigenvalues λ of the spectrum such
that

λ <
1
4

and

3
4
< s(λ) < 1 .

A glance at the formula explains why we cannot give any heuristic idea, and
only refer to Buser’s book. For the behaviour of nonperiodic geodesics, which
is very well understood, as well as the manner in which the periodic geodesics
are located in the surface, see §10.6 and §10.8. The behaviour of geodesics
is completely understood in space forms. The geodesic flow is ergodic; see
§10.5. In particular, almost all geodesics are everywhere dense. Moreover
their paths in the phase space (the unit tangent bundle) are dense as well.
Besides periodic geodesics and the preceding densely winding ones, a measure
zero set of geodesics is made up by those which are asymptotic to one or more
periodic geodesics.

geodesics "à la Hadamard"

Fig. 10.11. Geodesics “à la Hadamard”

How about a general Riemannian metric on a compact orientable surface
of genus γ ≥ 2? We have the best possible answer:

Theorem 206 (Katok 1988 [786]) For any Riemannian metric on an
orientable surface of genus higher than 1 and having the same area as when
the curvature is constant and equal to −1, namely area 2π(γ−1), the counting
function satisfies
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lim inf
L→∞

log CF (L)
L

≥ 1

and equality only if the curvature is constant.

We already commented above on the fact that the genus does not appear in
the formula for CF (L). For notions of entropy and more results of Katok,
see theorem 250 on page 510.

The proof makes elegant geometric use of the conformal representation
theorem (see theorem 70 on page 277). Thereby the lengths of curves can be
compared as measured by the metric under consideration and by the constant
curvature one, by integrals of numerical functions. From this result one finds
that a space form is an unbelievably sensitive creature: the smallest finger
pressure at any place will make the manifold have a much larger number
(a larger exponential factor) of periodic geodesics of given length, a sort of
susceptibility to periodic geodesics. We will see in theorem 251 on page 510
that one has also an optimal result for the way the periodic geodesics are
distributed inside the surface.

10.2.4.2 Higher Dimensional Space Forms A generalization of Katok’s
theorem is probably true for all the space forms, strictly or of general type,
see §6.6. For the moment one has a partial result, which is a direct corollary
of theorems 251 on page 510 and 239 on page 502.

Corollary 207 Consider any compact space form of negative curvature
(M, g0) , i.e. a locally symmetric metric g0 on a compact quotient of one
of the standard HypnK, and consider any metric g on it of negative curvature
and with the same volume as g0. Then their respective counting functions
satisfy:

lim sup
L→∞

log CF (L|g)
L

≥ lim sup
L→∞

log CF (L|g0)
L

and moreover equality holds only in cases of isometry—not only must g be
locally symmetric but globally isometric to g0.

So our space forms are as sensitive in any dimension as in dimension two:
any change, even very small, will immediately produce exponentially more
periodic geodesics. It is open today to know if the negativity of the curvature
is really necessary—remember it was unnecessary on constant curvature sur-
faces. Note also that the uniqueness fails on surfaces because of the moduli of
Riemann surfaces. The negative curvature condition comes simply from the
same condition in theorem 239 on page 502. To have a result for space forms
of nonpositive curvature we want an extension of theorem 250 on page 510
to them, see below for this and more on the structure of the geodesic flow on
these manifolds.

The symmetric metrics on negative curvature space forms have very subtle
geodesic behaviour. For example, starting in dimension 3, one might wonder
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if it is possible to have all of the periodic geodesics simple (i.e. without
self-intersection) or knotted. This is possible, but it requires subtle number
theory; see Chinburg & Reid 1993 [373].

Do not forget to look at §10.6 for the theory of negatively curved mani-
folds.

10.3 Geodesics Joining Two Points

10.3.1 Birkhoff’s Proof for the Sphere

The present section is intended to provide both motivation and an introduc-
tion. We look back into the past to the problem to find at least one periodic
geodesic on a compact surface. This is trivial by theorem 202 on page 469
with the sole exception of the only simply connected surface, namely the
sphere.

The sphere was tackled for the first time by Poincaré 1905 [1034]. This
is a fascinating text, motivated by celestial mechanics because the sphere
equipped with an arbitrary metric is the simplest object whose mathematics
mimics the mathematics of the solar system. Poincaré tried to get existence
of at least one periodic geodesic and this by three different approaches. See
more about Poincaré’s approaches in §§§10.4.3.1. He got trapped in his three
approaches by convergence problems in infinite dimensional spaces. The exis-
tence of a single periodic trajectory was first obtained in Birkhoff 1917 [195].
For many reasons the proof deserves to be presented to a larger audience.
We consider the set of all smooth tapestries of the sphere as in figures 10.12
and 10.13 on page 476.

On this set of tapestries we hope that there is a minimax principle: we
want to believe that there is at least one tapestry for which the length of
the longest curve of the tapestry is as small as it is for any other tapestry.
This is plausible because our tapestries can never be torn open since they are
smooth. Birkhoff had two tricks to overcome the infinite dimensional nature
of the space of tapestries. The first is to deform any curve into a curve made
up of small geodesic pieces. Just divide the curve into pieces of length smaller
that the injectivity radius.

Then have the following strictly decreasing operation on the set of these
“broken geodesics:” take the middles of the pieces and connect them again
by a geodesic segment. The strict triangle inequality (see equation 6.5 on
page 248) tells you that this operation strictly decreases the length of a curve
unless the curve is already a periodic geodesic. The existence is now finished
because the set of broken geodesics is finite-dimensional. One never ends with
a degenerate point geodesic because tapestries are not trivial topologically.
This can be seen as follows: a tapestry is a curve in the set of all closed
curves (broken geodesics or smooth curves, these sets are the same because
of the deformation operation above) and it starts and ends at individual
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Fig. 10.13. A tapestry

a hole

a mountain pass
is a periodic geodesic

degenerated point curves
≈ M

Fig. 10.14. A mountain pass is a periodic geodesic

points. Moreover a tapestry is not homotopic to zero among curves joining
two points in the set of degenerate curves made of points of the surface. Then
the minimax result is just proving that somewhere we have a “mountain pass”
as in figure 10.13.

By the way, Birkhoff’s geodesic need not nicely behaved, say simple, i.e.
without self- intersection. It might be neither simple nor the smallest periodic
one. Use strangulation and a three-legged starfish as in figure 10.15 on the
next page

Calabi & Cao 1992 [305] proved that Birkhoff’s geodesic is indeed both
simple and the smallest periodic geodesic when the curvature is positive. The
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Fig. 10.15. A three-legged starfish

proof is beautiful geometry and uses the second variation formula 6.7 on
page 264. However we will see below that a simple geodesic always exists for
any metric.

There cannot be some cheaper proof which works for example in more
general metric spaces as can be seen from the following two examples.

Theorem 208 (Gal′perin 1995 [544]) Most tetrahedra do not admit any
simple periodic geodesic (see figure 10.16 on the next page).

The argument can be recovered by the reader. Look at the holonomy
around a periodic geodesic (here made up of line segments). Because we are
on a surface with flat sides, a simple geodesic will yield a relation between
the vertex angles—just deform a simple geodesic by parallelism and remark
that the holonomy does not change.

The second example:

Theorem 209 (Gruber 1991 [659]) Generic convex bodies do not admit
periodic geodesics.

Note that our two counterexamples are convex, which is quite a strong con-
dition.
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Fig. 10.16. Tetrahedra do not usually bear a closed simple geodesic

10.3.2 Morse Theory

In brief, Morse theory as a starting point is the essence of Birkhoff’s proof.
To obtain one periodic geodesic the fundamental fact is that the space of all
closed curves of the sphere has a “hole in it,” i.e. one can find in it a loop
which is not contractible to a point, so that we have mountain pass points,
which are periodic geodesics. Morse put this in a very general frame, in order
in particular to get, not only one, but a lot of periodic geodesics. His central
contribution to the subject is the book Morse 1934 [944], but a modern classic
is Milnor 1963 [921]. For the huge realm of applications of the theory see Bott
1988 [228].

The setting for Morse theory is the couple made up by a compact differ-
entiable manifold M and a numerical smooth function f on it. We will see
later on how to apply Morse theory to geodesics. A critical point m ∈M is a
point where the differential of f is zero : df(m) = 0. When M is a surface in
R3 and f is the latitude, the critical points are the points where the tangent
plane to M is horizontal. Note that we are working in a general manifold,
and no metric is needed

At a critical point m, the second differential d2f of f makes sense and
is a quadratic form because df(m) = 0 and the chain rule is then applicable
to change coordinates. One says that a critical point m is nondegenerate if
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d2f(m) is not degenerate as a quadratic form.2 The index of the critical
point m is the maximal dimension of vector subspaces of TmM on which the
restriction of d2f is negative definite. Morse’s fundamental theorem is:

Theorem 210 (Morse) If f has only nondegenerate critical points, then
the number of critical points of index equal to the integer i is larger than
equal to the Betti number bi (M,K) over any field K.

f = c + ε f = c + ε
f = c - ε f = c - ε

f = c f = c 

p

eλ

(uλ+1, ..., un) - axis

(u1, ..., uλ) - axis

MC+ε
p

eλ

F-1[c-ε, c+ε]

Fig. 10.17. (a) Nondegenerate critical point of a function on the plane, index
equals 1 (b) Sublevel sets of a nondegenerate function

The idea of the proof is this: first pick a metric, and when there is no
critical point between two level sets, flow the manifold along the gradient of
the function. This will not change the topology of the part of the manifold
located below those levels. If one has to pass a critical point, the effect in the
topology is to “add a handle” of a degree equal to the index of the critical
point. The proof is pictured in figure 10.17, the figures being taken from
Milnor 1963 [921]. This makes very precise the intuition of the picture: many
holes imply many horizontal points. We note here that the values f(m) at
the critical points have no relation with their indices; this will be dramatic in
the future. The proof, besides a little play with algebraic topology, consists
in two steps: the first is to prove that the topology of the “low” level parts
f−1 (]−∞, L]) of the manifold do not change topology when L runs into in
interval where there is no critical point. We mention this, because a basic
Riemannian geometry extension of this result will be introduced in §§12.2.2.
The second step is to study what happens when L passes through a critical
point: the effect on the topology is to add one cell whose dimension is equal
to the index of this critical point.
2 Nondegeneracy of a quadratic form Q means that if we write Q(v +w) = Q(v) +

Q(w) + P (v, w) with P (v, w) = P (w, v), then there is no v for which every w
satisfies P (v, w) = 0,
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10.3.3 Discoveries of Morse and Serre

We want now to apply theorem 210 on the page before to obtain “many”
periodic geodesics. We will begin with geodesics joining two points. It will
be soon clear why that case is much easier to master. We want now to apply
the above Morse theory to get geodesics joining two given points p, q in
some compact Riemannian manifold M . The idea is to take for our “space”
Λ′
p,q = Λ′

p,q(M) the set of all smooth curves from p to q and for our function
f we take the length of such a curve. Three things have to be done. First we
need to get off of Λ′

p,q and on to a finite dimensional manifold. This is done
as in Birkhoff’s proof by considering only curves made of successive geodesic
segments. This is no problem because we know that our manifold always
has a positive injectivity radius, by proposition 88 on page 295. And an easy
geometric deformation shows that this new Λp,q has the same topology as the
initial Λ′

p,q. To ensure that we are always on a compact manifold. we restrict
to a compact subset of Λp,q, by working temporarily only with curves of length
shorter than some fixed bound. We remark that critical points of length are
“pure” geodesics: the strict triangle inequality shows that the angles at the
breaks have to be all equal to π.

p q

replacing curves by
broken geodesics

as in Birkhoff
for closed curves

Fig. 10.18. Replacing curves from p to q by broken geodesics as Birkhoff did for
closed curves

The third thing to do is to understand nondegeneracy and compute the
index. This was also achieved by Morse:

Theorem 211 (Morse’s index theorem) A geodesic γ from p to q is
nondegenerate if and only if the point q is not conjugate to p on γ (see
definition 85 on page 292). And its index is equal to the weighted sum of the
number of points qi conjugate to p on γ, the weight being the dimension of
the space of Jacobi fields along γ which vanish at p and at that point qi.

Ignoring for the moment the nondegeneracy condition, to get many
geodesics from p to q we need to have information on the Betti numbers
of the loop space Λp,q. Note that all Λp,q have the same topology, namely
that of the set of loops Λ = Λp,p (for any p, they are all the same). Morse
could only get very partial results. One of the basic results of Serre 1951
[1124] (which made him famous overnight) is

Theorem 212 (Serre 1951 [1124]) For any compact manifold M , there is
an infinite number of integers k for which bk (Λ(M)) �= 0.
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For a geometer the proof is too nice not to be quoted. Fix any p ∈ M and
use the fibration

Λp,p → Λp,. →M (10.2)

which maps into M the end of any curve starting from p. Since Λp,. retracts
trivially on the point p and hence has trivial topology, the fundamental class
of the compact manifold M by the spectral sequence relating the topologies
of the base and of the fiber should “transgress” an infinite times to be finally
completely killed. This forces the result.

a loop

p

p (M,g)

Λ p,• is retractible

the fiber is Λ p,p

Fig. 10.19. Transgression of the loop space

The point p being given in M , the set of points q which can be conjugate
to p along some geodesic is of measure zero: this comes from the fact that
in TmM we have zero measure for them and then now also downstairs since
the exponential map is differentiable. If one remarks moreover that one has
compactness for geodesics of bounded length, one finally obtains

Theorem 213 There is an infinite number of geodesics joining any pair of
points in any compact Riemannian manifold.

Any reader will be shocked if she looks at the standard sphere. The ob-
tained geodesics cover the same great circle but of course have different in-
dices. We eventually want to have geometrically different geodesics, i.e. cov-
ering different ground. It seems to us that the following naive question is
open today:

Question 214 What are the manifolds for which the set of pairs of points not
joined by infinitely many geometrically distinct geodesics is of full measure?

Certainly the spheres and the KP
n are counterexamples, but are there other

ones?
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p

q

Fig. 10.20. Can this happen for many pairs of points?

10.3.4 Computing with Entropy

We will now consider a very nice recent result which says that the topological
entropy (of the geodesic flow, see §§§10.5.1.2) is the mean value over all pairs
of points of the exponential factor in the growth of the counting function
CF (L|p, q).

Theorem 215 (Mañé 1994 [892], Paternain & Paternain 1994 [1003])

htop(M, g) = lim
L→∞

1
L

∫
M×M

log CF (L|p, q) dVM (p) dVM (q)

for every compact Riemannian manifold.

The proof is very geometric, working on the product manifold M ×M .
There the set of geodesics joining two points becomes the set of geodesics
initiating from the diagonal. To obtain this start from the midpoint of the
geodesic on M and travel an equal distance in both directions. This idea is
basic already in Grove & Petersen 1988 [648]. Then CF (L|p, q) is nothing
but the volume of the cylinder of radius L/2 around the diagonal, this volume
being taken with the measure onM×M which is the product of the canonical
measure on the diagonal by the orthogonal measure obtained by taking the
inverse measure under the exponential map of the measure on M . To get
the entropy at the end ones uses a hard theorem of Yomdin 1987 [1299]
(see also Gromov 1987 [621]) where the computation of the entropy uses
differentiability. Yomdin’s result stands as an exception in dynamical system
theory in the sense that it uses essentially smoothness (the proof involves
algebraic geometry notions).

For the Riemannian geometer, this is a simple definition of entropy. A
corollary of theorem 215 is that for many pairs of points p and q the counting
function CF (L|p, q) is exponential when htop is positive. We will see in §10.9
that many metrics on many compact manifolds enjoy positive topological
entropy.

Open questions today:

Question 216 On a negatively curved compact manifold, can one still have
the same formula with only one pair (p, q) (say for almost every pair)?
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M

p q

p

q

compute all geodesics
from p to q

conjugate points
make trouble

Fig. 10.21. (a) Compute all geodesics from p to q (b) Conjugate points make
trouble

p

q

r
γ

in (M, g)

(p, q)

(r, r)

"γ"

in (M × M, g × g)

 M diagonal
  of (M × M)

Fig. 10.22. M sits in M × M as the diagonal. A geodesic in M from p to q with
midpoint r is represented as a geodesic in M × M from (p, q) to (r, r)

Question 217 The same question but for generic metrics.

One need not wait for an answer for the same question applied to arbitrary
metrics: the very inspiring Burns & Paternain 1996 [287] exhibits a metric
on the two dimensional sphere for which

lim sup
L→∞

1
L

log CF (L|p, q) < htop

for (p, q) in a set of positive measure.

Question 218 Is it true that for any pair of points p and q
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lim sup
L→∞

1
L

log CF (L|p, q) ≤ htop ?

The answer is also no here—Burns & Paternain 1997 [288] exhibit metrics on
S2, arbitrarily close to the standard metric, with a point p never conjugate
to itself along any geodesic loop from p to p and such that CF (L|p, p) grows
as quickly as desired. Both constructions are very geometric.

Final but important remarks: conjugate points cause no problem in the
integral in theorem 215 on page 482 because points q conjugate to a given
point p are of measure zero. Secondly, the iterates of a given geodesic have
the same geometric support but their length grows only linearly, so they do
not contribute after taking the logarithm (see lemma 204 on page 470).

10.3.5 Rational Homology and Gromov’s Work

Fig. 10.23. The skein technique

We come back to the problem of estimating the counting function of a
manifold using algebraic topology. The infinity of Serre’s theorem was not
enough. Moreover the dramatic point is that Morse theory is useless as it



10.3 Geodesics Joining Two Points 485

stands for estimating the counting function, since it gives information on
critical points of a function in terms of their indices but not in terms of
the value of the function. So there is apparently no way to get from the
knowledge of the Betti numbers of Λ(M) any information on the counting
function CF (L|p, q) which counts the number of geodesics joining two points
p and q and of length smaller than L. The situation was rescued by the
pioneering result which can be found in Gromov 1978 [612], Gromov 1981
[616], Gromov 1999 [633]:

Theorem 219 (Gromov) For every simply connected Riemannian mani-
fold M there are two positive constants a and b such that, for every point p
and q one has

CF (L|p, q) ≥ a

L

∑
i≤bL

bi (Λ(M),K)

with K any field.

Rx
x

0

Fig. 10.24. Gromov’s approach to geodesics via convex triangulation

The proof is illustrated by the two pictures in figure 10.23 on the preceding
page. One should attempt to retract every geodesic to some fixed segment
from p to q. This is certainly possible by the simple connectedness. But
the retraction we have to perform should control, for a given length bound,
the i topology of Λ(M) at the same time. The first idea is pictured on the
left: unwrap a geodesic twisted many times very carefully, by contracting
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successively turn after turn, not trying to contract all of the turns together;
if not carefully handled, the length and the index will grow in an uncontrolled
fashion. This “skein” technique will be meet again in §§§10.4.3.2. But Gromov
has a more powerful technique. One starts with a given convex triangulation
of M and, as in classical Morse theory, one works only with broken geodesics
(using the positivity of the injectivity radius). Now, to any broken geodesic
from p to q, one associates the sequence of simplexes it enters into, as well as
the points of entrance and exit, the exit coinciding with the next entrance.
This yields a triangulation of Λ(M) as follows: the simplices are made up
by the broken geodesics which, in the preceding coding, have entrance (and
hence exit) points varying in the same faces of a succession of initial simplices
of M . The resulting dimension of such a simplex is just d times the number
of simplices met by the geodesics. And clearly this number is proportional,
with a fixed constant b, to the length L. One point was skipped in the above
reasoning, namely that the geodesics traveling along the edges of the simplices
of M will give trouble, since they yield only dimension 0. The way out of this
problem is to contract this 1-skeleton of the given triangulation of M into a
point. This is where the simply connectedness of M is used. Then one has
to control everything in Λ(M) during the contraction, which is not too hard.
Finally note that the factor of 1/L in the formula is put there in order to
get geometrically distinct geodesics. For example, in the case of the standard
sphere, where the Betti numbers of Λ

(
Sd
)

are bounded, the formula will
yield only one geodesic, as we saw previously.

It remains now to ask algebraic topologists what they know about the
bk (Λ(M)) and the results are wonderful, even if not completely finished. We
will see in theorem 343 on page 619 that compact differentiable manifolds
are divided, by the behaviour of their rational homology H∗ (M,Q), into
exactly two classes—the first are called rationally hyperbolic, the other ratio-
nally elliptic. The Betti numbers of the rationally hyperbolic manifolds grow
exponentially, so that one has the strong statement:

Theorem 220 For any metric on any rationally hyperbolic manifold and
all pairs of points p and q the counting function CF (L|p, q) grows exponen-
tially, with exponent moreover which can be estimated from below by the Betti
numbers of the loop space.

We recall here again that one is sure to count geometrically distinct geodesics,
since the iterates have length growing linearly—one does need the bumpy
metric hypothesis here. Since rationally hyperbolic manifolds are the major-
ity, and a generic manifold is rationally hyperbolic, one sees that, generically
in the realm of manifolds, the counting functions CF (L|p, q) grow exponen-
tially for any pair of points.

For not necessarily rationally hyperbolic manifolds, one knows from Ziller
1977 [1307] for symmetric spaces and McCleary & Ziller 1987 [906] for gen-
eral homogeneous spaces that, for any metric, the counting function grows
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polynomially, but if one wants to be sure of geometrically distinct geodesics,
one should subtract 1 from the degree of the polynomial, since the coverings
grow linearly. For symmetric spaces the degree of the polynomial growth of
the Betti numbers of the loop space is precisely equal to the rank r, hence
CF (L|p, q) has growth at least polynomial of degree r − 1.

Note 10.3.5.1 (Topology of positive Ricci curvature manifolds) Sadly
this point of view cannot be use to study the topology of manifolds with posi-
tive Ricci curvature, one of the main open problems in Riemannian geometry
(see §§12.3.2). This precisely because the fact that Ricci curvature implies a
growth of the indices of geodesics at least linear in length is superseded by
theorem 219 on page 485. One can consider theorem 219 as a successful step
in Gromov’s program to quantify algebraic topology—another example will
be seen in §§12.3.3. �

10.4 Periodic Geodesics

10.4.1 The Difficulties

As already mentioned, encouraged by Fourier analysis on compact Rieman-
nian manifolds which is provided by the Laplacian and its eigenfunctions, say
in quantum mechanics, we would like to do the same for Hamiltonian/classical
mechanics. The parallel being that to eigenfunctions, the stationary states,
correspond periodic geodesics. A Fourier analysis based on periodic geodesics
would need first an infinite number of such objects. And to Weyl’s asymp-
totic equation 9.20 on page 421 would correspond an estimate of the counting
function CF (L) for periodic geodesics, where

CF (L) = #{periodic geodesics of length smaller than or equal to L} .

Moreover the λd/2 should naturally correspond to an exponential type, the
exponent to be computed we would imagine via some Riemannian invariants
as it was with only the volume for Weyl’s asymptotic. We emphasize here
that one is still missing the existence of an infinite number of geometrically
different periodic geodesics for any Riemannian manifold, the most spectac-
ular first case being that of S3. We will now explain the difficulties and then
what is known today, beside of course the cases already examined.

The naive idea, absolutely natural, is to imitate the successes of Morse–
Serre theory but to replace the Λp,q by the set Ω (M) of loops in M , i.e. the
set of smooth maps S1 → M from the circle into M . On the loop space we
have the numerical function given by the length of the image curve and peri-
odic geodesics are nothing but once again the critical points of this function.
There is no problem, within the class of closed curves of bounded length to
replace this infinite dimensional space by a finite dimensional one, again using
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broken geodesic polygons (whose edge lengths are smaller than the injectivity
radius). And we hope that the topologist will be able to compute the Betti
numbers of Ω (M) “à la Serre.” The first difficulty: the computation works
well for the set Ω∗ (M) of pointed maps from S1 into M , using the obvious
fibration associated fibration

Λ(M) → Ω∗ (M) →M .

For a compact manifold this will yield an infinite number of nonzero Betti
numbers for Ω∗ (M). We have first to take care of few things which are not
too difficult. But to go from Ω∗ (M) to Ω (M) one has to take the quotient
by the orthogonal group SO (2) and the quotient has singularities. This is
a trap in which many mathematicians fell and obtained incomplete or false
results. This is the first reason for the lack of decisive results for periodic
geodesics. We will not go into details of the various ways people got around
that trap; see the literature for that.

The second problem is even more important and can be suspected from
the Morse–Serre result. One can still prove that, in some sense, Ω (M) has
infinite topology for any compact manifold by working with the spectral
sequence of the fibration

Λ(M) → Ω∗ (M) →M .

Thus we always have an infinite number of periodic geodesics in any compact
Riemannian manifold, but they can all be the iterates of a single one and
hence geometrically identical.

The third trouble is the nondegeneracy hypothesis in Morse’s main theo-
rem 210 on page 479. First the notions of index and of degeneracy for periodic
geodesics are more delicate to handle than for geodesics joining two points; we
will not enter into these fine points, because it cannot be defined simply with
conjugate points—one has also to consider the second variation formula for
nonpointed curves. Second, when the metric is given the periodic geodesics
are given, “they stay at their place” and one cannot, as for the (p, q) case,
play the game of looking at nondegenerate ones and from them get every pair
by a limit argument. We will see below that one way to bypass this difficulty
is to restrict statements to generic metrics.

And here again, for the counting function (if there is one) we have the fact
that Morse theory gives no relation between the lengths and the indices. On
the other hand the difficulty is practically seen on the Weinstein example in
§§§10.2.1.2 and Morse’s “ghost” geodesics in theorem 201 on page 465. In fact
there is a much worse example, due to Katok, which shows that something
quite specific to Riemannian geometry must be used—the conjunction of
Morse theory and algebraic topology on the loop space Ω (M) is definitely
not enough; see Ziller 1983 [1308] for even more examples and §§14.5.8 for
Finsler metrics:



10.4 Periodic Geodesics 489

Theorem 221 (Katok) There are Finsler metrics on S3 which admit no
more than two periodic geodesics.

Katok’s examples are frightening, because general Morse theory applies as
well to Finsler spaces. So even when the Betti numbers of the loop space are
huge, one has really to play with some geometry specific to the Riemannian
case to get periodic geodesics. The above difficulties explain why most results
are quite recent. The first proof of the existence of at least one periodic
geodesic is attributed to Lusternik & Fet 1951 [887], though the technique
was essentially Birkhoff’s, where the notion of degeneracy is not needed as
it was for Morse’s approach. We will now describe the state of affairs today.
General references for this topic were given in §10.1.

10.4.2 General Results

10.4.2.1 Gromoll and Meyer We now look more carefully at the same
time at Morse theory and at the geometry of the manifold. Indices here matter
a lot. One should decouple if possible indices and homology classes, looking
at the behaviour of the indices of the various iterates of periodic geodesics.
Here is the current state of the art in analyzing the behaviour of the index
of the iterates:

Theorem 222 (Gromoll & Meyer 1969 [606]) Given a periodic geodesic
γ, write its iterates as γk. There are constants a(γ), b(γ), c(γ) so that

a(γ) − kb(γ) ≤ index
(
γk
)
≤ a(γ) + kb(γ)

for every integer k.

We already said above that the difficulty in proving such a theorem is that
the index of a periodic geodesic is a subtle object. In the case of curves with
both ends fixed the counting of conjugate points immediately would yield
an estimate as above. An initial partial result was found in Bott 1956 [227],
explained in the book Klingenberg 1978 [814] section 3.2.15.

Using Bott’s result one obtains the strongest result available today for
general metrics

Theorem 223 (Gromoll & Meyer 1969 [606]) Let M be a compact man-
ifold with finite fundamental group. Assume there is at least one field K such
that the Betti numbers bk (Ω (M) ,K) are not bounded as a function of k.
Then any Riemannian metric on M carries infinitely many geometrically
distinct periodic geodesics.

The idea is to use theorem 222 to the effect that the index of the iterates
of a periodic geodesic grows only very close to linearly when iterating it. A
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trivial counting argument will show that if we have only a finite number of ge-
ometrically different periodic geodesics then the number of periodic geodesics
of a given index k will be bounded in k. The nondegeneracy restriction in
Morse’s theorem is bypassed by the authors by a “technical tour de force”
and is the essential difficulty of the paper.

We are left with the pure algebraic topology question:

Question 224 Which compact smooth manifolds M have all Betti numbers
of their loop space Ω (M) bounded, and this for every field?

This is a nice question for modern topologists. It is not completely settled
today, but we have a good partial answer (compare with theorem 343 on
page 619).

Theorem 225 (Sullivan and Vigué-Poirrier 1975 [1167]) The condition
in question 224 implies that the rational cohomology ring H∗ (M,Q) has only
one generator.

And so we are back to our favourite manifolds: spheres Sd and KP
n because

they enjoy that condition. And look at the paradox: for their canonical met-
rics all of their geodesics are periodic. However there are sadly enough other
candidates for possible or eventual bad behaviour of periodic geodesics. First
there are plenty of Q-spheres, and second there are manifolds having the same
homotopy type as the CPn but not homeomorphic to them, and third there
are exotic quaternionic projective planes HP

2. We will meet these manifolds
again in §10.10.

Note that theorem 223 on the preceding page yields an infinite number
of periodic geodesics, but does not say anything about the counting function
for them. In fact, we know that nothing can be said about the counting func-
tion, unless some more explicit geometric relations are brought into Morse’s
theorem.

At the risk of being a little technical about periodic geodesics, the situa-
tion is in fact more dramatic. On the one hand as soon as a periodic geodesic
is of twist type, in any tubular neighborhood of that geodesic there is an
infinity of other periodic geodesics, as follows from the KAM theorem (see
Moser 1977 [946]). On the other hand one does not know a single example
of a manifold with no periodic geodesics of twist type! See Rademacher 1994
[1046] for more on this as well Rademacher 1994 [1045]. Note that for the
twist type geodesics, the nearby periodic geodesics have a counting function
growing at least like L/ logL. The twist type condition is obtained when
looking at the Poincaré return map seen on page 494: its eigenvalues should
be of modulus equal to 1 and satisfy an extra technical but mild condition
(of a generic type in the category of Poincaré maps).
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10.4.2.2 Results for the Generic (“Bumpy”) Case Lacking a general
statement, we look for generic behaviour (on any manifold, having to include
in particular the spheres and the KP

n). The assumption that a metric is
generic allows us to apply Morse theory. The notion of genericity for Rie-
mannian manifolds is usually denoted today by the word bumpy; there is
no unique precise meaning of this word and it is always difficult to define
carefully. We will state the “vague”

Theorem 226 On any compact manifold, “almost every” Riemannian met-
ric is bumpy, and in particular all of its periodic geodesics are nondegenerate.

We have “decoupled” things as much as possible. We have to be more
precise about what “almost every” means and which sort of bumpyness we
will ask for. For precise definitions, one can look at Rademacher 1994 [1046].
Historically the first results were in Klingenberg & Takens 1972 [817], Anosov
1982 [54], Klingenberg 1978 [814]. As for which kind of bumpyness, it may
be in the various Cr topologies for the set of all Cr metrics on the manifold,
with r ≥ 2. Because there is no nice measure on the set of all Cr metrics,
the meaning of “almost every” has to be phrased in the language of residual
versus meager sets: a set is said to be residual inside a given topological space
if it can be expressed as a countable intersection of open dense subsets.

There are two results for generic metrics; the first is

Theorem 227 (Gromov 1978 [610]) For any bumpy metric on a com-
pact simply connected manifold M , there are constants a and b such that the
counting function of periodic geodesics enjoys the inequality

CF (L) ≥ a

L

∑
i≤bL

bi (Ω (M)) .

In particular, if M is rationally hyperbolic then the counting function CF (L)
grows exponentially.

Here again the factor 1/L is needed to get geometrically distinct geodesics.
Also, as on page 487 one finds explicit results for homogeneous spaces and in
particular symmetric spaces. Since most manifolds are hyperbolic, the above
can be summed up by saying that, with a double genericity (for the manifold
and for its metric), one has an infinite number of periodic geodesics and
moreover exponential growth of the counting function. The exponential rate
can be estimated from the bi (Ω (M)). Gromov’s result was sharpened:

Theorem 228 (Ballmann & Ziller 1982 [108])

CF (L) ≥ a sup
i≤bL

bi (Ω (M)) .
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For the proof of theorem 227 on the page before one has only to remark
first that Gromov’s geometric contraction seen on page 486 works as well in
Ω (M) as in Λ(M). Algebraic topologists know that the exponential growth
of bi (Λ(M)) for rationally hyperbolic manifolds also holds true for Ω (M).
Finally the bumpyness condition enables us to apply Morse theory.

The second result is

Theorem 229 (Rademacher 1994 [1046]) On any compact manifold ev-
ery bumpy metric has infinitely many periodic geodesics.

The proof here uses the full “decoupling” implications of bumpyness.
Moreover the proof will probably yield more, namely: the counting func-
tion grows at least as a constant times L/logL. But some cases are still to
be checked. This L/logL which we saw above and will see below for surfaces
is not mysterious. It comes from the fact that one has to look at prime num-
bers in a given arithmetic progression. The famous Dirichlet theorem gives
precisely such an order of magnitude.

The open questions today are

Question 230 Is the bumpyness really needed in Gromov’s theorem?

Question 231 Is the counting function exponential for elliptic manifolds?

Do not forget to look at §10.6 for the geodesics of negatively curved man-
ifolds.

10.4.3 Surfaces

10.4.3.1 The Lusternik–Schnirelmann Theorem

Theorem 232 (Lusternik & Schnirelmann 1929 [888]) Every Rieman-
nian metric on S2 has at least three geometrically different simple periodic
geodesics.

This was claimed in Lusternik & Schnirelmann 1929 [888]. The authors’ orig-
inal idea was to apply Birkhoff’s shortening tapestry technique to tapestries
of the manifolds using the totality of the set of circles (every circle, not only
equators, including points) of S2, this set being three dimensional.

The approach of Lusternik and Schnirelmann is very treacherous, since
again here the problem is not to get three periodic geodesics, but to prove that
they are geometrically distinct. The relevant technical questions seem to be
settled in favour of this approach, after many incomplete proofs, see Taimanov
1992 [1177] and the analysis there. It is fair to say that the “intermediate”
results brought about important observations. Note that in recent works some
authors have employed a deformation technique involving heat equations; see
references in Jost 2002 [768]. The idea was first used in the plane in Gage
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Fig. 10.25. The circles on a sphere

& Hamilton 1986 [537], see §§1.4.5. Deforming a plane curve by normal
variations which are proportional to the curvature makes the curve ever closer
to a circle (i.e. a curve of constant curvature). In a Riemannian manifold, with
suitable modifications to the definition of the flow, the curve will have as a
limit a curve of zero geodesic curvature, i.e. a geodesic. The proof is difficult,
requiring significant analysis. The equation is a parabolic partial differential
equation for which the existence of solutions for small time is quite easy; most
of the effort is to show first existence of solutions for any time and second
that the limit curve is smooth; see Grayson 1989 [585].

One of the plans of attack proposed by Poincaré to prove the existence of a
periodic geodesic on a convex surface was to take the shortest curve dividing
the surface into two pieces of total curvature 2π each. Should such a shortest
curve exist, it would indeed be a periodic geodesic. After various attempts,
in particular by Berger & Bombieri 1981 [177], the existence of such a curve
was finally established by Croke 1982 [414]. Hass & Morgan 1996 [683] found
a wonderfully simple proof.

10.4.3.2 The Bangert–Franks–Hingston Results Let us give further
consideration to a topological sphere with any Riemannian metric, but look
for more that the three periodic geodesics we have found so far, and hope
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for an infinity of them. When we find such an infinity, then we will want
an estimate on the counting function for periodic geodesics of at most a
given length. This infinity was obtained only very recently by the conjunction
of Bangert 1993 [112] and Franks 1992 [519]. The result was received with
enthusiasm by the popular mathematical press, referred to as “a zillion rubber
bands around a potato,” etc.

Theorem 233 (Bangert–Franks–Hingston) Every Riemannian metric
on the two dimensional sphere has infinitely many geometrically distinct pe-
riodic geodesics. Moreover the number of periodic geodesics of length at most
L, CF (L), grows at least as fast as

c
L

logL

where c is a positive constant.

We now briefly present the ideas behind the proof. The problem naturally
splits into three problems. The difficulty of finding a fourth geodesic, let
alone an infinite number, is not too much of a surprise considering Morse’s
theorem 201 on page 465 which shows that a fourth geodesic can be very long
and tangled. Birkhoff attacked the problem as follows.

Oπm''
m

m'
v v''

v'
c

γ(m
;v)

Fig. 10.26. Birkhoff’s picture: shooting geodesic rays across a periodic geodesic,
following them back to the same periodic geodesic.

We start with a fixed periodic geodesic c and pick a unit tangent vector
v at m ∈ c pointing toward a particular side of c (fix one of the two possible
choices). This yields a geodesic entering the inside and getting out again at
some point m′ (with speed v′). Keep going now on the other side and finally
come back to the curve c at a point m′′ with speed v′′ again pointing inside.
This gives a map which we will call the Poincaré return map. One gets a
new periodic geodesic just exactly when v′′ = v, i.e. whenever one has a
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fixed point for the map v → v′′. For people familiar with dynamical systems
this situation is familiar. The set of possible unit vectors v pointing across c
toward the selected side of c is the annulus c×] − π, π[ and the map v → v′′

preserves the measure ds ∧ cos θ dθ just by the first variation formula. Since
the pioneering work of W. Neumann it is well known that such a map has a
infinite number of periodic points (see Arnol′d 1996 [66], appendix 9).

What is faulty with the above reasoning? Two things: (1) the geodesic
starting with speed v might never come back to c, it can be trapped on one side
of c, and (2) the Neumann result applies only to the so-called rotating maps.
This means that when one looks at the extended map along the boundary of
the annulus that this map moves the boundary circles in opposite directions.
It is not surprising that this, together with the preservation of measure implies
existence of fixed points. The behaviour of this map on the edges of the
cylinder is given by the location of the conjugate points along c.

m(π)

m''(π)m''(0)

0

m(0)

π

(m,v)

(m'',v'')

f

π m 0
θ

v

The ring of
Birkhoff-Poincaré

Fig. 10.27. The ring of Poincaré–Birkhoff

The trichotomy: (1) rotating in opposite directions without trapping, (2)
not rotating in opposite directions but without trapping, and (3) trapping.
Franks 1992 [519] took care of the first case by a technique coming from the
theory of Riemann surfaces. An interesting point in the proof is that what
Franks proved exactly is:

Theorem 234 (Franks 1992 [519]) Every area preserving map of an an-
nulus has either no fixed points or infinitely many.

But here there must be at least two fixed points, thanks to the Lusternik &
Schnirelmann theorem 232 on page 492.

The third (trapping) case is solved in Bangert 1993 [112]. It is nice ge-
ometry, using tapestries of only one side of a periodic geodesic which is an
accumulation set of a nonperiodic geodesic. To use the minimax principle to
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c
γ

Fig. 10.28. A trapped geodesic crossing a periodic geodesic

find geometrically distinct periodic geodesics, he used a “skein” technique as
in figure 10.29 (compare with figure 10.23 on page 484).

Fig. 10.29. A double tapestry

The estimation of CF (L) as being like L/logL is in Hingston 1993 [714].
This type of estimate comes from the Dirichlet theorem counting prime num-
bers in arithmetical progression, these arithmetical progressions coming of
course from the lengths of the iterates of periodic geodesics. This has to be
done for every case in the trichotomy.

In all the above we forgot the poor projective plane RP2. But taking
its spherical covering, it is clear that he will admit infinitely many periodic
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Fig. 10.30. The skein method

geodesics, with a growth at least like L/logL. It still remains an open question
to see if this is also a reliable estimate of the number of noncontractible
periodic geodesics of length at most L. This question is open, but the answer
might be settled affirmatively by working more carefully through the steps
of Bangert and Franks’ work, in particular using the analogue for RP

2 of the
Lusternik–Schnirelmann theorem found in Ballmann 1978 [102].

There is not a single explicit surface of the type of the sphere, the projec-
tive plane, the torus or the Klein bottle for which the asymptotic order of the
counting function is exactly known. No expert seems to even have a guess
like: is it always polynomial, exponential, or exponential generically? Note
that you can discard the question when a manifold, e.g. surfaces of revolu-
tion and ellipsoids, possesses a one parameter continuous family of periodic
geodesics (which are then necessarily locally of the same length).
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10.5 The Geodesic Flow

10.5.1 Review of Ergodic Theory of Dynamical Systems

10.5.1.1 Ergodicity and Mixing A very pleasant (but not complete)
introduction to ergodic theory is Walters 1982 [1232]. More complete are
Arnol′d & Avez 1968 [68], and Mané 1987 [891] (quite dense but more com-
plete for our purposes); also see Katok & Hasselblatt 1995 [787], Anosov,
Aranson, Arnol′d, Bronshtein, Grines & Il′yashenko 1997 [55], Sinai 1976
[1140]. To invest today in learning about dynamical systems is very reward-
ing, considering the pervasive nature of the word chaos throughout mathe-
matics and physics. We will skip most references for well known results and
concepts.

A discrete dynamical system is a measure space (X,μ) together with a
continuous map f : X → X which preserves the measure μ. In some cases
one does not require continuity of the map nor for it to be one to one. What
one is really interested in is the behaviour of the iterates fk when k goes to
infinity. Let us recall (see definition 155 on page 383) that the geodesic flow
is the set made up by the collection of the maps Gt (t a real number) which
act on the unit tangent bundle UM as follows: Gt(v) is the speed vector at
the point γv(t) of the geodesic γv whose initial speed vector is precisely v.
In all this study a basic fact is the Liouville theorem that the flow respects
the canonical symplectic structure of UM and hence the attached measure
μ. So we have a natural and geometrical dynamical system in Riemannian
geometry. We will consider the geodesic flow{

Gt | t ∈ R
}

of the unit tangent bundle UM of a Riemannian manifold; this is a continu-
ous dynamical system. We will use both languages, discrete and continuous,
to simplify the writing. For the geodesic flow, the link is simply to take the
discrete system f = G1 on X = UM . It does not matter if the “length” (or
time) 1 looks special because in fact we are interested only in what is hap-
pening when t→ ∞. Note also that we make no explicit distinction between
a geodesic in the manifold M and its “image” or “lift” in UM , namely the set
of its speed vectors. When speaking of various ergodic theory notions about
Riemannian manifolds, we will always understand the dynamical system to
be the geodesic flow and work with the Liouville measure on UM .

The most special dynamical systems are the Bernoulli shifts. They are de-
fined as the transformations xn → xn+1 on an infinite product

∏∞
n=−∞(X,μ)

of copies of a single measure space (X,μ) so that they are extremely simple
to describe and work on, since the dynamics is given by a coding. Moreover
classes of isomorphic Bernoulli shifts are classified exactly by their metric
entropy.

From a physical point of view the basic interest is in the spatial mean
values and the time mean values of any physically measurable quantity. We
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consider a numerical function F : UM → R and a point v ∈ UM .

the time mean value at v is F ∗(v) = lim
L→∞

1
L

∫ L

0

F
(
Gt (v)

)
dt

the space mean value is 〈F 〉 =
∫
UM

F μ

Their existence is provided by Birkhoff’s theorem:

Theorem 235 (Birkhoff) The time mean value F ∗(v) of a measureable
function F : UM → R exists almost everywhere (i.e. except possibly on a set
of measure zero) and ∫

UM

F ∗(v)μ =
∫
UM

F μ .

For discrete systems one just replaces the time mean value by a finite sum

F ∗(v) = lim
n→∞

1
n

n∑
i=1

F (fn (x)) .

It is essential in physics to have some idea when an measurement of the time
mean value (or an approximation, over a long time) will yield the spatial
mean. This is precisely insured by the notion of ergodicity:

Definition 236 A dynamical system (discrete or continuous) on a space X
is said to be ergodic if the time mean values F ∗(v) are equal to the space mean
value 〈F 〉 for almost every v. This is equivalent to asking that under the flow
of the dynamical system, the only invariant subsets of X are of measure zero
or full.

Moreover almost all trajectories are everywhere dense; see corollary 245
on page 506. In a demagogic language an ergodic flow presents “total chaos.”
There is still however a stronger notion, that of mixing: we will say that the
dynamical system is mixing if for every pair of subsets A,B of X one has

lim
n→∞μ (fn (A) ∩B) = μ(A)μ(B) .

This implies not only chaos but an everywhere evenly chaotic nature. The
definition is very appealing: think of X as a glass of tonic and f as a mixing
operation with a spoon. The set A is some gin you put into X and the result
is that after a long time the gin, i.e. fn (A) , will be distributed with a regular
density everywhere. The subset B serves to measure the amount of gin found
at various places. Here have complete and evenly dispersed chaos. Bernoulli
shifts are mixing, hence ergodic.
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10.5.1.2 Notions of Entropy Entropy is a difficult notion. It was discov-
ered only in 1958 by Kolmogorov. The author of the present book believes
that when a notion came about only recently it is almost always because
it was difficult. Think of abstract groups, vector spaces, etc. Heuristically
entropy is not difficult—entropy is nothing but the measurement of the ex-
ponential factor of dispersion in a dynamical system of anything you want
to compute. For example, the loss of information as time goes on, or the
dispersion of trajectories, or the rate of mixing, etc. Strict definitions are
less simple. Moreover there is more than one entropy. Two are standard:
the metric (or measure) entropy and the topological entropy. The labeling is
ridiculous: metric entropy needs only a measure to be defined and is really
a measure notion, while topological entropy needs a metric (even if finally it
turns out to be independent of it) and is really a metric notion. The third
entropy, the volume entropy, makes sense only for manifolds whose universal
covering is “huge.” Metric entropy was the first to arise historically. General
references: Walters 1982 [1232] is the standard and a very good book, Sinai
1976 [1140] for its very informative style, Mané 1987 [891] cannot be avoided
for the study of Riemannian manifolds, but there is now the bible Katok &
Hasselblatt 1995 [787]. For references we refer mainly to the bibliographies
there.

The simplest notion of entropy to define is the volume entropy hvol in a
compact Riemannian manifold M . Let M̃ be its universal cover. We look at
the metric balls B (p,R) in M̃ and set

hvol(M) = lim
R→∞

1
R

log Vol (B (p,R))

which is easily seen to be independent of the base point p ∈ M̃ . Unhappily
this entropy is of no interest unless M̃ is “huge” (a little more precisely, when
π1(M) is “huge”). We remark that the geodesic flow is quite hidden here.

For a general dynamical system3

f : X → X

on a space X , put any metric on X and look at the iterates fk of f . One gets
new metrics for every integer n by setting

dn(x, y) = sup
0<k<n

d
(
fk(x), fk(y)

)
.

Let Nn(ε) be the minimum number of ε radius balls in the dn metric needed
to cover X and define the topological entropy to be

htop(X, f) = lim
ε→0

lim
n→∞

1
n

logNn(ε)

3 For a change, and simplification of notation, we will now use the discrete lan-
guage, leaving to the reader to translate it into the continuous one.
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It is easy to check that this does not depend on the metric chosen on the
compact manifold under consideration.

Finally the measure (or metric) entropy was the first to be defined his-
torically and by a mixing definition but a very complicated definition, quite
lengthy and moreover almost intractable in many situations. Moreover it was
based on the function x→ x log x which needs some consideration before one
realizes the final simplicity of the notion. We will still make use of an auxil-
iary metric which can be forgotten at the end. This time we define Nn(ε, δ)
to be the minimum number of ε radius balls needed to cover some subset of
X whose complement has measure less than δ.

hmeas(X, f) = hmet(X, f) = lim
δ→0

lim
ε→0

lim
n→∞

1
n

logNn(ε, δ) .

In the case of a geodesic flow, we will also denote measure entropy by
hLiouville .

These different entropies enjoy many inequalities and properties on special
manifolds. We note first that all of these entropies coincide on space forms
(locally symmetric of rank one, defined in §6.6). This is not obvious; see the
various references already given for proof. Their common value is trivial to
compute with the volume entropy; it is enough in the formulas of §§§7.1.1.2
giving the volume of the KP

n to replace the sine function by the hyperbolic
sine.

Theorem 237 Every compact space form M locally isometric to HypnK has
entropy

h (M) = n+ k − 2

where
k = dimRK .

But the various possible converses of these equalities are not completely un-
derstood today, see §10.8.

Theorem 238 (The variational principle) Every dynamical system sat-
isfies htop ≥ hmeas; in fact htop = suphmeas where the supremum is over all
possible invariant measures.

The problem is often to discover which measure has measure entropy
precisely realizing htop ; we will see some examples below.

Theorem 239 (Manning 1979 [894]) Every Riemannian manifold of non-
positive curvature satisfies

hvol ≤ htop .

There is no very general link with periodic geodesics, but
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Theorem 240 (Margulis 1969 [899]) On a compact Riemannian mani-
fold of negative curvature,

htop = lim
L→∞

log CF (L)
L

Do not think that positive measure entropy implies ergodicity even locally—
it only implies some kind of “local chaos”. Measure entropy is the strongest
invariant. For example, for a Riemannian manifold, positive measure entropy
implies the existence of a set of positive measure where a geodesic is every-
where dense. This is definitely not the case for topological entropy.

There is one implication from the topology to the entropy, namely

Theorem 241 (Paternain 1992)

htop = 0

for any rationally elliptic manifold.

The result is not surprising if one considers theorem 215 on page 482 and
§§10.3.5. The inverse question will be treated in §10.9. We end with a formula
giving explicitly a Riemannian quantitative description of divergence.

Theorem 242 (Ballmann & Wojtlowski 1989 [107]) The geodesic flow
of a compact manifold of nonpositive curvature satisfies

hLiouville ≥
∫
UM

tr
(√

−Rv
)
dv

where the integral is on unit vectors v and where Rv denotes the linear map

u→ R(v, u)v

constructed from the curvature tensor.

The trace is taken with respect to the Riemannian metric. Moreover equality
holds only for locally symmetric spaces. This formula was preceded by weaker
ones; see references in (7.3) of Eberlein, Hamenstädt & Schroeder 1990 [472].
In Foulon 1997 [518] there is a generalization of the above formula for Finsler
spaces (see §§14.5.8).

It is interesting to compare the formula above with the special “entropy”
introduced by Hamilton for proving the standard conformal representation
theorem 70 on page 277 for surfaces. He used the Ricci flow on metrics to
carry out the proof (see §§11.4.3 for the definition of Ricci flow). Namely this
entropy is defined as ∫

M

K logK dVM

where K is the Gauss curvature: see Chow 1991 [378].
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10.6 Negative Curvature

Manifolds of negative curvature4 will be treated at large, from the geometric
point of view, in §§12.3.4. But the dynamic properties of the geodesic flow are
closely interwoven with the global geometry of negatively curved manifolds.
A partial survey of the theory of negatively curved manifolds is found in
section 3 of Besse 1994 [184] and a very detailed discussion is presented in
Eberlein, Hamenstädt & Schroeder 1990 [472].

The ergodicity of surfaces of negative curvature was emerging in Hadamard
1898 [675]. For constant curvature (Riemann surfaces) one found it explicitly
in Hedlund 1934 [696]. The article Hopf 1939 [725] was extremely important;
it proves that the geodesic flow on compact surfaces of negative curvature is
ergodic (note that this is Eberhard Hopf, not Heinz Hopf whom we met and
will meet many times again in considering the relations between curvature
and topology). Hopf’s result was extended to any dimension in

Theorem 243 (Anosov 1967 [53]) The geodesic flow of any compact Rie-
mannian manifold of negative curvature is a Bernoulli shift; in particular it
is ergodic and mixing.

Even for surfaces the proof is never simple; the best exposition is in the
appendix by Brin of Ballmann 1995 [103], where one can see why the proof
is much harder for general dimensions than for surfaces. Historically in fact
Hopf’s result had a precursor in Morse 1921 [942],[943] where first topological
transitivity5 was obtained and, even better, a coding of the trajectories was
uncovered. Coding is extremely important—it enables people to study the
geodesic flow by looking only at a discrete “shift”. Let us recall Hadamard’s
coding in Hadamard 1898 [674] and see Katok 1996 [789] as well as Katok &
Hasselblatt 1995 [787].

The basic starting idea for proving Anosov’s theorem 243 is to look at
the geodesic behaviour when the time (the length) goes to infinity in both
senses (directions). We fix a geodesic γ and look at Jacobi vector fields
along it.6 The negative curvature assumption, in the spirit of §§6.3.1, shows
us something remarkable. Given any unit tangent vector v, orthogonal to
γ′(0) in Tγ(0)M , and any time t, there is a unique Jacobi field Yt along γ
such that

Yt(0) = v

and
4 Curvature is always understood here to mean sectional curvature, unless other-

wise noted.
5 Topological transitivity means the existence of at least one trajectory which is

everywhere dense
6 See page 271 for the definition of Jacobi field.
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Yt(t) = 0 .

It is not hard to see, again using the negative curvature property, that

Theorem 244 When t tends to +∞ (resp. −∞), the Jacobi vector field Yt
has a limit Jacobi vector field denoted by Y+∞ (resp. Y−∞).

It is important for future considerations to realize that this is the infinitesimal
version of the Busemann function to be met in §§12.3.2 and §§12.3.4.7 More
precisely, in UM the derivatives Y ′(v)(0) are tangent vectors in TvUM and
the distribution they form, locally in UM and globally in UM̃ are integrable
distributions,8 called respectively stable (for +∞) and unstable (for −∞).
Integrated, they are the level lines of the two Busemann functions along γ,
namely the spheres centered at the two points at infinity of γ, respectively
γ(+∞) and γ(−∞). In the canonical hyperbolic spaces, one gets nothing but
the horocycles.

Fig. 10.32. (a) In UM (b) In M

The Rauch comparison theorems (propositions 74 and 75) show that,
due again to the negative curvature condition, the norms ‖Y+∞(v)(t)‖ (re-
7 See the definition of Busemann function in definition 334 on page 613.
8 This UM̃ is the unit tangent bundle of the universal covering M̃ of M .
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spectively ‖Y−∞(v)(t)‖) decrease (resp. increase) exponentially with the time
(a.k.a. length) t. A sketch of a proof consists in realizing that the geodesic
flow, having both exponential decay and exponential growth, can permit only
invariant sets of full measure or measure zero. The details consist in checking
that, like in a jigsaw puzzle, one can go everywhere by traveling alternately
along stable and unstable distributions. This simultaneous exponential con-
vergence and divergence insures this. Working out the details is difficult,
because in fact the distributions above are not well behaved; except in the
locally symmetric case they are not differentiable. Indeed, these distributions
are not even Lipschitz for generic negatively curved metrics; but they are at
least absolutely continuous. Hopf knew of the absolute continuity and the
poor behaviour of the distributions for surfaces, and Anosov extended these
results to any dimension. The reason for this savagery is simply that the Ja-
cobi fields are given by a limiting process at infinity, and such limits need not
even be continuous. Historically, these foliations appeared first in Hadamard
1901 [676]. Remarkably, smoothness of the distributions forces local symme-
try; see §10.11.

The negativity of the curvature is absolutely necessary. For example do
not hope for some kind of generic result; see however Lohkamp’s results in
§10.9. In figure 10.33 on the next page we see bad behaviour for the geodesic
flow of a Riemannian manifold. Put a piece of a Weinstein surface of revo-
lution (see §§§10.2.1.2) of rational type into the mushroom. In this band, all
the geodesics are periodic. So we certainly do not have ergodicity. But we are
looking for genericity. So we take any small perturbation of this mushroomed
surface. Then we appeal to the KAM theorem which yields the existence of
many invariant tori in the phase space close to the Weinstein piece. Because
we are in dimension 2, the phase space is three-dimensional and the KAM
tori disconnect it.

Note 10.6.0.1 We note two interesting problems. First, the behaviour of
the geodesic flow on a torus is not understood. Second the above genericity
argument fails in higher dimension because the KAM tori will no longer be
disconnected. The genericity question in higher dimension is then much more
difficult and we know of no result, save Boucetta 1998 [231]. �

10.6.1 Distribution of Geodesics

We now look at applications of the main result above. For the geometer seeing
things downstairs on the manifold, we note first:

Corollary 245 In a manifold of negative curvature, almost all geodesics are
evenly distributed in the manifold.

The precise definition of “evenly distributed” is the most natural view
for a geometer: we say that a geodesic γ is evenly distributed if, for every
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Fig. 10.33. A Weinstein piece attached to a Riemannian manifold

domain D ⊂ M the time that this geodesic spends inside D is proportional
to the relative volume of D, i.e. Vol D/Vol M . Precisely:

lim
L→∞

1
L

length (D ∩ γ[0, L]) =
Vol D
Vol M

The proof is an application of the definition of ergodicity 236 on page 499.
We apply it to the function F (v) = 1D(p(v)) which is the composition of the
characteristic function of D with the projection p : UM → M . We apply it
to a unit tangent vector v and for most of them we have that the time mean
value is exactly what we want in the left hand side, while the right hand side
is the space mean value. This proves even distribution in the configuration
space M . By the same token, applied to the characteristic function of a subset
of the phase space UM , we see that geodesics are evenly distributed in the
phase space.

10.6.2 Distribution of Periodic Geodesics

We will continue to consider compact negatively curved manifolds. Since we
know that we have an exponential number of periodic geodesics (see e.g.
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corollary 207 on page 473) we expect them to be evenly distributed in the
same way almost all of the nonperiodic geodesics are evenly distributed, but
this is false in general. Let us make precise the notion of even distribution
for periodic geodesics.9

Theorem 246 The unit bundle of a compact manifold of negative curvature
carries a canonical measure, called the Bowen–Margulis measure (or BM
measure).One can define it as the limit, as L→ ∞, of the mean value of the
Dirac distributions defined by the periodic geodesics of length smaller than L.
Or more conceptually (once one knows its existence and uniqueness employing
the previous definition) as the measure invariant by the geodesic flow which
has maximal metric-measure entropy.

This measure is of course invariant under the geodesic flow and can be
defined also as the product of three measures:

1. dt along the flow and two measures
2. dμstable and
3. dμunstable

given on the distributions introduced above. Of course by the very definition,
the periodic geodesics are evenly distributed for the BM measure. For locally
symmetric metrics the BM and Liouville measures coincide. Katok proved
that the Liouville and the BM measures on the tangent bundle of a surface
coincide if and only if the curvature is constant. The analogous result for
higher dimension remains an open question today.

We will come back to Anosov’s result in detail later. We first address two
questions stemming out of Hopf’s and Anosov’s results.

Question 247 Is negative curvature needed to get ergodicity?

Question 248 Does one really need a manifold with a large fundamental
group to have ergodicity?

This question will be the topic of §10.9.

10.7 Nonpositive Curvature

We will see in §§12.3.4 that, at least today, hyperbolic groups are the “final
answer” for the fundamental groups of negatively curved compact manifolds.
But we will also see nice results, even if still not complete, to expose the
very subtle difference between negative and nonpositive curvature. We will
address here the splitting question between negative and nonpositive at the
9 References are the same as the ones at the beginning of §§§10.5.1.1 and add

Pansu 1991 [996] for a fast informative survey, and Knieper 1998 [821].
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level of the geodesic flow. Today there are extremely strong results which
show in essence that the two cases can be dramatically separated. Otherwise
put, to go from one to the other you have to make quite a jump.

We give the latest result and refer to Eberlein, Hamenstädt & Schroeder
1990 [472] for a survey and to Ballmann 1995 [103] for the proof. The present
text will intersect a lot with §§12.3.4. The contemporary theory of negative
or nonpositive curvature manifolds is full of results. This is due to the rich
interplay between geometry, structures at infinity, measure theory, dynamical
system theory, symplectic geometry and group theory. See §§12.3.4 for more
on this. A contrario the reason why we have so few results on the spheres
and the KP

n might well be because of the lack of available tools. We now
just extract one striking result here.

To understand the result we recall briefly the notion of rank in a Rie-
mannian manifold (see the definition 68 on page 273) met also for symmetric
spaces (see §§4.3.5 and §§§12.3.4.5). To say that the rank is at least two im-
plies that, given any unit vector, along the geodesic it generates there is a
nontrivial parallel Jacobi field (orthogonal to the geodesic of course, and not
zero), something exceptional in a generic manifolds. The strongest result to-
day is the following “all or nothing” result for compact Riemannian manifolds
of nonpositive curvature. We assume any reasonable irreducibility condition.

Theorem 249 (Ballmann & Eberlein 1987 [105]) Either the rank of the
space is greater than or equal to 2, and then we are on a space form with its
symmetric space metric, or the rank is 1 and then the geodesic flow is ergodic
on the subset of the unit tangent bundle made up of the vectors of rank 1.

Today it is still unknown if this subset of rank 1 vectors is of full measure or
not. The above dichotomy admits a lot of extensions with weaker hypotheses,
like completeness with finite volume to replace compactness, or a so-called
“group duality condition,” and also to metric spaces mimicking Riemannian
manifolds of nonpositive curvature. For all this the reader can look at the
various references already given.

For the proof, the idea is to be able to integrate in some sense the in-
finitesimal condition given by having a rank at least two, and to reconstruct
all of the totally geodesic flat submanifolds of a locally symmetric space.
One trick is to relate the rank to the nontransitivity of the holonomy group,
which plays a basic role in Simons’ proof of the classification theorem 397 on
page 669. Even if the rank is one, there could exist vectors of larger rank;
the corresponding periodic geodesics are called singular and counting them
among the regular ones is linked with the Bowen–Margulis measure. For a
subtle result on this see Knieper 1998 [821].
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10.8 Entropies on Various Space Forms

We already said that for the space forms of negative curvature (see §6.6 and
§§10.5.1) the four possible entropies are equal. One expects a converse. The
first result in this direction is that of Katok, which is extremely complete.

Theorem 250 (Katok 1988 [786]) Consider a compact surface which ad-
mits a metric g0 of constant negative curvature. Let g = f2g0 be any metric
conformal to g and of same area, i.e.∫

M

f2 dVg0 = 1 .

Then one has

hLiouville(g) ≤ ρhtop (g0) ≤ ρ−1htop (g0) ≤ htop(g)

where
ρ =

∫
M

f dVg0 .

Plug this into the conformal representation theorem 70 on page 277 and the
common value htop (g0) = 1. Then we see that on any compact Riemannian
surface of genus larger than one and normalized, the topological entropy is
at a minimum if and only if the curvature is constant, and the reverse for the
Liouville entropy. Katok conjectured the same result for higher dimension
and for the space forms locally isometric to HypnK. Gromov suggested to use
the volume entropy. Today we have the optimal result for the topological
entropy:

Theorem 251 (Besson, Courtois, Gallot 1995 [189]) Let (M, g0) denote
a compact locally symmetric space of negative curvature (hence of HypnK type).
Then for any other metric g on M one has an inequality on volume entropy:

hvol(g) ≥ hvol (g0) .

Moreover when the dimension is larger than two, equality implies isometry:
g = g0 .

Using the hyperbolic analogues of the formulas in 7.1.1.2 for the volumes
of the KP

n one gets the immediate

Corollary 252 For space forms of type HypnK, the common value of the three
entropies is equal to d+ k − 2 where k = dimRK.

From the union of theorems 237 and 238 one sees immediately corollary 207
for counting periodic geodesics, with equality only in cases of isometry. An-
other corollary of theorem 251 is the Mostow rigidity theorem 99 and in
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§§6.6.3; see Besson, Courtois & Gallot 1995 [189] for the proof. This turns
out to be the simplest available proof of Mostow’s rigidity. In theorem 285
and theorem 261 we will meet two other corollaries of the strong result above.

A few words about the proof of Besson, Courtois & Gallot 1995 [189],
with Besson, Courtois, & Gallot 1995 [190] providing a simpler one. The more
natural and conceptual tack would be to prove that the entropy is a strictly
convex functional on the space of all Riemannian metrics and that the locally
symmetric metric is a critical point. Unhappily this program does not work
as such except in a conformal class (see Robert 1994 [1062]). The original
proof was quite involved but used wonderful techniques, like the center of
mass (see §§6.1.5) for the structure of the sphere at infinity (see the sphere at
infinity in definition 362 on page 635) and the technique of calibration (see
the definition of calibration on page 693). In Besson, Courtois & Gallot 1995
[189] the proof is greatly simplified by introducing the Patterson–Sullivan
measure on the sphere at infinity in order to get a better notion of a center
of mass.

10.8.1 Liouville Entropy

The Liouville entropy cannot be as simple to analyze in higher dimensions
as it was in dimension 2, since in Flaminio 1995 [517] there are examples of
compact space forms locally isometric to Hyp3 whose Liouville entropy can
be made larger by switching to a different metric. However one has to go
far away from the locally symmetric metric, since by Knieper 1997 [820], the
Liouville entropy has a local maximum at any constant curvature metric (in
any dimension). Today the total picture is not clear.

10.9 From Osserman to Lohkamp

Ergodicity discovered by E. Hopf on surfaces of negative curvature seems
to be linked to divergence of geodesics, and negative curvature is linked to
higher genus by the Gauß–Bonnet theorem 28 on page 155. One might still
wonder if ergodicity or partial chaotic behaviour can be obtained

– on topological spheres
– or on manifolds of positive curvature.

Recall also Anosov’s theorem 243 on page 504. These questions have very
clear answers. We will start with two examples which are beautiful geometric
explicit constructions, and finally describe Lohkamp’s recent and completely
different approach to the question addressed.

The fact that ergodicity is possible on the topological sphere S2 comes
from an idea of Osserman: take a pair of pants of constant negative curvature
(see the description of pairs of pants on page 216) such that the three ends are
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Fig. 10.34. (a) In Hyp2, right angled hexagons (b) The antipodal map

periodic geodesics of length π and complete it by standard hemispheres; hence
equators are also of length π. Geodesics from inside the pants arriving at the
boundary reenter the pants antipodally because of the hemisphere property.
And so on. Therefore the geodesic behaviour can be obtained by that of
the geodesic flow on the surface obtained from the pants after identification
by antipody on the three boundaries. This is a nonorientable surface but
of (constant) negative curvature and E. Hopf’s result (see theorem 243 on
page 504) still applies in the nonorientable case. So we have ergodicity on the
quotient and this implies immediately ergodicity on the sphere.

Osserman’s example is not very smooth, only continuously differentiable,
the curvature having to jump from +1 to −1 along the gluing. A smoothing
was obtained in Burns & Gerber 1989 [286]. Their proof is very geometric.
One replaces the hemispheres by pieces of surfaces of revolution. If the merid-
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ian has a convex varying curvature then the study of the Jacobi fields shows
that divergence of geodesics is still preserved. But this was an abstract surface
(compare with Hilbert’s impossibility in theorem 27 on page 152). Embed-
ded ergodic surfaces were obtained in Burns & Donnay 1997 [285]. The proof
is based on the existence of triply periodic minimal surfaces in E3 instead
of hyperbolic pants. One still adds caps to ends so that diverging geodesics
entering the minimal surface still diverge again after the cap focusing. By
the same approach, one can obtain such surfaces of any genus, including tori.
In Burns & Gerber 1989 [286], still working “à la Osserman,” one builds on
S2 real analytic metrics which are more than ergodic, that is to say are a
Bernoulli shift, in particular the geodesic flow is ergodic and mixing (see the
definition of Bernoulli shift on page 498).

To get positive topological entropy on a sphere of positive curvature one
creates local chaos by deforming a three-axis ellipsoid as follows. One begins
by trying to understand the behaviour of the geodesics going through two
antipodal umbilics. Since Birkhoff, some people like to get intuition by flat-
tening our ellipsoid onto a double-faced ellipse. It is similar to that of a light
ray traveling through the two foci. When it comes back to the first umbilic it
is never with the same direction so that it is never periodic but it is asymp-
totically closer and closer to the periodic geodesic going through the four
umbilics. This holds in both +∞ and −∞ direction, because in the interme-
diate stage it “jiggles” in the middle of the ellipsoid. A small perturbation of
the ellipsoid in two small open sets in the jiggling part produces a horseshoe,
and hence local chaos and positive topological entropy (and then moreover
an exponential CF (L) counting function). The complete proof is delicate
and figures in Knieper & Weiss 1994 [823]. One can even get positive topo-
logical entropy with a real analytic metric, thanks to general approximation
theorems. See Bolsinov & Taimanov 2000 [218].

Recently Lohkamp revolutionized the subject. Using a hard technique,
similar to his work (see §§12.3.5) on negative Ricci curvature, there is a game
to push enough pieces with ergodic behaviour and larger and larger entropy,
but at the same time ensure that the positive curvature pieces do not destroy
the ergodicity.

Theorem 253 (Lohkamp) Within the set of Riemannian metrics of any
compact manifold, there is a Hausdorff dense set of Riemannian metrics
whose geodesic flow is ergodic.

As example, Lohkamp can use his flexibility to obtain ergodic (Bernoulli)
spheres embedded in E3. But at the moment none of them is convex. The
major question left:

Question 254 Is ergodicity impossible or not on positive curvature mani-
folds?
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10.10 Inverse Problems: Manifolds all of Whose
Geodesics are Closed

We turn now to an inverse problem announced in the introduction. Motivated
by Zoll’s surfaces in §§§10.2.1.1, we address the problem of classification of
the manifolds all of whose geodesics are closed. There is an entire book on
the problem, namely Besse 1978 [182], and sadly enough there are basically
very few new results in the subject. To our knowledge there are only Gro-
moll & Grove 1981 [602], Kiyohara 1984 [806], Tsukamoto 1981 [1202], and
Tsukamoto 1984 [1203]. We met the problem and some answers for surfaces
in §§§10.2.1.1. One must remember §§4.4.3 and §§6.6.1: the spheres and the
KPn have a beautiful geodesic flow, since all of the geodesics are periodic,
simple and of the same length (for their canonical metric). But from Kiyohara
1984 [806] we are going to see that the inverse problem is still partly open.
The spheres and the KP

n behave very differently, at least as far as we know.
In all of this section, lacking references can be looked up in the book Besse

1987 [182].

10.10.1 Definitions and Caution

For the reader who might underestimate the difficulty of the subject, we
mention a few facts; for more, and for references, see Besse’s book. Remark
first that any quotient of a manifold whose geodesics are periodic has only
periodic geodesics, but they need not all have the same length. This occurs
for the lens spaces (the quotients of spheres by finite groups of isometries).
Remember that the KP

n of even dimension can admit only Z2 quotients
thanks to Synge’s theorem 64 on page 269. The simplest example to have in
mind is the quotient of S3 ⊂ R4 by Z2 on (x1, x2) and Z4 on (x3, x4). All
geodesics have length π except for one which has length π/2. Getting close
to this π/2 geodesic, the others accumulate on it in double coverings. Some
people might prefer to use the fact that RP

3 is the same as SO (3) and take
the quotient of this rotation group by the symmetry around a line in R3.

Let us assume no more than that all geodesics are periodic. It is trivial to
show that the lengths are all multiples of a smallest one (in the spirit of the
first variation formula). It is true, but hard to prove, that these lengths are
bounded; see Wadsley 1975 [1225]. An interesting fact about this theorem is
that it is false in affine geometry where there are compact manifolds foliated
by circles but the circle lengths (in any metric) are not bounded—they can
turn more and more. See references in Besse’s book for the examples of Sulli-
van in dimension 5 and D. Epstein in dimension 4. Worse: if there are plenty
of examples for which the lengths are different, e.g. lens spaces, it is unknown
if on simply connected manifolds with all geodesics periodic, all the lengths
are equal. There is also the question of simple or self-intersecting periodic
geodesics. The only result we know of is on S2: Gromoll & Grove 1981 [602]
mentioned already on page 463.
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The very intricate relations between various definitions concerning peri-
odic geodesics, geodesic loops, and whether one asks for periodicity at one
point or and all points are addressed in chapter 7 of Besse’s book. It seems
that nobody has recently taken up the study of these relations and various
possibilities.

10.10.2 Bott and Samelson Theorems

The greatest imaginable accomplishment concerning manifolds with only pe-
riodic geodesics would be to prove that, as manifolds, only the spheres and
the KPn can admit a Riemannian metric all of whose geodesics are periodic
and of the same length. There are no other ones known today, but there are
some results pointing in this direction. The most irritating fact is that the
strong topological statement concerning the topology of the possible mani-
folds is obtained by assuming just that all geodesics through some point are
periodic and of the same length. Nobody could deduce anything more even by
assuming this is true for every point. Thus far the spectral result theorem 177
on page 430 has been useless.

To state the results one is best to look at the beginning of the proofs which
follow two completely different approaches, the one of Bott and the one of
Samelson. But they have the same starting point. Let m be our point with
the above property. By compactness and existence of an injectivity radius
is it easy to see that all points q close enough to m have the property that
all geodesics joining m to q are the covering of one periodic geodesic γ and
moreover one of them is a segment σ with ends m and q not conjugate. It
is now necessary to look at all of these coverings, which have two possible
directions, as in figure 10.38 on the facing page.

A well studied integer k comes now into the picture, namely the index
(in the sense of Morse, as above) of the complement γ − σ of the segment σ
inside γ.

Theorem 255 (Bott 1954 [226], Samelson 1963 [1091]) The integer k
does not depend on the point q and if k > 0 then the manifold Md is simply
connected and its integral cohomology ring has exactly one generator. More
precisely there are only the following possibilities:

Index Dimension Topology
k = 1 d = 2n M has the homotopy type of CPn

k = 3 d = 4n M has the homology ring of HP
n

k = 7 d = 16 M has the integral cohomology ring of CaP2

k = d− 1 d arbitrary M has the homotopy type of Sd and hence is home-
omorphic to Sd if d �= 3, 4

k = 0 d arbitrary M is diffeomorphic to RPd

The proof is a mixture of two ideas. Samelson’s starting remark is that the
geometric structure of the geodesics through m enables us to build, in an
obvious and canonical way, a map RP

d →M , as in figure 10.39.
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Fig. 10.39. Samelson’s map RPd → M

A little more geometry shows that if k = 0 then the map is one to one. Bott
now comes into the picture when k > 0. This situation can be approached via
Serre’s theory (described on page 480). The sequence of indices of all geodesics
joining m to q is exactly the set of integers n(d+ k− 1) and n(d+ k− 1) + k
with all integers n ≥ 0. The reader has only to notice that m is conjugate
to itself with index d − 1. Such a sequence is very special, and very gappy
since the indices jump by d − 1. This observation implies that the spectral
sequence of the fibration
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Λ→ Λp,. →M

(already met in the fiber map 10.2 on page 481) degenerates (only its d2

differential is not zero) and a nice algebraic calculation shows that this forces
the cohomology ring ofM to be generated by a single element. The conclusion
in the theorem follows from “classical” results in algebraic topology about
such manifolds.

One cannot do better: there are exotic “KP
n”; we mentioned them on

page 490 when talking about spaces for which we still do not know whether
they admit infinitely many periodic geodesics for any metric. These exotic
KPn seem for the moment to be “cursed.”

10.10.3 The Structure on a Given Sd and KPn

We already mentioned Weinstein’s remark:

Theorem 256 (Weinstein) In every dimension, there are “exotic” metrics
all of whose geodesics are simple, periodic and of the same length.

But starting in three dimensions, nobody seems to have the foggiest idea
“how many” they are, in particular what is the tangent space at the canon-
ical metric of Zoll’s space of purely periodic Sd metrics. We just have from
Kiyohara 1984 [806] some restrictions on the potential tangent vectors of one
parameter deformations.

The only case in which our understanding is satisfactory is that of RPd,
which is a corollary of the “Wiedersehenmannigfaltigkeit” theorem. We look
on the sphere Sd at a metric such the cut locus of any point is reduced to a
single point, its antipode. This is particular case of the situation where the
diameter is equal to the injectivity radius; see §§6.5.5 for more on this very
special, but baffling, property. On spheres, theorem 257 solves the question:
only the standard spheres are “Wiedersehen”. Another language is: the stan-
dard sphere is everywhere a perfect (stigmatic) optical instrument—we have
everywhere perfect focusing with any angle up to 2π. There is no way to
deform the standard sphere and preserve this property. The problem in ge-
ometrical optics to look for local perfect optics (Maxwell’s fisheye, see Born
& Wolf 1965 [225]) is treated in Deschamps 1982 [441].

Theorem 257 (“Wiedersehenmannigfaltigkeit”) On a sphere Sd only
the metric of constant curvature can be “Wiedersehen”.

Theorem 258 The only metric on RP
d such that all geodesics are periodic,

simple and of same length is the standard one.

If we lift a metric from RP
2 up to S2, then the latter one is “Wiedersehen”

(i.e. a metric such the cut locus of any point is reduced to a single point, its
antipode), hence the corollary.
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m
m'

a locally sigmatic manifold

Fig. 10.40. (a) Light rays (i.e. geodesics) on the standard sphere (b) A locally
stigmatic manifold

In the study of surfaces, theorem 257 on the facing page (as applied to S2)
was a long standing conjecture of Blaschke in the 1930’s, with even a deadly
wrong proof figuring in the first edition of his book Blaschke 1921 [203]. The
conjecture was settled in Green 1963 [586] as follows. We will normalize the
diameter to π. One needs two tricks: first apply Santalo’s formula 7.11 on
page 388 to the surface S+ made up by one side of a fixed periodic geodesic
γ. This S+ is exactly covered by the segments of length π issued from the
points of γ, so that Santalo’s formula yields 2π for the area of our S+ and
by the same token the total area Area

(
S2, g

)
of a our surface is equal to 4π.

The second trick is to integrate over the unit tangent bundle US2 the family
of all second variations, from formula 6.7 on page 264 (see theorem 62 on
page 266) for every v ∈ US2 and the sine function along it:∫ π

0

(
cos2 t−K (γ (t)) sin2 t

)
dt .

These integrals all have to be nonnegative, since the injectivity radius is π.
From Fubini’s theorem, ∫

S2
K dVS2 ≤ Area

(
S2
)
.

But
∫
S2 K dVS2 = 4π by the Gauß–Bonnet theorem 28 on page 155. So we

have equality everywhere, and in particular for all of the integrated second
variation. Because the first conjugate point is a distance exactly π, there is
only (up to a constant) one Jacobi field vanishing on [0, π]. Vanishing of the
second variation for the sine field along any geodesic forces this sine field to
be a Jacobi field (see §6.3), and therefore the Gauß curvature K has to be
everywhere equal to 1.

Now for higher dimensions, we are doubly vexed. First, the trick of in-
tegrating the sine-square second variation all over UM will only yield the
scalar curvature, and second Santalo’s formula would work only if we had
a totally geodesic “equator.” New approaches were required. The first idea
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came in Weinstein 1974 [1249]: he introduced the smooth manifold Σ which
is the totality of all periodic geodesics on M . This yields a circle fibration

S1 → UM → Σ .

Consideration of the Chern class of this circle bundle shows that the volume
of M is an integral multiple of the volume of the standard sphere. Weinstein
proved that (for topological reasons) this integer is equal to 1 when the
dimension is even, and this was extended into the odd dimensional case in
Yang 1980 [1284]. So that finally the volume of our manifold is equal to that
of the standard sphere, but since the injectivity radius is equal to π, the proof
is concluded with the embolic inequality from theorem 148 on page 380.

In the same vein, there are no known metrics on any KP
n all of whose

geodesics are periodic (except of course the standard ones) when K =
C,H,Ca. But a proof of the uniqueness (if true) seems far away. We have
only a partial result:

Theorem 259 (Tsukamoto 1981 [1202]) On any KP
n, there is no met-

ric all of whose geodesics are periodic close to the standard metric, except the
standard metric itself.

This is used in Kiyohara 1987 [807] to prove the spectral solitude of the KP
n.

The link with the spectrum is insured by the results quoted above relating
periodic geodesics and the spectrum. Other results of this type are in Gasqui
& Goldschmidt 1994 [550] and various texts by the same authors, past and
future.

10.11 Inverse Problems: Conjugacy of Geodesic Flows

We address the inverse (recognition) problem in the spirit of the geodesic
flow: does the geodesic flow determine the metric up to isometry? The precise
formulation is this. The geodesic flows of two Riemannian manifolds (M, g)
and (N, h) are said to be conjugate if there exists a smooth map f : UM →
UN which commutes with the geodesic flows GtM and GtN of M and N ,
namely we have for every time (length) t a commutative diagram:

UM
f ��

Gt
M

��

UN

Gt
N

��
UM

f �� UN

valid for every time t.
The existence of such a conjugacy can be a more or less strong assertion;

we will see below that sometimes one needs not only a continuous conjugacy
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f , but an f which is continuously differentiable. It is important to note that
the map is not asked to commute with the projections UM →M and UN →
N . It is like comparing trajectories of a plane but never looking through the
window down at the earth. Now the precise question is:

Question 260 Are two Riemannian manifolds with conjugate geodesic flows
necessarily isometric?

In this active field, besides research publications, there is the survey Eberlein,
Hamenstädt & Schroeder 1990 [472].

From our previous experience, two families of possible counterexamples
come to mind. The first are Zoll surfaces. It was proven by Weinstein that
all Zoll surfaces of revolution have conjugate geodesic flow (see section 4.F
of Besse 1978 [182]) and in particular the same geodesic flow as that of the
standard sphere. The fact that geodesics are all periodic and of the same
length is not enough; one has to built up explicitly some map f . Note also
that the antipodal property is not preserved, since the conjugacy is not asked
to commute with the canonical projections (see theorem 257 on page 520).

The second example needs first a remark: if the geodesic flows are con-
jugate then the length spectra (i.e. the set of the lengths of the periodic
geodesics) are the same. Then the Vignéras examples (see §§§9.12.4.1) of
Riemann surfaces having the same Laplace spectrum and hence the same
length spectrum (by Huber’s theorem 192 on page 446) are different Rieman-
nian manifolds but with the same length spectra. Of course this does not
prove that their flows are conjugate.

The situation is sometimes different for the marked length spectrum. This
means one “remembers” not only length but also which free homotopy class a
periodic geodesic comes from. Of course geodesic conjugacy implies the same
marked length spectrum. We now have three notions:

1. same length spectrum
2. same marked length spectrum
3. conjugacy of geodesic flow.

They have a rich interplay in the realm of nonpositive and negative curvature.
The basic survey is Eberlein, Hamenstädt & Schroeder 1990 [472]. In partic-
ular for manifolds of nonpositive curvature, equal marked length spectrum is
equivalent to conjugacy of geodesic flow. Many partial but strong results are
available. As already said they share many considerations with §§12.3.4. We
just quote some results in this very active topic.

For manifolds of nonpositive curvature, conjugacy of geodesic flows im-
plies isomorphy of fundamental groups. Then apply Farrell & Jones 1989
[507] to get homeomorphism.

The strongest result known about conjugacy of geodesic flows is a corol-
lary of theorem 250 on page 510:
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Theorem 261 If M is any Riemannian manifold of dimension at least 3
and N is a locally symmetric manifold of nonpositive curvature, and M and
N have C1 conjugate geodesic flows, then M and N are isometric.

This very strong statement uses various previous results; for details we
refer to Besson, Courtois & Gallot 1995 [189].

Theorem 262 If M and N have identical marked length spectra between,
and dimensions greater than two, and N is of constant negative curvature,
then M and N are isometric.

Here one also needs dimensions at least three, because of the moduli spaces
of constant curvature surfaces.

One may ask the question of extending the results above to the case
of locally symmetric manifolds of only nonpositive curvature. This research
domain is very active today.

Theorem 263 (Croke 1990 [419] & Otal 1990 [985]) For surfaces of non-
positive curvature, conjugacy implies isometry.

The main question today is if this is still valid in any dimension.
To end the marked length spectra story, we note that Gornet 1996 [580]

presents nonisometric manifolds with identical marked length spectra.
Space forms can be recognized by an apparently very weak property:

the continuity (or the smoothness) of the stable and unstable distributions
introduced in §10.6.

Theorem 264 If the stable distribution of a manifold of negative curvature
and dimension at least three is C∞ smooth, then it is isometric to a locally
symmetric manifold of negative curvature.

The proof uses hard results obtained by various authors, e.g. Benoist,
Foulon & Labourie 1992 [131] and theorem 250 on page 510; see Besson,
Courtois & Gallot 1995 [189] for more references.

The geodesic flow on flat tori can be characterized by the fact that there
are no conjugate points. Namely, a metric on a torus with no conjugate points
has to be flat. This was proven in Hopf 1948 [726] for the two-dimensional
tori, where the Gauß–Bonnet theorem 28 on page 155 is used, similarly to its
use in the proof above of theorem 257 on page 520, using the second variation.
For higher dimensional manifolds, it was a long standing conjecture, but hard
to solve since the second variation yields only a very weak invariant, namely
the integral of the scalar curvature. The conjecture was finally solved:

Theorem 265 (Burago & Ivanov 1994 [280]) The only metrics on tori
which have no conjugate points are the flat ones.
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The proof makes a subtle analysis of the behaviour at infinity of the
manifold and there employs approximation of symmetric convex bodies by
ellipsoids. For the strict conjugacy of geodesic flows on tori, there are partial
results in Croke 1992 [421].

In all of the above results, the proofs mix more or less classical results of
ergodic theory with various geometric techniques; see §§12.3.2 and §§12.3.4.
The notion of Busemann function will also be met there. Variations of these
proofs can be caricaturally described as follows: one looks at the universal
covering of the manifolds of nonpositive curvature under consideration. They
look topologically like Ed. One defines on them various kinds of structures
“at infinity” and looks at the metric “from infinity.” In particular the isoperi-
metric profile plays a role.

Note 10.11.0.1 (Different metrics with the same geodesics) An old
local question, to find Riemannian manifolds with the same geodesics (i.e.
nonisometric maps preserving geodesics) has been reconsidered recently in
Matveev & Topalov [904]. These authors have discovered that such maps al-
low one to integrate the geodesic equation, and the Schrödinger equation.
�
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11.1 Introduction and a Possible Approach

What is the best Riemannian structure on a given compact manifold? René
Thom asked the author this question in the Strasbourg mathematics depart-
ment library around 1960. I should say not only that I liked it, but also that I
found it very motivating and frequently advertised it. Moreover, the question
is the first problem in the problem list Yau [1296]. It is only recently that I
discovered that the question of best metric was posed much earlier by Hopf
in Hopf 1932 [730], page 220.

There are obvious motivations; a startling one is to endow manifolds with
a nice privileged geometrical structure to obtain purely topological or other
types of results using metric methods: think of the conformal representation
for surfaces. The problem was completely solved for surfaces in the mid 1930’s,
as we saw in more than on place, e.g. in note 1.6.1.1, §§4.3.2, §§6.3.2 and
§§11.4.3: every compact surface (i.e. two dimensional differentiable manifold)
admits best metrics (one only for the sphere and the projective plane), namely
those of constant curvature, and (up to diffeomorphism) they are completely
classified. The sets of such best metrics are referred to (following Riemann)
as moduli spaces, of dimension 6g − 6 for an orientable surface of genus g.

I have put in this chapter some of the possible ways to formulate the
question more precisely and what is known in these various cases. I agree
that this might seem artificial. Notwithstanding I am offering this chapter as
I see things, leaving my readers to appreciate it or not.

The present question is a particular case of the study of the total land-
scape of the set of Riemannian structures on a given compact manifold. For
more general questions about that landscape, a reference of fundamental im-
portance is Nabutovsky & Weinberger 2000 [962] and also see Nabutovsky &
Weinberger 1997 [961], Nabutovsky 1996 [958], and §11.5.

For higher dimensions we are going to see that the problem is mostly
open. In dimensions three and four, it is full of activity. One of the sources of
interest in low dimensional Riemannian geometry is the hope that we might
use Riemannian tools to solve topology and differential topology problems
which are still haunting topologists. In dimension three, the “best metric”
approach based on functionals and their critical points, and the link with the
geometrization program of Thurston, is discussed in the various references
to Anderson below, in particular Anderson [47, 46, 48]. For dimension four,
besides §§11.3.6, see the recent reports Donaldson [456], the books Donaldson
& Kronheimer [457] and Morgan [939]. They present in particular the basic
tools: Yang–Mills theory, twistors, anti-self-duality in dimension 4 and, from
Seiberg & Witten [1118], the Spinc theory; see the end of §§14.2.2.

For general dimensions, one case however is well understood: that of space
forms of negative curvature, thanks to the results of Katok, discussed in theo-
rem 250 on page 510 and those of Besson–Courtois–Gallot discussed in §§10.8
which say that the best metric on compact space forms of negative curvature
is (up to trivial scaling) the (unique when the dimension is at least three)
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locally symmetric one which in fact defines it. This is true for two function-
als: the counting function for periodic geodesics (with the restriction today
of negative curvature) and the three entropies. Another direction was the
Loewner theorem on the torus (theorem 119 on page 351): the flat hexagonal
torus minimizes the ratio between the area and the square of systole (the
length of the smallest non contractible closed curve).

In a different realm, Hersch’s theorem (theorem 183 on page 434) says
that the area of a metric on S2 and the first eigenvalue λ1 of its Laplacian
satisfy

λ1 Area ≤ 8π
3

with equality only for the standard metric. This is particularly remarkable,
as we will see that for spheres and the KP

n there are basically no results
justifying our intuition that the standard metrics are the best, while many
results assert this for the negative curvature space forms.

11.1.1 An Approach

The scheme of attack is clear from the above examples, and one can find it
in a systematic exposition in chapter 4 of Besse 1987 [183], in Anderson 1990
[44], in Blair 2000 [201] and also in Sarnak 1997 [1096]. Sarnak takes as his
functional the determinant of the Laplacian; see equation 9.27 on page 443.

The compact manifold being M , let us denote by

RM (M) = {g | g is a Riemannian metric on M}

the space of all Riemannian metrics on M . The set of all Riemannian struc-
tures RS (M) is its quotient by the group of all diffeomorphisms of M (see
equation 4.14b on page 194)

RS (M) = RM (M) /Diff (M) . (11.1)

The idea is to consider some map (called a functional)

F : RS (M) → R

defined on the Riemannian structures of any compact Riemannian manifold
M , and to look for its infimum infRS(M) F, where the infimum is taken over
the metrics on M . Usually, the functionals under consideration are positive,
or at least nonnegative, but this is not always the case, as we will see with
the Hilbert functional in the theory of Einstein metrics in §11.4. Some nor-
malization might be needed for there to be any hope of that some metric will
actually minimize the functional. All of the functionals F we will consider are
defined by universal formulae defined for any compact Riemannian manifold
M , so we can compare F on different manifolds. We can ask some sensible
questions:
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g

Diff(M)

RM (M)
a slice

Diff(M)

RS (M)

Fig. 11.1. Riemannian metrics modulo diffeomorphism are Riemannian structures

Question 266 1. Is infRS(M) F zero or positive?
2. If positive, then is it attained by some Riemannian metric g on M? Such

a g will be of course called a best metric.
3. When these metrics exist, how can we classify best metrics? This is the

moduli problem.
4. Compute infRS(M) F for various F and frequently encountered manifolds

M .
5. (This question might seem less natural, but it will appear soon below.)

Classify the manifolds M for which infRS(M) F is positive and those for
which it is zero.

6. Find the possible values infRS(M) F when M runs through all compact
manifolds of a given dimension. Or at least, we can ask if the set of these
values is discrete, or if zero is an isolated point of this set.

The content of the chapter is clear. We will study the above problems for
various functionals F. But there is one important exception: in §11.4 the
functional under consideration (the integral of the scalar curvature, appro-
priately normalized, known as the Hilbert functional) never has a minimum.
So we will look for its critical metrics g; a critical metric means simply a
metric for which all of the directional derivatives

d

dt
F (g + th)

vanish, for every symmetric 2-tensor h.
This will turn in fact to be the most satisfying case. The order we follow

for the functionals suits the author’s taste, starting with the most geomet-
rical ones. Note that the derivative condition above is of course satisfied for
minima. But one essential difficulty is that, except for the Hilbert functional,
most geometric functionals have no “accessible” derivative.

A contrario, the functional encountered in §11.3 will turn out to be of
great interest, defining deep invariants arising from Riemannian geometry for
compact smooth manifolds. The infimum being zero or not will be the most
important question, along with the question of isolation of the zero value.
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Except in one case, those invariants are so deep (at least as they appear
today) that their explicit value is unknown for almost all manifolds—even
space forms.

Some sections will consist in merely summarizing previous presentations
of results and adding few comments, questions, etc. We hope that redundancy
will not be counted a vice in our encyclopaedic book.

11.2 Purely Geometric Functionals

11.2.1 Systolic Inequalities

We will summarize the content of sections §§7.2.1, 7.2.2, and 7.2.3. In those
sections, the game was essentially to have inequalities for volumes indepen-
dent from the metric, depending only on the topological structure of the
manifold. We saw that the results are basically complete, all major questions
have been solved. From the systolic point of view, there only remain open a
few points (which might be very hard, however). In the present perspective of
“the best metric,” the open points are precisely the ones of interest. We are
looking for the best constants in the systolic inequalities (when they exist);
few of these are known. Let us be more precise now.

We look first at manifolds M which are not simply connected, and take
as functional F the systolic quotient MinSys (M) of a compact Riemannian
manifold M of dimension d to be

MinSys
(
Md

)
= MinSys1

(
Md

)
= inf

{
Vol(g)

Sys (g)d

∣∣∣∣∣ g a Riemannian metric on M

}
Recall that the systole Sys (g) (also called the 1-systole) of a Riemannian

manifold was the infimum of the length of closed noncontractible curves. The
results of chapter 7 are summarized exactly by saying that:

– The questions (1) to (4) on the preceding page are completely solved for
only two manifolds, namely the torus T 2 and the real projective plane
RP

2, and they yield the flat hexagonal torus and the constant curvature
projective plane as best metrics. For all other surfaces (which are not simply
connected) one has a positive MinSys but its value is always unknown—
with the exception of the Klein bottle, where the minimum is attained for
a unique metric, but the metric has singularities.

– In higher dimensions, Gromov’s main result is that MinSys is positive for all
reasonable manifolds which are not simply connected (for instance, if that
the first dimensional topology is rich enough to generate the fundamental
class [in a suitable sense], which finally yields the volume). In not a single
case is the exact value of MinSys known. It would be particularly desirable
for the projective spaces RP

d and the tori T d.
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There is an obvious homological or homotopical notion of higher dimen-
sional systole Sysk (M) and an associated MinSysk (M). Results today,
described in §§7.2.3, indicate that this is never positive except possibly in
some very, very special cases. In particular there is not a single nonzero
MinSysk (M) known today. Even for the KP

n, the systole associated to the
generating homology class of

KP
1 ⊂ KP

n

and
dimR K = 2, 4, 8 ,

appears at first glance not incalculable and likely positive, because this is the
only situation (by the very axioms of projective geometry) where the “systolic
submanifolds,“ namely the projective lines, do really “sneak” all around the
space without ignoring anywhere. But already CP

2 and HP
2 are “systolically

soft!”

11.2.2 Counting Periodic Geodesics

We saw in §§§10.2.4.1 that on surfaces of higher genus, with the volume nor-
malized, the rate of exponential growth of the counting function for periodic
geodesics is the least exactly on constant curvature manifolds. This solved
completely question 266 on page 530, parts 1 to 4. For higher dimensions
this is also known; but, at least today, only if the curvature is assumed to be
negative.

Recall that the counting function CF (L) for periodic geodesics denotes
the number of geometrically distinct periodic geodesics of length smaller than
or equal to L. If one excepts the two cases of surfaces of constant curvature,
and arbitrary compact manifolds of constant negative curvature, then one
can summarize a good part of the second part of chapter 10 by saying that
the functional

inf CF(M) = inf
g

Vol(M, g)
lim supL→∞

1
L log CF (L|g)

(where the infimum is carried out over all Riemannian metrics g on M) is
completely mysterious today.

11.2.3 The Embolic Constant

Summarizing §§7.2.4 is more pleasant. We recall that the embolic constant
Emb(M) of a compact smooth manifold is the minimum of the embolic func-
tional

g �→ Vol(M, g)

Inj (M, g)d
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over all metrics g on M , where Inj (M, g) means the injectivity radius of M
in the metric g. Then we know from theorems 148 on page 380 and 154 on
page 381 that:

Emb(M) ≥ Emb
(
Sd
)

=
σ(d)
πd

and equality holds only if M is the sphere. Moreover the standard metric is
the only one yielding that minimum (in particular, Emb is positive for every
compact manifold). We also know that the value σ(d)/πd is isolated.

What we do not know, among other things, is the value of Emb(M) for any
manifold other than the sphere. It would be helpful for various applications to
have the exact value for the KP

n and the tori T d, see §§§7.2.4.6 and §§10.4.2.
What we did not say in chapter 7 is that question 266 on page 530 part 6 is
solved by

Theorem 267 (Grove, Petersen & Wu 1990 [651]) The set of embolic
constants Emb

(
Md

)
is discrete when M runs through all manifolds of a given

dimension d.

This is a direct consequence of the finiteness theorem 377 on page 649 of
to which we add the above isolation of zero. So that finally Emb(M) is quite a
good functional for classifying compact manifolds. However it seems to us that
there is no more than this general statement to be had. The embolic volume
appears as if it is measuring the complexity of M . But if one excepts Croke’s
embolic theorem 154 on page 381 which concerns the category of manifolds,
there is today no result relating it to various topological invariants as e.g. the
Betti numbers, etc. The category is in fact only an extremely weak invariant
since every manifold is of category at most d+ 1.

As far as question 266 on page 530 part 2 is concerned, the existence of
extremal metrics is open, but one would expect anyhow only metrics with
singularities. The reason for the absence of any existence theorem so far
is that all compactness results available, as in §§12.4.2, need some sort of
curvature condition.

11.2.4 Diameter and Injectivity

It seems to us that the invariant

inf
diam
Inj

(M) = inf
g

diam(M, g)
Inj (M, g)

(where g runs through all Riemannian metric on M) is a very natural one.
Still it is a very puzzling one. The only known result, quite a strong one, is
for M = Sd: theorem 148 on page 380 says that

inf
diam
Inj

(
Sd
)

= 1



534 11 Best Metrics

and attained (which is obvious), but only for the standard metric.
But now it is still unknown if spheres and the KP

n (with their standard
metrics) are the only compact Riemannian manifolds for which inf diam

Inj = 1
i.e.

diameter = injectivity radius ,

see §§6.5.5.
Answering other question concerning inf diam

Inj : in each given dimension,
the value 1 is not isolated. The discreteness outside 1 is open. It is not clear
if there are any relations between inf diam

Inj and the topological complexity of
M .

11.3 Which Metric is Less Curved?

11.3.1 Definitions

It seems to us that the most natural definition of an optimal metric is that
it is the least curved one.

11.3.1.1 inf ‖R‖Ld/2 The first obvious dimensionless functional is

‖R‖Ld/2 =
∫
M

|R|d/2dVM .

When one scales a metric g into λg, the curvature tensor Rg becomes

Rλg = λ−1Rg

and its norm
|Rλg| = λd/2 |Rg|

while the volume becomes

Vol(M,λg) = λd/2 Vol(M, g) .

For a compact smooth manifold M we introduce the number

inf ‖R‖Ld/2(M) = inf
g

∫
|Rg|d/2 dVM (11.2)

We note in passing that the Gauß–Bonnet–Blaschke theorem 28 on page 155
shows that this functional is certainly not of any use when M is a surface.1

But we are mainly interested in dimensions higher than two; see §11.1 and
§11.3.2 to see why.
1 Surprisingly, there is an elaborate quantum field theory associated to this func-

tional, known as topological gravity.
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11.3.1.2 Minimal Volume The next natural functional to evaluate when
one wants to get the “least curved” metric is the minimal volume of Gromov.
The minimal volume of a compact manifold M is defined as the minimum of
the volumes of all Riemannian metrics onM such that the sectional curvature
satisfies

−1 ≤ K ≤ 1,

i.e.
inf Vol(M) = inf

g
Vol(M, g) (11.3)

where g runs through all Riemannian metrics on M such that −1 ≤ K ≤ 1.
We remark again that when one scales a metric g into λg the curvature

Kg becomes
Kλg = λ−1Kg

while the volume becomes

Vol(M,λg) = λd/2 Vol(M, g) .

After having the curvature of g squeezed into [−1, 1] by a suitable scaling,
one looks for the smallest possible volume (not by scaling now). Equivalently,
one can look at the infimum over all metrics of supM |K| under a volume
normalized to 1. Putting everything together, we see that equivalently we
could study

inf Vol(M, g)d/2 sup |K| .

11.3.1.3 Minimal Diameter A third functional is the minimal diameter
inf diam(M), that is to say the minimum of the diameter of M in the various
metrics g under again the constraint

−1 ≤ K ≤ 1

on the sectional curvature, i.e.

inf diam(M) = inf diam(M, g) (11.4)

where g runs through all Riemannian metrics on M such that

−1 ≤ K ≤ 1 .

Having the minimal diameter is also a notion of being “less curved,” since

diam (M,λg) = λ1/2 diam (M, g) .

The functional inf ‖R‖Ld/2is the only one which seems to be accessible to
taking derivatives, but in fact we will see in §§11.3.6 that this is not really
the case, at least today and with the exception of dimension 4. Of course the
volume is accessible to differentiation by the formula
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d

dt
Vol(M, g + th) =

∫
M

trg h dVM (11.5)

but it is the condition
−1 ≤ K ≤ 1

which is not, nor is the diameter. For the diameter, contemplation of the
cut-locus from §§6.5.4 will convince you why. For sup |K| the reason why this
functional is easily differentiated can be seen from §§4.4.2, and this difficulty
will be met again on page 606 when trying to understand manifolds of positive
curvature, and in note 11.3.1.1 just below for the “best pinching” problem.

It will turn out that our three functionals have profound relations to other
topics of Riemannian geometry, in particular in §12.4 where we study the set
of all Riemannian metrics on a given compact manifold. These are the real
reasons which obstruct proofs of many results concerning these functionals,
since a contrario they are still (for the moment) useless as tools to find a best
metric on all but a handful of manifolds, and on surfaces.

Nabutovsky & Weinberger 1997 [961] took a new look at the search for
minimal diameter; we will examine their results in §11.5. Their text is very
interesting—it shows examples of manifolds where the space of all Rieman-
nian structures has a very complicated structure, namely infinitely many
“very deep” local minima for the diameter under the curvature condition
|K| < 1, but the metrics yielding these local minima cannot be connected
within the space of metrics satisfying |K| < 1. Note that the theory of algo-
rithmic complexity is heavily used, as it was in theorem 203 on page 469.

Note 11.3.1.1 (The best pinching problem) Some readers might want
to define the least curved metric as follows. In the case where our manifold
M admits some metric whose curvature is of a constant sign, then the least
curved metric would be one for which the ratio∣∣∣∣sup K

inf K

∣∣∣∣
is as small as possible. This kind of question belongs to §§12.2.2. We will see
there that is a theoretical answer, thanks to compactness theorems, but the
difficult structure of the curvature tensor (see §§4.4.2) is precisely what will
prevent us, at least today, from drawing any significant conclusions. �

11.3.2 The Case of Surfaces

As an introduction, and for simplicity’s sake, we first treat best metrics for
surfaces. The complete description of surfaces of minimal volume2 is in fact
understood thanks to the Gauß–Bonnet formula 28 on page 155:
2 Minimal area would be a better name.
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M

K dA = 2πχ(M) .

Taking the absolute value yields

inf Vol(M) ≥ 2π |χ(M)|

and equality holds if and only if the curvature is constant. If M is the torus
T 2 or the Klein bottle K then

inf Vol = 0

and is of course never attained. We are using here theorem 69 on page 275:
every compact surface admits a metric of constant curvature.

This result has solved all of the questions above since the metrics of
constant curvature (space forms) are completely understood in dimension 2,
except for T 2 and K. For these two surfaces, inf Vol is not good enough to
find the best metric. But note that you can find the best metrics even here
by taking as functional the integral∫

M

K2 dA

under the normalization Vol(M, g) = 1. Then you get the expected answer for
any compact surface. Finally note that the set of all numbers inf Vol

(
M2

)
as a subset of R is the discrete set 2πN.

We recall that the case of surfaces enjoys even a stronger property, that
of conformal representation seen in theorem 70 on page 277; this implies that
the set of all Riemannian metrics on a compact surface is structured (fibered)
above the moduli space made up by the set of constant curvature metrics.

11.3.3 Generalities, Compactness, Finiteness and Equivalence

If one excepts the case of dimension 4 below, inf ‖R‖Ld/2is not accessible to
differentiation in the sense that when one computes the equation of critical
points, one finds a system of partial differential equations of order 4 which one
cannot simplify today (even, by the way, in dimension 4). For more details,
see §§11.3.5. See Besse 1987 [183] section 4.H for these equations as well as
other ones given by quadratic functionals, and Anderson 1990 [44] and the
deep study Anderson 1992 [43] for dimension 4. For general dimensions, a
naive idea is to use ∫

M

|R|2 dVM

under the normalization Vol(M, g) = 1, since this quadratic functional dif-
ferentiates nicely in taking the first variation. But Gromov remarked that if
the dimension of M is at least 5, then the infimum is zero for every manifold
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M . To see this, embed in M a torus T d−1 and enlarge it as [−α, α] × T d−1.
Playing with large α and a flat metric on this product, let the ambient region
in M away from the torus carry a fixed metric; then∫

M

|R|2 dVM

remains fixed while the volume tends to infinity. But when one normalizes
the metric by a factor λ, the integral∫

M

|R|2 dVM

will behave like λ2−d/2 which goes to zero because d ≥ 5. This counterexample
was one of the reasons for Gromov to introduce the a priori less natural
minimal volume of §§§11.3.1.2.

S1 in a surface T2 in M3

T2

M3

T2 T2 T2

-α αO

[-α, α] × T2

Fig. 11.2. (a) A circle in a surface (b) A two dimensional torus in a three dimen-
sional manifold (c) [−α, α] × T 2

So we are back to inf Vol and inf ‖R‖Ld/2, and we ask first if they are
related. But remember proposition 38 on page 226: the sectional curvature
and the curvature tensor are universally related, so that from −1 ≤ K ≤ 1
we deduce immediately that

‖R‖d/2 < c(d)

for some constant depending only on the dimension. Consequently

Lemma 268 For any manifold M

inf ‖R‖Ld/2(M) < c(d) inf Vol(M).

In particular inf Vol = 0 implies inf ‖R‖Ld/2 = 0.
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The converse is still an open problem today, despite many efforts. Here is
why: assume that inf ‖R‖Ld/2(M) = 0. Then we have a sequence {gk} of
metrics for which the limit of the integral of the curvature is zero. Since we
use the dimensionless power d/2 we can assume that −1 ≤ K ≤ 1 for all of
these metrics. Assume by contradiction that the volume as measured in these
metrics is bounded from below and think of the compactness theorem 384 on
page 655. We almost fulfill the conditions for convergence except that we do
not know if the diameter stays bounded when k goes to infinity. If it where we
would be essentially finished: the limit would be a flat metric, a contradiction.
Controlling the diameters of the gk is the principal concern today; however
is still conjectured that inf Vol = 0 and inf ‖R‖Ld/2 = 0 are equivalent.

We are far today from knowing how to solve question 266 on page 530
parts 1 to 6 above for these two functionals. The first thing to do is to decide
if such a functional is zero or not. Independently of its own interest, the
question about whether inf Vol > 0 enters naturally as we have just seen in
the compactness theorem. It is also important to remark that the starting
key to that compactness theorem 384 on page 655 is Cheeger’s lower bound
for the injectivity radius in theorem 90 on page 297. To be sure of this, just
note that by rescaling there is not much difference between the condition
−1 ≤ K ≤ 1 and the condition a ≤ K ≤ b with any a and b. The interest of
inf diam will appeared below in theorem 312 on page 595.

11.3.4 Manifolds with inf Vol (resp. inf ‖R‖Ld/2 , inf diam) = 0

11.3.4.1 Circle Fibrations and Other Examples Of course flat mani-
folds3 have identically zero curvature and hence inf Vol = 0. The main point
is that there are many other compact manifolds with inf Vol = 0. The basic
example is when M admits a free action of the circle S1 i.e. is an S1 fibered
manifold over some manifold N . The first non trivial example is Hopf’s fi-
bration

S3 → S2.

(See §§§4.1.3.5 if needed.) Then pick any Riemannian metric g on M . This
yields at every point a Euclidean product decomposition for the tangent
space, and we write this as g = gvert + ghor for the vertical and horizontal
parts. Pick now any ε > 0 and introduce the new metrics

g(ε) = εgvert + ghor.

One then verifies easily that the sectional curvature stays bounded, for exam-
ple by using the O’Neill formulas in equation 15.17 on page 747. Heuristically
one can say that when shrinking the fibers, they do not generate large curva-
ture because they are one dimensional. Curves have zero sectional curvature.
3 We know that they are finite quotients of tori by Bieberbach’s theorem 98 on

page 316.
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And the fact that the fibers are twisted contributes to a fixed amount, inde-
pendent of the length of the fibers.

Hence inf Vol = 0, inf ‖R‖Ld/2 = 0 and inf diam = 0 by construction.
This was first discovered in Gromov 1983 [617] along with various generaliza-
tions. Note that in view of equation 15.17 on page 747 we will automatically
get inf ‖R‖Ld/2 = 0.

There are two ways to generalize the above example. The first will be
treated in §§§11.3.4.3. The second consists in putting the following example
into a very general setting. A typical example is as follows. Take two surfaces
N and N ′ each with a circle as boundary, and consider the products M =
S1 ×N and M ′ = S1 ×N ′. They are manifolds with boundary, and in both
manifolds the boundary has the topological type of a torus T 2. Then glue M
and M ′ along that T 2 not in the trivial way but interchange the two circles in
T 2 (exchange the parallels and the meridians); see figure 11.3. The resulting
manifold does not in general admit an S1 action. It does admit such an action
locally on both parts but these two actions agree in the common parts since
we have a torus action there.

N2

M3=N2 × S1

S1 S1

M'3=N'2 × S1

S1 × S1

N'2

S1 × S1

δN δN'

Fig. 11.3. Gluing products of surfaces with circles together.

We will see more in detail in §§§12.4.3.1 that this example has been put
in a very general context in Cheeger & Gromov 1986-1990 [348], [347] and
Cheeger & Rong 1995 [352], where the notions of F and T structures are
defined. Important refined notions are that of polarized and pure polarized
F structures. Detailed definitions are also to be found at the end of the
survey Fukaya 1990 [531]. Existence of various structures of those types is
linked with the topology of the manifold, but how exactly is still unclear.

For example for a general F structure one can build up only Riemannian
metrics with −1 ≤ K ≤ 1 and injectivity radius going to zero. If the struc-
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ture is moreover polarized then one can get the volume going to zero, hence
inf Vol = 0. We will see in §§§11.3.4.4 below results showing that probably
“most” manifolds have inf Vol = 0. This makes it an important goal to find
ones with positive inf Vol.

11.3.4.2 Allof–Wallach’s Type of Examples These Riemannian mani-
folds deserve special consideration because we will meet them again in more
than one topic—namely in the study of manifolds of positive sectional cur-
vature (see §§§12.3.1.1) and just below in §§§11.4.2.2. They were found in
Wallach [1231] originally as new manifolds of positive curvature. They are
the homogeneous spaces of Lie groups defined as

Wp,q = SU (3) /S1(p, q)

where (p, q) runs through the lattice Z2. The compact simple Lie group SU (3)
is of rank 2. This means that it admits subgroups isomorphic to the torus
T 2. These maximal abelian subgroups are all conjugate (from general results
of Élie Cartan) and their Riemannian structure is that of R2/Λ where Λ is
the regular hexagonal lattice. The notation

S1(p, q)

means the circle subgroup of the torus T 2 which is the quotient by Λ of
the line in R2 passing through (0, 0) and (p, q). Thus any Wp,q is fibered
by circles over the quotient manifold which is SU (3) /T 2 where T 2 is any
maximal torus in SU (3) . In particular, inf Vol = 0 for all of them.

0

(4,1)

T2 hexagonal
in SU(3)

the (4,1) circle S1

Fig. 11.4. T 2 hexagonal in SU (3). The (4, 1) circle S1

On any Wp,q there are many homogeneous Riemannian metrics because
the isotropy group is reducible (see §§§11.4.2.2 for the spirit) but for a suit-
able choice the sectional curvature is positive; see section §§§11.4.2.2 and
§§§12.3.1.1.

11.3.4.3 Nilmanifolds and the Converse: Almost Flat Manifolds As-
sume that we have a manifold Md which admits d successive fibrations by
S1. Then not only the minimal volume but the minimal diameter will be zero
since we will be able to shrink an initial metric in d linearly independent
directions while keeping the curvature bounded on both sides. This is by a
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systematic use of formulas for Riemannian submersions (see equation 15.17
on page 747). Such manifolds need not be tori. So there are manifolds with
inf diam = 0 which are not tori.

More precisely they are easily seen to be the so-called infranilmanifolds,
see more on them in theorem 312 on page 595. They are quotients by suitable
discrete subgroups of nilpotent Lie groups. Another way to look at inf diam =
0 is to scale things to work within manifolds of diameter bounded by 1. Then
the above examples admit metrics with −ε < K < ε for any ε > 0. In
§§12.2.3 we will look at this as a pinching problem. A great event was when
the converse was proven in 1978 by Gromov, solving then the 0-pinching
problem: see theorem 312 on page 595.

11.3.4.4 The Examples of Cheeger and Rong Fixing a dimension d,
let us look at the subset of R+ consisting of the minimal diameters of all
compact smooth d dimensional manifolds. We are addressing question 6 on
page 530. The above theorem is a gap theorem: it shows that in this set, zero
is isolated. Put together, two very recent works show, that except at zero,
this set is far from discrete:

Theorem 269 (Cheeger & Rong 1995 [352]) For every dimension there
is a scale {Di} of diameters (with Di → ∞) such that in every interval
[Di, Di+1] there are infinitely many diffeomorphism types of compact mani-
folds with

inf diam ∈ [Di, Di+1] .

D3 D4 Di Di+1

0

Diameter

Min Vol

most go to zero an infinite number

Fig. 11.5. Minimal diameters and minimal volumes of compact manifolds of given
dimension

These Di are obtained by building up geometrically suitable examples
with various techniques: T 2 actions, gluing, collapsing, F structures which
are not polarizable, etc. For inf Vol there is only a partial gap result:

Theorem 270 (Cheeger & Rong 1996 [353]) There is a constant c(d,D)
depending only on the dimension d and a positive number D so that every
manifold M of dimension d which has

inf diam(M) < D and inf Vol(M) < c(d,D)
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has
inf Vol(M) = 0.

Now from the finiteness theorem 372 on page 642 one deduces immediately

Theorem 271 For any dimension d and diameter D there are only a finite
number of manifolds of dimension d with inf diam < D and inf Vol > 0.

Let us look now at R+ and the subset of possible minimal diameters for a
given dimension as sitting in the scale made up by the Di. In every interval
[Di, Di+1] we have an infinite number of different manifolds (differentiable).
But only a finite number of them can have a positive minimal volume. So that
in a sense most manifolds of a given dimension have zero minimal volume.

In our search for a best metric, this shows that the minimal volume is
not a good candidate for “all” manifolds. Perhaps it will be for some special
manifolds, though this has not yet become clear. We will have to look to
other functionals and will come back to the minimal volume in §§11.3.7.

11.3.5 Some Manifolds with inf Vol > 0 and inf ‖R‖Ld/2 > 0

11.3.5.1 Using Integral Formulas From §15.7 we know that there are
integral formulas which are universal in the curvature and which yield the
Euler–Poincaré characteristic and all of the characteristic numbers. Let Ω
be any such invariant of a smooth manifold M . This means (see also equa-
tion 15.14 on page 743) that:

Theorem 272
Ω =

∫
M

univΩ(R)dVM .

Then on one hand knowing the full norm of the curvature tensor we certainly
have

|univΩ(R)| ≤ c(Ω)|R|d/2.
Taking absolute values in the above formula one gets immediately

inf ‖R‖Ld/2(M) ≥ 1
c(Ω)

.

If we know that −1 ≤ K ≤ 1 then by the fact that R and K are “equivalent”
we also get

|univΩ(R)| ≤ c′(Ω)

hence:

inf Vol(M) ≥ |Ω|
c′(Ω)

.

Then we know that both inf Vol and inf ‖R‖Ld/2 are positive for ev-
ery manifold having a nonzero characteristic number. This was remarked by
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Cheeger back in 1970. This can at best take care of manifolds whose dimen-
sion is even and a multiple of 4 to employ characteristic numbers. It is also
important to remember from §§15.7.7 that there are no other integral formu-
las universal in the curvature. So we have to find a new tool in order to get
more manifolds with

inf Vol > 0.

11.3.5.2 The Simplicial Volume of Gromov In the founding text, Gro-
mov 1983 [617], proved that the minimal volume is nonzero for space forms
of constant negative curvature of any dimension. From there, Gromov finds
the same result for many other manifolds using various functorial properties
of the simplicial volume. Almost no new result has appeared since that one.

The proof uses essentially as written above the notion of simplicial vol-
ume for topological manifolds, which is a fundamental invariant for compact
smooth manifolds, but unbelievably deep and baffling: whether or not it is
zero, not to speak of its exact value when it is positive, is unknown up to
very very few exceptions to be met below. The simplicial volume was used
for Mostow rigidity in §§6.6.2.

Assume that M is oriented and write the fundamental class [M ] in terms
of some triangulation as

[M ] =
∑
i

aiσi

with the real numbers ai not necessarily integers. Then the simplicial volume
is:

‖M‖ = inf

{∑
i

|ai| : [M ] =
∑
i

aiσi

}
.

For example it is zero for spheres: cover the sphere by turning more and
more times around the equator. The volume of the simplices gets larger and
larger, forcing

∑
i |ai| to be smaller and smaller. More generally, the simplicial

volume of a manifold is zero if the manifold admits self-maps of degree larger
than 1. In fact, if

f : M →M ′

is any map of degree d, then

‖M‖ ≥ d ‖M ′‖ .

But much more generically, ‖M‖ = 0 not only for any simply connected mani-
fold, but as soon the fundamental group is not too large. Here, “not too large”
means amenable. In fact the simplicial volume is technically determined by
π1(M) and the classifying map

M → K (π1(M), 1) ,

see Gromov’s text for details. However we are going to see that the story is
far from being finished by this theoretical answer.
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The simplicial volume enjoys functorial inequalities for the product and
the connected sum of manifolds:

‖M#N‖ = ‖M‖ + ‖N‖
a(d)‖M‖‖N‖ ≤ ‖M ×N‖ ≤ b(d)‖M‖‖N‖

where a and b are universal in the dimension.
Gromov proved two results in the above text. The first is:

Theorem 273 (Gromov 1983 [617]) For a compact space form M of con-
stant negative sectional curvature the simplicial volume is positive; better its
exact value is

‖M‖ = VolM/VRS (d) .

Here VRS (d), introduced in note 4.3.2.2 on page 198, denotes the volume
of the regular simplex (simplices) in d dimensional hyperbolic space Hypd.
The very geometrical proof is basic in contemporary negative curvature tech-
niques and was used by Gromov to get a proof of Mostow’s rigidity theorem
(see theorem 99 on page 318 and §§6.6.3). This is extremely well written in
Benedetti & Petronio 1992 [129]. It uses the sphere at infinity on the univer-
sal covering (which is the hyperbolic space Hypd; see §§4.3.2), ideal simplices,
and the basic fact that in hyperbolic geometry, the volume of any simplex is
smaller than or equal to that of an ideal simplex. Finally, the volume of ideal
simplices is universally bounded by the volume of the “regular” ones, namely
with the maximum number of symmetries. In dimension 2, they are all reg-
ular. In short: one can compute the volume of M as if M were triangulated
exactly by regular ideal simplices. This is of course the case for the whole of
Hypd but for a compact object “downstairs” it needs a mean value process.

Heuristically: when you stretch a simplex in hyperbolic geometry its vol-
ume is bounded. Oppositely, in spherical geometry or Euclidean geometry,
stretching and covering more and more yield infinite volume.

A typical mystery: from the functorial properties above and theorem 273
we know that any product of compact manifolds of negative curvature has a
nonzero simplicial volume. Such a product has a lot of zero curvature, namely
for the planes corresponding to the product decomposition. So some (a lot
of) zero curvature still permits ‖M‖ > 0. Besides products of negatively
curved manifolds, the simplest example of strongly structured manifolds of
nonpositive curvature are the locally symmetric space forms of §§6.6.4 of rank
at least two. It is natural to conjecture that the simplicial volume of these
forms is still positive. But the question remains open today. Manifolds with
positive simplicial volume are extremely difficult to construct. In Nabutovsky
& Weinberger 1997 [961], quite a few such manifolds are constructed, but this
is extraordinarily difficult. We will meet this important text in §11.5.

From the above one might expect some relation between the simplicial
volume and the minimal volume. This is in fact precisely the second result
of Gromov:
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Theorem 274 (Gromov 1983 [617]) If on the Riemannian manifold M
one has inequality

Ricci(g) ≥ −(d− 1)g

then
Vol(g) ≥ c(d)‖M‖

for some universal constant c(d).

So we have a positive minimal volume as soon as the simplicial volume is
positive since already K ≥ −1 implies

Ricci(g) ≥ −(d− 1).

Note that it does not say anything about inf ‖R‖Ld/2. The proof of theo-
rem 274 is extremely hard and to our knowledge does not figure in any other
text. The technique is that of the “diffusion of cycles,” also used in note 7.2.1.2
on page 357.

But note that those manifolds are never simply connected. Today no one
knows of any odd dimensional simply connected compact manifold for which
one can prove that its minimal volume is positive. For the simplicial volume,
results are also very difficult. Ville 1996 [1219] studies the case of compact
complex manifolds.

11.3.6 inf ‖R‖Ld/2 in Four Dimensions

Besides the study of surfaces, there is one other exceptional dimension,
namely d = 4. In that dimension, the generalization of the Gauß–Bonnet
theorem found in equation 15.11 on page 738 reads

8π2χ(M) =
∫
M

(
|R|2 −

∣∣∣∣Ricci− scalar
4

g

∣∣∣∣2
)
dVM . (11.6)

On a given compact Riemannian manifold M with χ(M) ≥ 0, our functional
has a lower bound of 8π2χ(M). This potential minimum is attained if and
only if M has a metric with

Riccig =
scalarg

4
g.

But this condition is nothing but what we (in §11.4) are going to call an
Einstein metric. In the context of various questions of convergence, etc. for
manifolds under various conditions, equation 11.6 is essential. For example
see theorem 379 on page 650 and we will find it again in §§§11.4.6.1.
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11.3.7 Summing up Questions on inf Vol, inf ‖R‖Ld/2

Let us finish the inf Vol story by addressing some of the parts 1 to 6 of
question 266 on page 530. The first is: how does the subset of the reals made
up by the minimal volumes of all manifolds of a given dimension d look?
Is it a discrete set? For surfaces we saw that the Gauß–Bonnet–Blaschke
formula from theorem 28 on page 155 tells us that our subset is the arithmetic
progression 2πZ and in particular of course 0 is isolated.

Theorem 275 (Cheeger & Gromov 1986-1990, Rong 1993 [1064]) There
is a gap for inf Vol in dimensions 3 and 4, namely there are constants c3
and c4 such that, if

inf Vol
(
M3

)
< c3 (resp. inf Vol

(
M4

)
< c4)

then
inf Vol

(
M3

)
= 0 (resp. inf Vol

(
M4

)
= 0).

In dimension 3, the proof is an implicit corollary of the first authors results
on the theory of collapsing, which we will meet in §§§12.4.3.1: small volume
implies uniformly small injectivity radius by the results in §§§7.2.4.1. As a
consequence, one has an F structure. One needs only to prove it admits also
a polarized F structure. Then inf Vol has to vanish. Contrarily, the proof of
the isolation of 0 in dimension 4 obtained in Rong 1993 [1064] is extremely
involved and not completely geometric. It uses the η invariant (see §9.14
and §14.2.1) in a basic way. Remember also theorem 270 on page 542 which
yields a gap when one restricts the problem to simply connected manifolds
of a given bounded diameter.

A gap theorem is not be expected, already in dimension 4, if one adds
the condition of bounded diameter when the volume goes to zero. This is a
consequence of the example 6.4 in Cheeger & Rong 1995 [352].

The second question is to compute the minimal volume of “standard”
manifolds, e.g. space forms of different types. Minimal volumes are dramati-
cally different according the sign of the curvature. For positive curvature or
nonnegative curvature not a single minimal volume (when nonzero of course)
is known. The problem starts with S4. Equation 11.6 on the facing page will
not help: we will see in §§11.4.5 that we still do not know if the standard
metric on S4 is the only Einstein one. The only known fact is a local result
for even dimensional spheres in Ville 1987 [1218].

One reason why we know so little about explicit values of minimal vol-
ume when we know that it is positive is that the following scheme of attack
is blocked for the moment. One could hope to get an best metric by a con-
vergence theorem like theorem 384 on page 655: we work in the realm of
manifolds with −1 ≤ K ≤ 1 and with a lower bound for the volume. But
unhappily the convergence theorem 384 needs an upper bound for the di-
ameter. There is no way today in general to get around this difficulty; see
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however Anderson 1990 [44] and remark that in pages 74-75 of Gromov 1983
[617] there is an existence result for an “extremal” metric, but it is not too
detailed.

There is one exception: the very special case of negative curvature space
forms. One has an unbelievably strong result. A corollary of the main theo-
rem 251 on page 510 is:

Theorem 276 (Besson, Courtois & Gallot 1995 [189]) Under the sole
condition

Ricci ≥ −(d− 1),

any metric on a compact hyperbolic space form has a volume larger than or
equal to that of the hyperbolic metric and equality if and only if the metric is
of constant curvature, and hence equal to the original one if d ≥ 3 by Mostow
rigidity.

Once again we know that the hyperbolic metric on a negative space form
is the best one under the minimal volume criterion. The proof is fast. The
result 213 on page 481 is a minimum for the volume entropy. But this en-
tropy is given by the volume of balls in the universal covering. Then one just
needs to apply Bishop’s theorem for the volume of ball as in theorem 107 on
page 334. The recent Bessières 1998 [186] is important: it shows in particular
that the minimal volume is not preserved by connected sum.

11.4 Einstein Manifolds

11.4.1 Hilbert’s Variational Principle and Great Hopes

We turn now to Einstein manifolds. A large book is dedicated to this sole
topic: Besse 1987 [183] and was very complete in 1987. But since then the field
has grown explosively, so that we are happy to have the book LeBrun & Wang
1999 [858]. In Besse’s book, the chapter 0 is a very informative introduction.
One should look at Besse’s book for the references missing here. The topic
being very large and well studied, we are only trying now to draw some kind
of a map for helping the reader to find his way in it. But we find still the
topic very hard to organize.

In a sense the notion of Einstein manifold can be traced back to Hilbert
1915 [711] who computed (motivated by theoretical physics) the derivative
in the space of all Riemannian metrics of the simplest possible curvature
functional: namely the “total” scalar curvature

F (g) =
∫
M

scalar dVM .

The formula is obtained by a straightforward computation and is:
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dF (g) · h =
∫
M

〈
scalarg

2
g − Riccig, h

〉
dVM (11.7)

In dimension 2 one gets identically zero, a phenomenon explaining in some
sense the Gauß–Bonnet–Blaschke formula 28 on page 155: the integral of
Gauss curvature is constant, but this of course does not tell us what this
constant is. When the dimension is d ≥ 3, criticality of this functional im-
plies that Riccig = 0, which is too restrictive in general (see §§§11.4.6.4 if you
are wondering why) and should not be surprising, because our functional is
not dimensionless. So we need to normalize the metric, and this in the sim-
plest (computational) way: namely ask the volume to be some given constant
(which does not matter). Then we get the condition

Riccig is proportional to g

or
Riccig =

scalarg
d

g. (11.8)

Such metrics will be called from now on Einstein metrics.
This condition is obtained by the Lagrange multiplier technique, the con-

stant having to be scalar/d by just taking the trace with respect to g of both
sides.

Note that in dimension 2, any metric is Einstein. But taking the trace
of the (covariant) derivative of both sides of equation 11.8 and applying the
Bianchi identity 4.28 on page 223 (or 15.2 on page 726) yields:

Theorem 277 For any Einstein metric on a manifold of dimension d ≥ 3,
the scalar curvature is constant. The sign of the scalar curvature is called the
sign of the Einstein metric and can be written as 1, 0, or -1 (or positive, zero,
negative). An Einstein metric with zero sign, i.e. vanishing Ricci tensor, is
also called Ricci flat.

In three dimensions, the Einstein condition is “too strong.” It implies constant
sectional curvature (and conversely of course), hence a space form. so that
we mainly discard this dimension from now on. In dimension 4, and when
the characteristic is nonnegative, results from §§11.3.6 tell us that this is
equivalent to minimizing the total norm of the full curvature tensor.

What is known today about existence, uniqueness or moduli of Einstein
metrics? But first discard immediately looking for an extremum. It will follow
from facts just below that the present functional has no local minima or
maxima. However the equation 11.8 creates great hopes to find a best metric,
for many apparently good reasons. Here are some.

First we have an equation (system of partial differential equations) for
the metric g. So we can hope to use more or less classical results about
partial differential equations. This will work perfectly in dimension 3, using
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an evolution equation; see §§11.4.3 For higher dimensions, the prospects are
rather poor.

A very nice result of DeTurck & Kazdan 1981 [442] says that Einstein
metrics are forced to be real analytic. A sketch of the proof is in section
5.E of Besse’s book; it is another nice application of the notion of harmonic
coordinates which we saw on page 291.

A third fact is that we will see many examples of Einstein manifolds,
both in the geometric hierarchy and in the Kähler case, but also a lot of
more sophisticated ones of various types.

But a great hope would be this: critical points make us think of Morse
theory as described in §§10.3.2. Before going on, we suggest to the reader who
is not familiar with Morse theory to have another look at §§10.3.2. He will see
that we have various things to do to employ Morse theory. We have in the first
place to set a frame: here the infinite-dimensional realm cannot be avoided
as it was for geodesics by taking a finite-dimensional approximation using
broken geodesics, since we are in fact in the set of all Riemannian metrics
RM (M). But there is a Morse theory for infinite dimensional manifolds
called Palais–Smale theory: Palais & Smale 1964 [992], or 5.40 of Besse 1987
[183] or Jost 2002 [768]. Besides classical finite dimensional Morse theory,
one needs a convergence condition for critical points, called “condition C of
Palais–Smale;” we will come back to that below.

Moreover one cannot work in RM (M); one has to take its quotient

RS (M) = RM (M) /Diff (M)

(see equation 11.1 on page 529) by the diffeomorphisms, this for at least two
reasons. The first is that we hope to get some nontrivial topology for this quo-
tient, since RM (M) is a convex cone and hence topologically trivial and of
no interest when one wants to use Morse theory. The second point is this: the
diffeomorphisms leave invariant any “reasonable” functional since they are
invariant by construction. We cannot hope to have here the nondegeneracy
condition of theorem 210 on page 479. But we can hope to have this condition
satisfied for the quotient RS (M). The second thing to do is to compute the
second derivative d2F (g) to see if we have a finite index at critical points in
RS (M). The computation of d2F (g) in RM (M) is quite straightforward. It
can be found explicitly in 4.G of Besse 1987 [183] but the result is awkward,
with exception in dimension 4 where it is used in Anderson 1992 [43], see
§§§11.4.6.3. But there is the problem of working in the quotient

RS (M) = RM (M) /Diff (M) .

This quotient is not a manifold in any reasonable (even infinite dimensional)
sense, but one can use the notion of slice (see 12.22 in Besse’s book) to work
in conditions similar to those of manifolds.

What have these hopes yielded? Here are the main conclusions. The pos-
itive points are this: in the space RS (M), the index of a critical point (an
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Einstein structure) is never finite, but there is still hope because this index
is in fact always finite if one restricts oneself to the subspace of manifolds of
constant scalar curvature. And this is not a problem, since the set RS (M)
retracts nicely onto such a subset (but beware: not necessarily conformally
as we will see in §§11.4.7: see section 4.G of Besse 1987 [183].

The negative points are the following. First, the Palais–Smale condition
C is not satisfied even if the indices are finite. In the subspace of constant
scalar curvature, counter-examples will quoted below in §§11.4.5. Moreover
today, believe it or not, the topology of RS (M) is almost totally unknown.
It is of course a basic topic, as it is so natural, but with essentially no result;
we know only of Bourguignon 1975 [237].

Experts are divided today about the eventual possibility to find Einstein
metrics: some think it cannot work by essence. Some other think a tool like
Floer homology (see Hofer, Taubes, Weinstein & Zehnder 1995 [723]) could
help. See Besse’s book and below for more comments. Note also that such a
general scheme cannot always work since in dimension 4 there are necessary
topological conditions for the existence of Einstein metrics on a given mani-
fold: see §§§11.4.6.1. In Nabutovsky 1995 [956] a new approach is taken to the
research of Einstein metrics: it is linked to algorithmic complexity questions.
We will discuss this further in §11.5.

Note 11.4.1.1 (Connes’ description of the Hilbert functional) This Hilbert
functional received an interesting new direction in Connes 1995-6 [401] where
it appears as the (d − 2) volume of the manifold, therefore an “area” in di-
mension 4 “á la Morse.” It might be useful for studying Poincaré’s conjecture.

�

There are good moduli results for Einstein metrics; see §§§11.4.6.2. Of
special interest and completely mysterious is the case of Ricci flat metrics;
see §§11.4.5.

We sum up now what will follow in the next sections. First there are plenty
of examples of Einstein metrics, for homogeneous spaces and Kähler mani-
folds. Second the general existence theorem is in the worst possible condition:
it is possible that there is an Einstein metric on every manifold of dimension
larger than 4. However it might be that an existence theorem would require
that we admit manifolds with reasonable singularities; see Anderson 1994
[45]. The scheme here is as follows: the Ricci flow §§11.4.3 diminishes the
defect to be Einstein, so that one can hope for an Einstein limit. Compare
also with the Ricci curvature pinching situation in §§12.2.5.

For dimension 4 there are strong necessary topological restrictions and
nobody knows if they are sufficient; see §§§11.4.6.1. There is a long survey of
the situation in four dimensions in Derdzinski 2000 [440].



552 11 Best Metrics

11.4.2 The Examples from the Geometric Hierarchy

11.4.2.1 Symmetric Spaces First there are the locally irreducible sym-
metric spaces (§§4.3.5, in particularly generalized space forms in §6.6). The
reason is that the linear action of the isotropy group respects both the metric
and the Ricci curvature, but it is irreducible and then cannot leave invariant,
up to a scalar, more that one quadratic form. Simply use diagonalization to
see this. And now how about reducible ones? The conclusion is left to the
reader. It follows from the following remark (see also §§§11.4.6.4). If in the
product M × N of two manifolds, both manifolds admit an Einstein met-
ric of the same sign (see theorem 277 on page 549), then the product also
does: one has only to make a suitable normalization and keep a Rieman-
nian product, but this procedure does not work when the signs are different
(zero included). Do not forget the following: the impossibility of this product
construction does not tell us that a product of symmetric spaces of differ-
ent signs cannot bear some other “wild” Einstein metric. See the interesting
Rollin 2002 [1063].

11.4.2.2 Homogeneous Spaces and Others The situation is detailed in
section 7.E of Besse’s book. We extract only a few examples to give a gen-
eral picture of the state of affairs. First, for homogeneous but nonsymmetric
spaces, the above remarks show that they are Einstein for an invariant metric
as soon as the linear action of the isotropy group on the metric is irreducible.
Sadly enough it turns out that such homogeneous spaces are very scarce.
There are not many more than symmetric spaces. They were classified inde-
pendently by O. Manturov in 1961 and J. Wolf in 1968; see an accurate and
simpler classification, together with more study of those spaces, in Wang &
Ziller 1991 [1241].

For the reducible case, it seems however that we have to really look di-
rectly at the Nomizu curvature formulas 15.15 on page 745 to reduce the
problem to an algebraic one, which is probably quite easy using Dynkin’s
classification of Lie subgroups of simple Lie groups (see §§4.3.5). But it turns
out in fact that these equations, theoretically algebraically computable, are
very subtle when one searches for Einstein metrics. First came:

Theorem 278 (Jensen 1973 [763]) On the spheres S4n+3 there are Ein-
stein metrics different from the standard one. The same is true for CP

2n+1.

In this case, one simply uses the fact that on odd dimensional spheres Sd

one has transitive actions of smaller groups that the whole orthogonal group
O (d+ 1). The sphere S15 admits three Einstein metrics different from the
standard one, because of the fibration

S7 → S15 → S8.

Then came a series of papers by Wang and Ziller (they are quoted in
Besse 1987 [183] and Wang 1992 [1237]) which yield many examples, and
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counter-examples, but we are still far from a classification of homogeneous
Einstein manifolds. The difficulty is well illustrated by the fact that it is very
involved to give a complete classification of Einstein homogeneous metrics
on the Aloff–Wallach spaces which we met in §§§11.3.4.2: Kowalski & Vlasek
1993 [832]. Add also the recent Lanzendorf 1997 [849], Boyer, Galicki & Mann
1996 [254], and Boyer & Galicki 2000 [251]. Dancer & Wang 1999 [428] give
some inhomogeneous examples, and some very subtle five dimensional inho-
mogeneous examples appeared in Boyer & Galicki 2000 [251].

11.4.3 Examples from Analysis: Evolution by Ricci Flow

Remember the deformation-evolution approach to get periodic geodesics in
§§§10.2.3.2, and even to obtain circles in §1.4. It consisted in deforming “any”
curve in directions orthogonal to the curve and at a rate proportional to its
geodesic curvature. Then the geodesic curvature gets ever smaller, as long
as one can prove local existence. Moreover this process will yield a periodic
geodesic if one can prove existence up to infinite time and the existence of a
smooth limit. In book form, the Ricci flow is the object of the last chapter
of Hebey 1999 [691].

The “naive” scheme to find an Einstein metric on any compact manifold
is to look for a suitable evolution equation in the space of Riemannian metrics
instead of inside the space of closed curves. As it stands, it does not work
in general, even with topological restrictions (see the nonexistence results
below). But it works wonderfully in dimension 3 under the added condition
that we start with a manifold of positive Ricci curvature:

Theorem 279 (Hamilton 1982 [678]) If M is a three dimensional com-
pact manifold with a positive Ricci curvature metric, then M admits a metric
of constant positive sectional curvature.

The most natural “Ricci flow” in any dimension d would be given by the
equation:

dg

dt
=

2
d

scalarg g − 2 Riccig (11.9)

In fact there is then no local solution of this system of partial differential
equations. Hamilton had to replace 2/d and −2 by other suitable constants;
see page 147 of Besse’s book for more.

Hamilton’s text was the first to use evolutions equations successfully in
the space of all Riemannian metrics. We will come back to this technique
later in more than one place. It is now of basic use in Riemannian geometry:
see §§§12.3.1.4 for its use in studying positive curvature operators and also
see this approach used in smoothing in various places, e.g. in §§12.4.2. For
the moment it does not yield Einstein metrics in higher dimensions, where
they would be extremely desirable. For more on the Ricci flow approach, see
Lu 2001 [882].
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Here is the place to mention a very recent interesting proof of the confor-
mal representation theorem 70 on page 277: on any compact surface and for
any metric g there is a positive function f such that fg has constant Gauß
curvature. Starting with Hamilton in 1988, and others, finishing with Chow
1991 [378], there is now a proof using a kind of Ricci flow. Since in dimension
2 every metric is Einstein or, equivalently, an Einstein metric need not be of
constant scalar (=Gauß) curvature, one has to replace equation 11.9 on the
preceding page by a suitable equation where dg/dt is proportional to g and
where one tries to reduce the defect of the curvature to be constant. This
equation is

dg

dt
= (K0 −K) g

where K0 is the average of the Gauss curvature. This result is difficult to
prove in the realm of partial differential equations, here of nonlinear parabolic
type, especially in the case of the sphere when the curvature is not initially
everywhere positive. An important ingredient is a kind of suitable “entropy”
(compare with page 503 at the end of §§§10.5.1.2), namely

∫
K logK which

one can show decreases over time under this flow.

11.4.4 Examples from Analysis: Kähler Manifolds

We turn now to the only domain where the search for Einstein metrics is
satisfactory, namely the case of Kähler manifolds. We refer to chapter 13
for Kähler definitions and notation. Moreover this topic turned out to be
important in mathematical physics; see references in §13.6. As we will see,
the results are almost complete in a certain sense.

Here the basic remark is made in §13.6: using the complex structure one
can transform the symmetric differential form which is the Ricci curvature
into a exterior form ρ (of degree 2, more precisely of type (1, 1)) by setting

ρ(x, y) = Ricci(x, Jy)

where J is the complex structure. By Chern’s formulas in §15.7 and via
de Rham’s theorem 32 on page 186, this form (up to 1/2π) belongs to the first
Chern class c1(M) of the Kähler manifold M under consideration. So we have
an immediate necessary condition for a Kähler manifold to admit any Einstein
metric: the first Chern class should have some de Rham representative 2-
form which (via the complex structure) is either positive definite, identically
zero, or negative definite. This condition is not that strong. Many algebraic
manifolds satisfy it and this can be decided by using standard techniques to
compute their Chern classes; see for example Besse’s book section 11.10.

We briefly explain now why things are “workable” for Kähler manifolds;
see chapter 11 of Besse’s book for an informative sketch of the proofs. In fact
the Kähler structure g yields a 2-form of complex type (1, 1), its Kähler form
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ω and Kähler variations in the same cohomology class are easily seen to be
necessarily of the form

ω +
√
−1∂∂̄f

where f is a numerical function on the manifold. The Einstein condition is
then the partial differential equation

ρω =
scalarω
d

ω

and when written explicitly in terms of the function f it turns out to be of
Monge-Ampère type and then hopefully solvable.

This led Calabi in the insightful paper Calabi 1954 [299] to conjecture
that as soon as the zero or the definiteness of the Chern class is ensured, one
can change the initial Kähler metric into a new one which is Einstein. More:
in the negative case one has uniqueness. It was only in Aubin 1970 [85] that
any progress was obtained and then next in Yau 1978 [1294]. Aubin proved
the existence of such a metric in the negative case, while Yau proved it in
the zero and the negative case, so that now

Theorem 280 (Aubin 1970 [85], Yau 1978 [1294]) If the first Chern class
of a Kähler manifold admits a zero or a negative definite representative, then
it admits in the same Kähler class an Einstein metric. Moreover in the neg-
ative definite case, the Einstein metric is unique.

This definitely does not work for the positive definite case: an obstruction was
discovered in Futaki 1983 [535]. In Tian 1990 [1190] one has a definite answer
for complex surfaces, i.e. real dimension four, giving necessary and sufficient
conditions to get Einstein Kähler metrics of the positive type. For larger
dimensions, the latest result is Real 1996 [1054], and a complete conjecture
is formulated in Tian 1997 [1191]. An expository text is Bourguignon 1997
[242].

The Calabi–Yau existence results are extremely useful. First the unique-
ness of the Kähler structure on CP

n (for any n) was uncovered in Yau 1977
[1293]. Besides Yau’s existence result one needs the deep Hirzebruch & Ko-
daira 1957 [718]. Another application is the inequality

c21 ≤ 3c2

between the first two Chern classes of any Kähler manifold. For this and
more see 11.B in Besse 1987 [183]. A still mysterious application is the fact
that, for a Kähler manifold, the vanishing of the two first Chern classes c1
and c2 implies that the manifold can be made flat and in particular is a finite
quotient of a torus: see references and comments in page 67 of Bourguignon
1996 [241]. The mystery lies in the fact that nobody knows a direct proof.

To stay in the Kähler–Einstein domain, we mention Hulin 1996 [749]. The
author uses the very interesting notion of diastasis introduced by Calabi in
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1953; see the expository Berger 1996 [168] and §13.6. And then Hulin proved
very strong results for the complex submanifolds of CP

n which are Einstein.
The diastasis has been rarely used up to now but it might still have a rich
future; see Herrera & Herrera 2001 [708].

11.4.5 The Sporadic Examples

The first examples were obtained using almost homogeneous spaces, so-called
“low cohomogeneity spaces,” mixed with Riemannian submersion techniques
(see §§15.8.2), a technique used in another context in paragraph 12.3.1.1.2 on
page 605. Details of results prior to 1987 and proofs are at large in the chapter
9 of Besse’s book. Those examples were quite scarce until recently; since Page
1978 [990] and Bérard Bergery 1982 [143]: there is an Einstein metric on the
connected sum CP2#CP2. For the proof one considers CP2#CP2 as acted
by SO (3); then the orbits are a one parameter family of hypersurfaces. The
Riemannian submersion formulas enable us to reduce the Einstein condition
to an ordinary differential equation on [0, 1]; the remaining difficulty being
to take care of the singularities at 0 and 1.

S2 with
S0(3) action

0 1

CP1 = S2 CP1 = S2

CP2 CP2

Fig. 11.6. Construction of an Einstein metric on CP2#CP2

Then came quite a large variety of inhomogeneous examples, obtained
by different techniques: fibre bundles of various types, twistor theory (see
§§14.2.3), 3-Sasakian manifolds (see figure 13.6 on page 678). Today exam-
ples are getting more and more numerous. We only give some references
posterior to Besse’s book. The very recent Böhm 1998 [216] is important in
two respects: first it gives among other examples some nonstandard Einstein
metrics on low even dimensional spheres. The technique uses cohomogeneity
one manifolds and the equations obtained in Bérard Bergery 1982 [143] for
obtaining an Einstein metric. The cohomogeneity one technique is put in a
systematic frame in Eschenburg & Wang 1997 [497]. The second point in
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Böhm 1997 [216] is that it presents examples of infinite sequences of Einstein
metrics on given compact manifolds with fixed volume which do not converge
to any metric, and this shows that the “condition C” of Palais & Smale 1964
[992] is not satisfied in general for Riemannian metrics. Contrast this with
the false hopes in §§11.3.7. Earlier such “counterexamples” had been given
by Wang & Ziller.

Quite recently Einstein manifolds appeared as a byproduct of the theory
of 3-Sasakian manifolds; see §§13.5.2. This last sporadic category comes in
some way from the rare holonomy groups; see §13.5. There is also a link with
Kähler manifolds from §§11.4.4. We recall from chapter 13 that manifolds
with holonomy group SU (n) (of dimension 2n), Sp (1)×Sp (n) (of dimension
4n), G2 (of dimension 7) and Spin (7) (of dimension 8) are automatically
Ricci flat. If one excepts SU (n), we have today very few examples of such
manifolds. Moreover

Fact 281 There is no known compact simply connected irreducible Ricci flat
manifold whose holonomy group is not one of these.

We say again that if Einstein manifolds are mysterious, Ricci flat ones
are even more mysterious; cf. also the trichotomy in §§12.3.3. It is important
to realize that the fact 281 raises a global question. Locally, analysts are
able to produce “a lot” of Ricci flat metrics without these special holonomy
groups, just by deformation: see Gasqui 1982 [549] and Bokan, Gilkey &
Zivaljevic 1993 [217]. Gasqui’s metrics are local, i.e. not complete. But in
LeBrun 1991 [853] there are examples of Ricci flat complete metrics on Cn

which are moreover Kähler.

11.4.6 Around Existence and Uniqueness

11.4.6.1 Existence We again insist on the fact that nobody knows today
the answer to:

Question 282 Does every compact manifold of dimension ≥ 5 admit at least
one Einstein metric? Otherwise stated, there is not a single topological con-
dition known for the manifold M derivable from the fact that it bears some
Einstein metric.

We saw above that the question is of no interest when the dimension is 2 or
3. Now for dimension 4, the question 282 has a negative answer. There are
various necessary conditions known to exist. This might be guessed from the
formula 11.6 on page 546:

8π2χ(M) =
∫
M

(
|R|2 −

∣∣∣∣Ricci− scal

4
g

∣∣∣∣2
)
dVM
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which trivially shows that to be Einstein implies χ(M) ≥ 0 (and 0 only in the
flat case as already remarked above). A more careful study of the integrand
led to

Theorem 283 (Thorpe 1969 [1187]) On any 4-dimensional Einstein man-
ifold M

χ(M) ≥ 3
2
|τ(M)|

between its characteristic χ(M) and its signature τ(M).

The idea is to use simultaneously the integral formula for the characteris-
tic and for the signature of the manifold; see the details at the very end of
§15.7. See chapter 6 of Besse 1987 [183] for more. The above inequality is
the only one which one can extract from these two integral formulas. A com-
pletely different direction was initiated by Gromov, using his inequality from
theorem 274 on page 546, from which one deduces immediately

Theorem 284 (Gromov 1983 [617]) For an Einstein manifold M of di-
mension 4 one has for its minimal volume the necessary condition:

‖M‖ ≤ 2592π2χ(M).

Mixing both techniques and results from the topology of 4-manifolds, and
adding the Seiberg–Witten equations (see §11.1), one can see that in some
sense “many 4-dimensional manifolds do not admit any Einstein metric”:
see Sambusetti 1996 [1089], which uses techniques from Besson, Courtois &
Gallot 1995 [189], and also see LeBrun 1995 [855].

In dimension 4 there is notion weaker than that of Einstein, namely anti-
self-duality. See the entire chapter 13 of Besse 1987 [183] and complete it
with Donaldson & Kronheimer 1990 [457], and the expository Gauduchon
1992/93 [551] on Taubes 1992 [1183]. For the need of the proof of Taubes’s
result, special norms are introduced which are close to the various global
norms we mentioned in theorem 118 on page 349.

The theory for noncompact manifolds is also very interesting; we just
mention among others Heber 1997 [687], Hitchin 1995 [720] and Hitchin 1996
[721].

11.4.6.2 Uniqueness The examples of §§11.4.5 show the complexity of the
topic. We will meet here our favourite paradox: one knows of the uniqueness
of Einstein metrics on some negative curvature space forms (those which are
quotients of Hyp4 and Hyp2

C).

Theorem 285 (LeBrun 1995 [855]) On a space form of type Hyp4 or of
type Hyp2

C, only the locally symmetric metric can be Einstein.
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For Hyp2
C the proof is in LeBrun 1995 [855], where the tools are the new

Seiberg–Witten invariants (see §11.1). For Hyp4, the result is a byproduct of
the strong result of Besson, Courtois & Gallot 1995 [189] which is quoted as
theorem 251 on page 510.

This is an irritating question. For standard manifolds, in particular space
forms, uniqueness is not understood. The difficulty starts with S4, CP2 and
many other one manifolds. Note that in dimensions just above that there is no
uniqueness for a lot of spheres. But this is far from a classification of Einstein
metrics on spheres, or more generally for the KPn. We meet here again the
“paradox” for space forms mentioned in §6.6: in the negatively curved space
forms, existence of certainly structures on those manifolds is hard, but then
they enjoyed many uniqueness results, while in the positive case examples
come very easily but there are almost no results for them. Also see Yang
2000 [1288].

11.4.6.3 Moduli The general situation is not too bad, in the sense that

Theorem 286 (Koiso, see chapter 12 of Besse [183]) On a given com-
pact manifold, the set of all Einstein metrics up to diffeomorphism (Einstein
structures, in our terminology) is a finite dimensional, real analytic stratified
space.

A starting point is to compute the derivative for the defining equation 11.8
on page 549 of a one parameter family of Einstein metrics. This derivative
satisfies an elliptic equation, and hence see that deformations form finite di-
mension family by standard elliptic theory, which remains of course to be
organize globally. The tricky part is that it is only elliptic modulo diffeomor-
phism, so not elliptic in quite the usual sense.

But those moduli spaces are explicitly known in extremely few cases,
the most spectacular being that of K3 surfaces seen just above. See Besse’s
book, section 12.K. The final result is a complete description of the moduli
space of Ricci flat metrics on K3 surfaces; namely it is an open subset of the
symmetric space

SO (3, 19) /SO (3) × SO (19) .

The complete proof is extremely involved, mixing a lot of mathematics run-
ning from algebraic geometry to analysis.

In Anderson 1992 [43] there is a deep study of the moduli space of Einstein
metrics for any compact manifold of dimension 4, and this for the three possi-
ble signs. Special attention is given to the closure, here orbifolds (see §§14.5.2)
appear and in particular the above results for K3 surfaces are made precise
and algebraic surfaces with singularities come into the picture. However we
recall from §§11.4.1 and §§11.4.5 that counter-examples show that in general
there is no convergence for sequences of Einstein metrics on a given manifold
to any smooth metric.
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An easy case is obvious from formula 11.6 on page 546 when applied to
the four-dimensional torus T 4. Since χ

(
T 4

)
= 0, every Einstein metric on

T 4 has to be flat and the problem is reduced to the classification of flat tori
and their quotients; see §§6.6.1.

The finiteness result of theorem 286 on the preceding page really needs
compactness; for example in LeBrun 1991 [854] one finds an infinite dimen-
sional family of quaternionic-Kähler structures (hence automatically Ein-
stein) on R4n obtained by deformation of the symmetric spaces HypnH.

11.4.6.4 The Set of Constants, Ricci Flat Metrics A puzzling question
is that of the signs of Einstein manifolds (see theorem 277 on page 549): the
sign is the sign of the proportionality factor, i.e. of the scalar curvature. For
example it is positive (resp. zero, negative) in the case of space forms of
positive (resp. zero, negative) curvature. However do not hope for too much:

Theorem 287 (Catanese & LeBrun 1997 [323]) In any dimension 4k
(with k ≥ 2) there are manifolds which carry two Einstein metrics, one with
positive sign and one with negative sign.

The construction is a follows: in dimension 4, one considers two Kähler sur-
faces M and M ′, the first being a deformation of the classical Barlow surface
and the other having as underlying manifold the connected sum CP

2#8CP
2,

where the CP2 denotes just a change of orientation. Now one can choose these
Kähler structures in order that the Chern class is positive (resp. negative)
definite on M ′ (resp. M). Then results of Aubin–Yau and Tian mentioned
in §§11.4.4 show that M (resp. M ′) admits an Einstein metric with posi-
tive sign (resp. negative sign). Now deep results of algebraic topology imply
that those two manifolds, apparently coming from two different worlds, are
in fact homeomorphic. But more: the products M ×M and M ′ ×M ′ are
diffeomorphic, and by the above, carry Einstein metrics of different signs.

Koiso’s result in theorem 286 on the preceding page implies by standard
theorems that the moduli space is locally arcwise connected, so that the
Einstein constant is constant on such components. Hence, by standard results
on real analytic sets, the total set of possible Einstein constants on a given
compact manifold is then always countable. This does not say how this set sits
in R. Is it discrete? finite? Certainly not finite: there are examples in Wang
& Ziller 1990 [1240] of manifolds as simple as the products S2 × S2m+1.

One result is easy: there is an upper bound for the set of Einstein con-
stants of a given compact manifold (with volume normalized). This a trivial
consequence of Bishop’s inequality in theorem 107 on page 334 for the volume
of balls under a lower bound for Ricci curvature.

We insist again on the fact that Ricci flat metrics are extremely mysteri-
ous. In some sense it is not clear at all today if this condition is very strong
or not. For the moment we have only the fact 281 on page 557. We will meet
these manifolds again, e.g. in §§12.3.2. A typical ridiculous open question, the
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first to come to mind: does S4 admit a Ricci flat metric? If the denomination
were not already used in §§§6.6.1.3 for isotropic-measure manifolds, one could
have suggested to call Ricci flat manifolds harmonic, for example in view of
formula

Δgij = Ricciij +Q

presented in equation 6.22 on page 291.

11.4.7 The Yamabe Problem

We present here an interlude with a special topic, namely the Yamabe prob-
lem. In Yamabe 1960 [1280], the author tried, starting with any Riemannian
metric g, to deform it conformally into a metric fg of constant scalar cur-
vature, where f is a positive function. Conformal deformations are basic for
surfaces. One suspects that the secret hope of the author was in dimension 3,
to attack the Poincaré conjecture (compare with Hamilton’s result of theo-
rem 279 on page 553). To go further in dimension 3 is the content of Anderson
1997 [47],[46] and [48].

The problem to solve was a nonlinear elliptic equation in the unknown
function f . This question in analysis is extremely hard and was carefully
studied. This because the equation is nonlinear:

Δf +
d− 2

4(d− 1)
scalar = f (d+2)/(d−2)

where the unknown function f comes with the “limiting” exponent for the
Sobolev embedding theorem. For larger or smaller exponents, standard results
are available but are of no use here. Today the Yamabe problem is almost
completely understood after basic contributions of Aubin and Schoen. We
refer to the surveys Besse 1987 [183] 4.D, Hebey 1993 [689], Hebey 1996
[690]; also see Hebey 2000 [692] and the references there. We just note that
the set of metrics of constant scalar curvature, in any dimension above 2, is
always an infinite dimensional space and is definitely not what we want when
looking for a “best” metric.

Except in discussing surfaces, in theorem 70 on page 277, we never touched
on conformal Riemannian manifolds, (i.e. manifolds whose Riemannian met-
ric is only defined up to multiplying by a positive function). This is an im-
portant topic, and a very good reference is Matsumoto [903]; for locally con-
formally flat manifolds, see §§§4.4.3.1.

11.5 The Bewildering Fractal Landscape of RS (M)
According to Nabutovsky

Since 1995, Nabutovsky has been unveiling “awful” properties of RS (M) for
compact manifolds M of dimension five or more. We will sketch here some
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results of this kind, which for us are fascinating both in themselves and in his
method of proof. Posterity will judge their value to mathematics, but the least
one can say is that they are disturbing. Some references: Nabutovsky 1996
[957], Nabutovsky & Weinberger 1997 [961], and the survey Nabutovsky &
Weinberger 2000 [962]. For applications of Nabutovsky’s results to the physics
of Euclidean quantum gravity, see Ben-Av & Nabutovsky 2002 [128].

On a compact surface M , thanks to the conformal representation theo-
rem, and the results at the end of §§11.4.3, we have a beautiful picture of
RS (M). There is a flow on RS (M) taking any Riemannian metric to a met-
ric of constant curvature. But the space of constant curvature metrics is the
Teichmüller space described in §§6.6.2. Thus one sees a picture of RS (M)
as a fiber bundle whose base (Teichmüller space) is finite dimensional, and
whose fibers are infinite dimensional and contractible. We will briefly discuss
dimensions three and four, but first let us see how terrible RS (M) is for all
manifolds of dimension five or more.

We want to survey the topography of RS (M), where the notion of height
of a mountain or depth of a valley is measured using one of the functionals

F : RS (M) → R

which we encountered previously in §11.1. In particular, we are interested in
the critical points of that functional, concerning ourselves with where these
points appear on our relief map of RS (M). We first have to explain what sort
of geometry and topology we are employing on RS (M). We will not use the
results of Ebin 1970 [474], even as augmented by those of Bourguignon 1975
[237] to the effect that RS (M) is an infinite dimensional generalized orbifold,
in the sense that it is locally the quotient of an infinite dimensional mani-
fold by a Lie group—this Lie group being at each point the isometry group
of the corresponding Riemannian metric. Instead we shall use the topology
defined on RS (M) by the Gromov–Hausdorff metric dG−H (see theorem 380
on page 653).

We will need to refine our comments from §§11.1.1: it is a very natural
notion to exploit Morse theory to describe the topology of RS (M) by using
the fibration

Diff (M) �� RM (M)

��
RS (M) = RM (M) /Diff (M)

as in Serre’s theory which we saw in §§10.3.3. Once again we find that the
total space RM (M) is topologically trivial, since it is convex, and then we
can use a spectral sequence to uncover a rich topology on RS (M) from
the rich topology of Diff (M). Sadly, unlike the theory of compact manifolds
from §§10.3.3, here we are at sea because the topology of Diff (M), one of the



11.5 The Bewildering Fractal Landscape of RS (M) According to Nabutovsky 563

most natural objects of study in differential topology, is almost completely
a mystery. It is very hard to prove that for some integer n, the fundamental
group

π1 (Diff (Sn)) �= {1} .

Before stating a few of Nabutovsky’s results, we recall the few geomet-
ric discoveries that were made before his work concerning the metric space
RS (M) with metric dG−H. In §§12.3.1 we saw that for spheres of certain di-
mensions, the space of metrics of positive scalar curvature is not connected.
There are also manifolds for which the space of metrics with positive sec-
tional curvature is not connected. One of Nabutovsky’s theorems will show
even more: it will show that there are infinitely many connected components,
and that there are infinitely many connected components of every level set
of many functionals. Let us describe one such result of Nabutovsky in more
detail.

From now on in this section, all manifolds are assumed compact
and simply connected.

We first need to describe the functional

F : RS (M) → R .

Let n = dim(M). We will take the embolic functional

F (g) =
Vol (M, g)
Inj (M, g)n

which is dimensionless. We will now look at the corresponding landscape,
for metrics of unit total volume, and with a small positive lower bound for
injectivity radius:

Vol (M, g) = 1
Inj (M, g) ≥ ε

We will write the set of such Riemannian metrics as

RMVol=1
Inj≥ε (M) = {g ∈ RM (M) | Vol (M, g) = 1 & Inj (M, g) ≥ ε} .

We need the concept of computable function. We will not give a precise defi-
nition, but only roughly describe such a function as one which grows slowly
enough that it can be described by a computer program; for example any
power function

n �→ nk

or even a finitely iterated exponential function

n �→ a
a·

··n

2
1

with a1, a2, . . . ∈ N. Of course, we can not expect to write down an example
of an uncomputable function.
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Theorem 288 Let M be any compact manifold of dimension n ≥ 5, and

α : N → N

and computable function satisfying

α(n) ≥ n .

There is a positive number ε0 depending on α and M so that for any positive
number ε ≤ ε0, there are metrics

g, h ∈ RMVol=1
Inj≥ε (M)

so that there is no finite sequence of metrics gi with each

gi ∈ RMVol=1
Inj≥ε′ (M)

with
ε′ =

1
α
(⌊

1
ε

⌋)
and

g = g1, . . . , gN = h

and such that

dG−H (gi, gi+1) ≤
1
9

min (Inj (gi) , Inj (gi+1)) .

In particular, RMVol=1
Inj≥ε (M) is not connected for all such ε.

Note 11.5.0.1 Before discussing the proof, let us recall the properties we
have already encountered of the embolic constant

F (g) =
Vol(M, g)
Inj (M, g)n

which demonstrate its significance, even though it does not depend (directly)
on curvature. In theorem 148 on page 380 we saw that the embolic constant
of the sphere is the smallest possible:

F (M, g) ≥ F (Sn, canonical)

among all compact n dimensional manifolds, with equality occurring only for
the canonical metric on the sphere, up to rescaling. Secondly, by theorem 149
on page 380, for any metric g on any compact manifold M , small balls, of
radius r ≤ Inj (M, g), have lower bounded volume

VolB (m, r) ≥ cnr
n

where the constant cn is independent of the choice of manifold M (but the
largest possible cn is still unknown). In theorem 377 on page 649 of Grove,
Petersen & Wu, one sees that the number of possible manifolds (up to dif-
feomorphism) of dimension n bearing some metric g with F (g) ≥ k is finite
for each k, and one even has an explicit bound universal in n and k. �
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Proof. The key to the proof is to introduce the following invariants, arising
out of Gromov’s work.

Definition 289 For a given closed curve c on M , denote by FillVal(c) the
filling value of c, which is the infimum of the numbers k such that there is a
homotopy cs from c = c0 to a point ∗ = c1 such that for every value of s

length cs ≤ k length c .

Now for a compact, simply connected manifold M with Riemannian metric
g, define

FillVal(M, g) = sup {FillVal(c) | c is a closed curve in M} . (11.10)

A priori there is no reason for FillVal(M, g) to be finite; indeed its finiteness
was proven by Gromov in [610] and is one of the key results for proving his
theorem 227 on page 491. The invariant that we must focus on now is

Fε(M) = sup
{

FillVal(M, g) | g ∈ RMVol=1
Inj≥ε (M)

}
.

We do not need to prove finiteness of this invariant, since the proof of theo-
rem 288 on the preceding page proceeds by contradiction. Heuristically, the
aim of the theorem is to construct on M incorrigible metrics. It is enough
to find such metrics on spheres Sn; then one sees easily that every compact
manifold carries an incorrigible metric by performing connect sums. The con-
tradiction to prove is

Lemma 290 For any computable α one has

Fε (Sn) > α

(⌊
1
ε

⌋)
for any ε.

Lemma 291 If theorem 288 is false, then there is a computable α such that

Fε (Sn) < α

(⌊
1
ε

⌋)
for some ε.

The second step is pure Riemannian geometry. We have to prove some
kind of precompactness theorem in RMVol=1

Inj≥ε (Sn), and this is achieved in the
spirit of theorem 384 on page 655. The crux of the argument is a lower bound
for the volume of balls; in that theorem Bishop’s inequality provided such a
bound, while here it comes from Croke’s inequality quoted above. After this,
one proves that any pair of metrics g, h satisfy
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FillVal(M, g) ≤ univ (ε, dG−H (g, h)) FillVal(M,h) .

The contradiction follows using arguments coming from Gromov’s technique
for proving the finiteness of FillVal in equation 11.10 on the page before. This
same technique also proves that there is some uncomputable function α for
which the analogous result does not hold.

We now enter the realm of algorithmic computability theory, and the
proof is a deep Riemannian refinement of Novikov’s proof of the algorithmic
unsolvability of the problem of recognizing a sphere Sn of dimension n ≥ 5.
The trick is to associate to every Turing machine4 T a polynomial with
rational coefficients

pT (X1, . . . , Xn+1) ∈ Q [X1, . . . , Xn+1]

such that the hypersurface

{X | pT (X) = 0} ⊂ Rn+1

is a smooth manifold and a homology sphere. Then it will be a sphere pre-
cisely when its fundamental group is trivial. Now suppose that there is some
computable function α : N → N with

Fε (Sn) < α

(⌊
1
ε

⌋)
for some ε. Following a refinement of a classical theorem in algorithmic com-
putability, one can construct a contradiction in the world of Turing machines
as follows. Because our pT = 0 hypersurface is algebraic, we can algebraically
compute its volume, diameter, and sectional curvature. But putting together
the theorems of Cheeger and Klingenberg from §§6.5.2, we obtain a lower
bound on the injectivity radius. Using Croke’s inequality again, one can de-
sign an algorithm to check if the fundamental group of our hypersurface
is trivial. Take generators for the fundamental group of the hypersurface,
and approximate them (as in Morse theory) by broken geodesics. We can do
this with a maximum number of “breaks,” because the injectivity radius is
bounded from below. This allows us to work in a finite dimensional space,
and control all of our geometric data algebraically, thanks to the Tarski–
Seidenberg theorem and the essential fact that—by hypothesis—we have
computable control on the lengths of geodesics when we try to deform them
into a point. Note that the very deep finiteness of the number of manifolds
(up to diffeomorphism) satisfying a bound on the functional F , which comes
from theorem 377 on page 649, is required in this proof.
4 For those unaccustomed to Turing machines, just imagine that they are

computers–the notion of Turing machine is essentially the notion of computer.
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This theorem does not supersede the natural approach to picking best
metrics as critical points of Riemannian functionals. We know that the vari-
ous RMVol=1

Inj≥ε (M) spaces have more than one component, but are the compo-
nents numerous? More importantly, there is no theorem to prove the existence
of a metric for which the infimum of

F (g) =
Vol(M, g)
Inj (M, g)

is attained. Indeed, there likely is no such metric on some manifolds. In the
spirit of §§12.4.2, one would like connected components which are compact
modulo diffeomorphism, and then minima of our functional would exist. This
is achieved in Nabutovsky & Weinberger 1997 [961] by the following theorem.
Here the functional F (g) is the diameter, but on the subset of RS (M) called

RS |K|≤1
Vol=1 (M)

and defined as the set of Riemannian metrics on M for which M has unit
volume and sectional curvature between −1 and 1, but with any two such
metrics identified if they differ by diffeomorphism.

Theorem 292 (Informally stated:) For any manifold M of dimension n ≥ 5
and any computable function α there is some number x0 = x0(α,M) so
that for any x ≥ x0, the set of Riemannian structures in RS |K|≤1

Vol=1 (M) with
diameter less than x

{diam ≤ x} ∩ RS |K|≤1
Vol=1 (M)

has an exponential number
ec(n)xn

of basins (i.e. connected components) inside the set

{diam ≤ α(x)} ∩ RS |K|≤1
Vol=1 (M) .

Moreover, on every basin there is a positive lower bound for the volume
Vol(M, g).

The precise statement is even stronger, with finite chains for dG−H as in
theorem 288 on page 564. The universal lower bound for the volume, applying
the compactness theorem 377 on page 649, gives a C1,α metric on each basin
which is a local minimum for the functional

F (g) = diam(M, g)

on RS |K|≤1
Vol=1 (M).
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Corollary 293 The functional

F (g) = diam(M, g)

on RS |K|≤1
Vol=1 (M) has an awesomely complicated fractal panorama, since there

are so many local minima for it. Namely, at a given level for the diameter,
there is an exponentially growing number of local minima. Moreover these
minima cannot be connected at a larger level of diameter even if we allow the
larger diameter to be any computable function of the initial diameter.

For the proof, one needs more sophisticated homology spheres than the
very general ones used previously. The main difficulty is to find homology
spheres which can be endowed with metrics in RS |K|≤1

Vol=1 (M), with a universal
lower bound for their volume. This is very difficult, and is the main result in
Nabutovsky & Weinberger 1997 [961]. One needs to find suitable fundamental
groups, i.e. nice finitely presented groups. In terms of group theory, the proof
uses many very deep and recent discoveries. In terms of Riemannian geometry,
the lower bound on volume is immediate on manifolds with positive simplicial
volume; see §§§11.3.5.2 where simplicial volume is explained. So Nabutovsky
& Weinberger bring to topologists and geometers new examples of manifolds
with positive simplicial volume.

In Nabutovsky & Weinberger [962], one will find analogous stories told
about quite a number of natural functionals. For the moment, Nabutovsky
has only achieved partial results for the Hilbert functional (the integral of the
scalar curvature), which ones imagines will yield Einstein structures. It seems
that the common moral of these stories is that (at least for standard function-
als) looking for critical points, even for local minima, will not yield natural
“best” metrics—when one has too many minima (uncomputably growing
numbers) looking for the absolute minimum is not a tractable job. This also
explains why the problem of distributing points spaced apart on a sphere,
which is problem 7 in Smale’s 1998 list [1149], is today apparently a hopeless
task: see Saff & Kuijlaars 1997 [1083], and section III.3 of Berger 2000 [172].
In a similar vein, Nabutovsky shows that there is no “reasonable” flow in
general; this can happen in some special cases, and close to good metrics, as
we saw in §§11.4.3.

In conclusion, to get best metrics we need a more refined approach, cor-
recting suitable functionals in an appropriate manner; for this spirit see Marg-
erin 1991 [895] and 1993 [897].

Note 11.5.0.2 (Low dimensions) We have already examined Riemannian
structures on surfaces closely. On three dimensional manifolds, the above the-
orems as stated are certainly false, since Thurston has proven that there is an
algorithm to recognize the three dimensional sphere. But this does not solve
his geometrization programme (see §14.4). On four dimensional manifolds,
Nabutovsky thinks that most of his results may be valid and approachable
by the same avenues. �
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12.1 Some History, and Structure of the Chapter

12.1.1 Hopf’s Inspiration

We have frequently encountered relations between curvature and topology.
Among others we can mention the Gauss–Bonnet–Blaschke theorem 28,
the von Mangoldt–Hadamard–Cartan theorem 72, Myers’ theorem 63, and
Synge’s theorem 64. The topic of curvature and topology has been for some
time the most popular and highly developed topic in Riemannian geometry.

The first to investigate relations between curvature and topology in a
general and systematic context was Heinz Hopf:
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The problem of determining the global structure of a space form
from its local metric properties and the connected one of metrizing—
in the sense of differential geometry—a given topological space, may
be worthy of interest for physical reasons.

Heinz Hopf 1932 [730]

This implies two opposite problems. The second one was the object of
chapter 11. The first one is the object of the present chapter. In fact Hopf
had already started to work on the subject and was especially motivated by
the two following questions:

Question 1. When the sectional curvature of an even dimensional compact
manifold is of a constant sign ε = ±1, is the sign of its Euler characteristic
equal to εd/2?

Question 2. Extend to any even dimension the Gauss–Bonnet theorem 28.

It seems quite clear that he was thinking (or perhaps only hoping) that the
solution of question 1 would follow from that of question 2. In the papers
Hopf 1925–1927 [727, 728, 729] he succeeded in proving the sign conjecture
for space forms (in the sense of question 1, not of his quotation above) and
to prove that the Euler characteristic of a hypersurface Md in Ed+1 is, up
to a universal constant, the integral of d−1

√
det II, the (d − 1)-th root of the

determinant of the second fundamental form, i.e. the product of the eigenval-
ues of that form (the principal curvatures; see equation 4.43 on page 233 and
§§14.7.1). Note that this is exactly the Gauß–Bonnet theorem when d = 2,
since det II = K. To prove this formula he first extended the Rodrigues–
Gauß map to hypersurfaces and proved theorem 415 on page 738. But he
was facing a topological problem, which he solved in the third paper, where
he invented and proved his famous and beautiful formula giving the Euler
characteristic as the sum of the indices of any vector field on the manifold:
equation 15.12 on page 739. For hypersurfaces, his definition of the index of
a singularity of a vector field is directly connected with the Rodrigues–Gauß
map.

This det II is an invariant of the metric, for any dimension d (properly
speaking, its absolute value is invariant, in odd dimensions). So that his for-
mula was solving questions 1 and 2 only in the very special case of hypersur-
faces in Rd+1. This intrinsic nature comes from the fact that for hypersurfaces
the curvature tensor is very special (see equation 4.43 on page 233): for an or-
thonormal basis diagonalizing the second fundamental form, the only nonzero
components of the curvature tensor are the Rijij and moreover their values
are Rijij = λiλj where the λi are the principal curvatures. This is nothing
but the generalization of Gauß’s theorema egregium 16 on page 119, see sec-
tion 14.7 on page 716. This means that the curvature tensor of a hypersurface
is extremely special. The difficulty was to find the expression in the curvature
tensor which generalizes this. This did not stop Hopf from advertising the



12.1 Some History, and Structure of the Chapter 571

topic. But note that Myers’ first results were those of his dissertation under
Morse. There is also of course the Hopf–Rinow theorem in section 6.1.2.

We will see in some detail in §15.7 that the generalization of Gauß–Bonnet
theorem was obtained by Allendoerfer and Weil in 1943 (and guessed by
Allendoerfer and Fenchel before). But we will see in the note 12.3.1.1 on
page 607 that this formula solves question 1 on the facing page in dimension
4 but is not enough to solve question 1 on the preceding page when the
dimension is at least 6. Then, despite the huge harvest of the present chapter,
question 1 remains open today for any (even) dimension starting with 6, with
no guess from experts. See however the very end of §14.1 for the special case
of Kähler manifolds.

Besides generalizing the Gauß–Bonnet theorem and the sign conjecture,
Hopf had two other favourite questions concerning “curvature and topology.”

Question 294 Does S2 ×S2 admit a metric of positive sectional curvature?

Note that it obviously admits metrics of nonnegative sectional curvature,
namely Riemannian products of any positive curvature metrics on both S2.
We will see again below that today this question, along with its natural
generalizations, is completely open with no guess from the experts. This is
also surprising; see Yau’s fact 325 on page 606.

So much for positive curvature. A third favourite question of Hopf was
the pinching problem for the sphere. We saw that complete simply connected
manifolds of positive sectional curvature are known: they are the standard
spheres. A heuristic sense of continuity produces the following question: as-
sume that a simply connected manifold has its sectional curvature between
1 and 1 − ε. Can you infer that this manifold is a sphere?

Harry Rauch was visiting Zürich in 1948-1949. He was a specialist in
Riemann surfaces. But he was so enthusiastic about Hopf’s pinching that,
back at the Institute for Advanced Study in Princeton, he finally cracked
the nut and proved Hopf’s conjecture in the pioneering paper Rauch 1951
[1050] with a 1 − ε approximately around 3/4. We will come back soon to
this seminal paper in §§12.2.3. Let us just say here that it really triggered
“geometric global Riemannian geometry,” in the form it has today.

But it would be unfair not to mention Bochner’s results and those of his
followers who used the so-called “Bochner technique” via the Weitzenböck
formula. The results were from curvature to topology but using analysis via
the Hodge theory of harmonic forms. We will meet this topic below in an
appropriate place: §§§12.3.1.4 and theorem 345 on page 621 and explain it at
large in §15.6.

We now comment briefly on the content of this chapter. The author had
a very hard time organizing it. There are so many very different yet relevant
results that to categorize them in a completely rational way is a difficult job,
say impossible. We hope that our presentation will help the reader to find
his way in the present blossoming period of the topic, and find our structure
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not too artificial. Berger 1960 [149], 1998 [171], 2000 [172], and Petersen 1998
[1019] provide surveys. Also see Yau 2000 [1297].

The section §12.2 is about pinching problems. Hopf’s question was a kind
of comparison theorem for the simply connected compact space forms. We
can ask the same question about any space forms, simply connected or not
and with curvature of any sign. They are called the positive, the zero and
the negative pinching problem. Now that the pinching problem is solved for
some ε, the story is far from being finished. The mathematician’s natural
imperative is to obtain the best result. In the positive case there is good
news: see theorem 297 on page 580: 1/4 is the best value and one cannot do
better than a strict 1/4 since the KP

n do have curvature ranging between
1 and 1/4 (see equation 4.37 on page 229). The second type of question is
the following: assume that the curvature ranges from 1 to 1/4 − ε with a
small enough ε for a simply connected manifold. Having again in mind some
heuristic continuity principle, can one infer that the manifold is topologically
a sphere or a KP

n? A third type of question is to replace the hypothesis of
the type a < K < b by some weaker condition on one of the sides. We will
see below various types of geometric invariants coming into the picture, but
the main discovery was that most often one can replace the strong condition
K < b by a bound involving only an inequality for the volume or the diameter:
the moral is that large positive curvature does not affect the topology.

12.1.2 Hierarchy of Curvatures

12.1.2.1 Control via Curvature Let us formulate another type of ques-
tion. The sectional curvature (or the curvature tensor) is very “parameter-
redundant” for a metric: see equation 4.28 on page 223. The number of pa-
rameters in the curvature tensor is

d2
(
d2 − 1

)
12

but there are only
d(d+ 1)

2
parameters in the metric. The curvature invariant which has as many param-
eters as a Riemannian metric is the Ricci curvature. The Ricci curvature (see
equation 6.10 on page 267) is a differential quadratic form on the manifold,
so its number of parameters is d(d + 1)/2. So the urge is to use only Ricci
curvature bounds (as for example in Myers’ theorem 63 on page 268). Today
there is a bountiful harvest of results and also of counterexamples to prove
more or less some optimality of the results. We explained in §§6.4.3 why such
results were possible with only a Ricci lower bound instead of a sectional
curvature lower bound. We will report on these again in §§12.3.1. The har-
vest very recently became amazingly plentiful; see for example theorem 318
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on page 599, theorem 319 on page 601 and §§12.3.2. An expository text is
Gallot 1998 [541].

Finally one can ask if the scalar curvature (although such a weak invariant,
namely a numerical function) can control something. The case of dimension
2 should be mainly discarded.

Thinking for example of Hopf’s question on S2×S2 that we have met just
above and of the von Mangoldt–Hadamard–Cartan theorem 72 on page 278,
one might try to classify Riemannian manifolds whose curvature has a given
sign, strictly or not: this will be the purpose of §12.3. Here the harvest is
not poor, but for example the classification of positive or nonnegative sec-
tional curvature manifolds is practically completely open. The harvest on the
negative sign is much better.

12.1.2.2 Other Curvatures In the above a hierarchy for curvatures was
obvious: the strongest one is the sectional, then comes the Ricci and finally
the scalar. For example the positivity of the sectional curvature implies that
of the Ricci curvature, and the latter implies the positivity of the scalar
curvature. And there is of course no inverse implication.

Quite recently other curvature invariants and notions came into this too
simple three level hierarchy. We will meet them only occasionally, but one
cannot ignore them totally. First comes the curvature operator: the two first
lines of the curvature tensor identities in equation 4.28 on page 223 show
that R defines a symmetric bilinear form on the exterior product Λ2 (TM)
of the tangent space. This bilinear form is called the curvature operator and
denoted (if needed) by R∗. The word operator refers to the fact that, under
the Riemannian structure, one can identify bilinear forms with endomor-
phisms. Beware that knowing R∗ does not tell us more than knowing R.
However knowing the positivity of R∗ is much stronger that the positivity of
the sectional curvature K; see §§§12.3.1.4. Looking at the definition, this is
not surprising, since the sectional curvature yields the value of the curvature
operator only on the 2-forms in Λ2 (TM) which are of the most degenerate
type, namely of the form x ∧ y. The complete relations between pinching
inequalities for K and for R∗ are not understood today. One does not know
the optimal pinching of sectional curvature which will imply the positivity of
R∗. This pinching probably depends on the dimension. A recent reference is
Chen 1990 [360]. However, we know that a 1/4-pinching (pointwise) does not
imply R∗ ≥ 0, but the miracle is that it implies (notation below) that

K isotr
C > 0;

see §§§12.3.1.4 below for motivation. The proof is just a naive use of the last
equality (circular permutation) in 4.28 on page 223, called the first Bianchi
identity, see §15.2.

Next we complexify the tangent space (at each point; we do not com-
plexify the whole manifold in general) and then define the complex sectional
curvature, denoted by KC . An important notion in §§§12.3.1.4 is that of
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complex isotropic planes, namely those on which the complexification of the
metric g vanishes. Then the condition K isotr

C
> 0 makes sense. Finally we

will see, for Kähler manifolds, the notion of holomorphic and of bisectional
curvature. The implications can be summed up in the table 12.1.2.2.

Q > 0

��
KC > 0

���������������

1
4
− pointwise pinching �� Kisotr

C > 0

n≥4

���
��

��
��

��
��

��
��

��
K > 0

��
Ricci > 0

��
scalar > 0

Table 12.1. Curvature implications

We also introduced into this table the pointwise 1/4-pinching condition;
see §§§12.3.1.4. Except the implication of 1/4-pinching, all of the other im-
plications in the table are elementary. Let us just recall the equation 6.9
on page 267 and the fact that the scalar curvature is the trace of the Ricci
curvature. For example for any orthonormal basis {ei} of TmM one has

Ricci (e1, e1) =
d∑
i=2

K (e1, ei) (12.1)

and
scalar =

∑
i�=j

K (ei, ej) .

12.1.2.3 The Problem of Rough Classification We know that most
manifolds cannot carry a metric with curvature of a given sign. So what can
a Riemannian geometer ask for? The basic idea is to think of the space of
all Riemannian manifolds (up to isometry of course) and try to see if one
can see the meaning or the consequences of various bounds for Riemannian
invariants. Typically, a rough “classification” would be to prove that some
set of conditions imply finiteness for the set of underlying differentiable man-
ifolds which bear a metric satisfying these conditions. This was done in the
trail-blazing Cheeger 1970 [330]. If one thinks in a vague sense of the set of all
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differentiable compact manifolds of a fixed dimension as “discrete,” a finite-
ness theorem would appear like a compactness one. This is naturally linked
with possible topologies for the set of all Riemannian metrics of a given di-
mension. We will try to give a complete account of the most important results
obtained in these topics in §12.4.

A special mention should be made of curvature conditions which are not
pointwise inequalities but are integral norms (say, roughly of L2 or Lq type).
We will briefly mention results of that kind. One reason for our brevity is
that despite their importance, they resort more to analysis than to geometry
(you already know the biased temper of the author).

To sum up the structure sketched above we propose table 12.2 on the
following page, where one coordinate is the kind of curvature and the other
the type of question.
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12.1.2.4 References on the Topic, and the Significance of Noncom-
pact Manifolds We have already explained in the introduction to this book
that as we delve into more recent and deeper results, we will give less and
less information on the proofs, the tools and the ideas behind the proofs. We
also stay in the realm of compact manifolds, for brevity and simplicity, but
notable exceptions will be met in §§§12.3.1.4 and partly in §§12.3.4. Non-
compact manifolds are fundamental, and not only when they appear as the
universal covering of a compact one with a “large” fundamental group. Re-
sults for noncompact manifolds will be mentioned here and in §14.1. We will
of course give various references, both research papers and surveys. The only
books on the topic (to the best of our knowledge) are Cheeger & Ebin 1975
[341], Sakai 1996 [1085], Gromov 1999 [633], and Petersen 1997 [1018],[1017].
The book Grove & Petersen 1997 [650] considers quite a few of the topics
of this chapter. Petersen 1998 [1019] is very informative and exhibits a deep
understanding. The other books on Riemannian geometry already mentioned
or those we will quote are more or less specialized. The reader should under-
stand, in case it will not be clear below, that this topic is extremely active
today.

12.2 Pinching Problems

12.2.1 Introduction

We saw in §§6.3.2 that the manifolds of constant sectional curvature are lo-
cally isometric to spheres, Euclidean spaces or hyperbolic spaces. If compact,
they are thus compact quotients of the sphere, Euclidean space or hyperbolic
space. Note that the complete classification is still not finished and that such
a classification of hyperbolic space quotients is extremely difficult. To solidly
establish that the space forms are indeed quotients was one of the tasks of
Heinz Hopf in the 1930’s and one of the motivations for the Hopf–Rinow the-
orem 52 on page 249. The next natural question is about pinching: assume
a compact manifold has a sectional curvature varying not too much (one
will say that the manifold is “pinched”). Can one deduce from this that the
underlying manifold is, topologically (or perhaps even differentiably) identi-
cal to one of the above space forms? After rescaling, we are left with three
cases: the pinching question around +1, 0 , -1 but note that, for the zero
case, some normalization is needed, which is done usually by asking the di-
ameter to be not too large, say ≤ 1. Since a trivial but basic remark is that
stretching the metric by larger and larger factors will make the curvature go
to zero, cf. equation 4.34 on page 227. We will present the positive pinch-
ing problem in great detail, because of its historical importance both as a
triggering result and as creating new tools. The positive pinching question
and its more refined generalizations had an enormous influence, because of
its neat statement—a statement which naturally encouraged people to search
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for the various kinds of generalizations we already mentioned. See the survey
Shiohama 2000 [1134].

Returning to the general pinching problem, we will see that the answer,
when we only ask that the curvature be pinched, has surprisingly different
answers in the three cases. This will begin illustrating the striking differences
between space forms of different signs, differences which will met already in
§§6.6.2, §§9.5.4, theorem 213 on page 481, and §§11.3.5. There is an answer
covering the three cases together, but one needs, besides the pinching of the
sectional curvature, both an upper bound on the diameter and a lower bound
on the volume. Even if this result is the union of previous results to be met
individually below, we mention a general fact, as stated and proved in Fukaya
1990 [531] theorem 15.1:

Theorem 295 For each d,D, v there is an ε = ε(d,D, v) > 0 such that if a
Riemannian manifold of dimension d has diameter smaller than D, volume
larger than v, sectional curvature between bounds σ − ε < K < σ + ε (where
σ = −1, 0 or 1) then this manifold is the underlying manifold of a space form
of constant sectional curvature equal to σ.

The positive case was solved in 1951 by Rauch without Fukaya’s extra con-
ditions, see below. The zero case was solved in Gromov 1978 [609] with only
an extra upper diameter condition and the negative case was solved also by
Gromov (with only an extra upper volume or upper diameter condition); see
§§12.2.4. These extra conditions are necessary. For these classical pinching
results there is a good survey (up to 1990), namely section 15 of Fukaya 1990
[531]. Informative texts are Gromov 1990 [628] and see Petersen 1996 [1016]
as well as the books Grove & Petersen 1997 [650] and Gromov 1990 [628].

There are more general types of pinching, the most general being for the
symmetric space forms of §6.6. Such a programme was started in Rauch 1953
[1051]; for references and intermediate results see Min-Oo & Ruh 1979 [927],
1981 [928]. For example in Min-Oo & Ruh 1979 [927], where the proof is
mainly analysis, one finds:

Theorem 296 Let G/K be a compact simply connected irreducible symmet-
ric space and M a Riemannian manifold. Modelled on G/K one can construct
on M a principal bundle P and define a suitable norm ‖P‖ for it. There is
a constant ε such that ‖P‖ < ε implies that M is diffeomorphic to a finite
quotient of G/K.

12.2.2 Positive Pinching

By some heuristic continuity one might hope to be able to prove that if the
sectional curvature is close to a constant, then the underlying manifold (if
simply connected) is still the sphere. This was proven in Rauch 1951 [1050]
with a pinching constant (i.e. the ratio between the lower and the upper
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bounds of the sectional curvature) about 3/4. Rauch’s paper was seminal
in two respects. It was the first controlling the metric on both sides (we
presented these two bounds in §§6.4.1). Secondly, he had a nice convexity
argument for distance spheres; this argument was systematized by Gromov,
see below in the present section. His result was in fact that the manifold is
covered by the sphere. Be careful that this does not solve the equivariant
pinching problem for manifolds which are not simply connected; see below.

The idea of Rauch’s proof was this: we want to compare the manifold
with a sphere. In the standard sphere of unit curvature all of the geodesics
starting from one given point p go to the antipodal point exactly after time
π. Assume now that we have a strong form of pinching like 1 − ε < K < 1.
Then one can guess that the geodesics will make up a nice ball up to time π.
Then some mess will start but the mess will stop soon after time π. Indeed by
Myers’ theorem 62 on page 266 at the most at length π/

√
1 − ε which is close

to π. We know part of this by proposition 67 on page 272 and definition 68
on page 273, since the geodesics diverge no more than those in the sphere
of radius π/

√
1 − ε but also as much those in the sphere of radius 1. Rauch

made the necessary geometrical analysis to prove first that before time π the
exponential ball is covered by a nice topological ball and that what remains
in the mess, which he called a “pouch,” is contractible to a point. Then a
ball with only one point added is a sphere.

σ

PP

Σp(λ)q~

Sp
n-1

Fig. 12.1. The formation of a pouch

12.2.2.1 The Sphere Theorem Today one has the so-called sphere theo-
rem:

Theorem 297 (Sphere theorem) If a simply connected manifold has sec-
tional curvature satisfying

1
4
< K ≤ 1

then it is homeomorphic to a sphere.
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The sphere theorem has an interesting history. First in Klingenberg 1959
[811] the bound of Rauch was improved a little, but principally the notion of
injectivity radius was explicitly introduced and the basic theorem discussed
in the note 6.5.2.5 on page 300 was proven. Namely the injectivity radius of
an even dimensional compact manifold with 0 < K ≤ 1 is larger than or equal
to π. Using this result the sphere theorem was proven in even dimensions in
Berger 1960 [149]. We will give the proof below. But we just add here that
in Klingenberg 1961 [812] the injectivity radius lower estimate was extended
to odd dimensions when 1/4 < K ≤ 1 by an argument using Morse theory;
see the idea in §§6.5.2. Since Berger’s proof was restricted to even dimensions
only by the restriction in Klingenberg first result, the sphere theorem follows
automatically for any dimension.

For various generalizations there is a recent survey Shiohama 1990 [1133].
We will now present another survey.

The proof of the 1960’s consisted in proving that the manifold can be
covered with only two topological balls. A classical result from topology,
Reeb’s theorem, then provides homeomorphism with the sphere, see Milnor
1963 [921]. Note that compactness insures the existence of a δ > 1/4 such that
K ≥ δ. We pick two points p and q in the manifold M such that d (p, q) =
diam(M). We will show that the open balls B (p, r) and B (q, r) cover M
when r is any number strictly between π and π

√
δ/2. Now we need a lemma

which we quote explicitly because we will meet it in a more general context
in §§§12.2.2.4.

Theorem 298 If a point q is at maximal distance from a fixed point p then
for any tangent vector v at q there is a segment γ from q to p such that the
angle between v and γ′(q) is less than or equal to π/2.

The proof is an easy “mise en forme” of the heuristic feeling: if one cannot
travel farther away from p than q then in any direction at q one can only
travel closer to p, or remain at the same distance. This is essentially (with
some refinement) a consequence of the first variation formula 6.3 on page 247.

To finish the proof of the sphere theorem, modulo the injectivity radius
estimate and Toponogov’s theorem 73 on page 281 is now childish: take p
and q realizing the diameter, pick any point s which is not in the ball B (q, r)
with r defined as above, pick up a segment γ from q to s and a segment η
from q to p such that the angle between γ′(q) and η′(q) is smaller than or
equal to π/2. Look at the standard sphere of radius r/2. Then Toponogov’s
theorem for K ≥ δ implies that d (p, s) < r and one is done.

There are completely different proofs of this theorem; the most elegant
proof is due to Gromov and explained in Eschenburg 1986 [492]. It is in fact
very close to Rauch’s original proof spirit: just after π/2 the boundary of a
ball of radius R is concave. Then positive curvature shows that the outside of
that ball can be contracted to a point just by following the normal field—no
trouble arises in the contracting process.



582 12 From Curvature to Topology

p

q

d'(g) ≤ π/2 v

s

p

q

d(p,q) = diameter

q'
r/2

r/2

r/2
r/2

q' s'

≤ π/2

in the comparison
sphere Sd(r)

Fig. 12.2. Proving the sphere theorem
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no !!!

this is concave
and K > 0

permib contraction
to a point

Fig. 12.3. Gromov’s proof of the sphere theorem

A careful reader will notice that an abstract pinching constant can be
recovered from theorem 295 on page 579 as follows. The diameter condition
follows from Myers’s theorem (since we are pinching positive curvature) and
the volume condition follows easily from Klingenberg’s result on the injectiv-
ity radius together with one of Rauch’s comparison theorems (proposition 75
on page 283).

But there are two dramatic provisos. First, we proved only homeomor-
phism with the sphere by exhibiting a covering with only two balls. And
the proof cannot do better, because there are topological spheres with dif-
ferentiable structures different from the standard one (the so-called exotic
spheres). Some exotic spheres are precisely obtained by gluing two half
spheres along their equator, but with a suitable identification; see §§§4.1.3.6.
We are now led to the “differentiable pinching problem” (since of course the
simply connected manifolds of constant positive curvature are the standard
spheres, each with its standard differentiable structure).

Second there is the problem of what can be done for the nonsimply con-
nected manifolds. We want a comparison result with any space form. The
starting manifold being not necessarily simply connected, one desires under
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a suitable pinching that this manifold is the underlying manifold of a space
form of positive constant sectional curvature. This is also called the equivari-
ant pinching problem, the reason being that the proof has to “commute” with
the action of the fundamental group on the universal covering (one should
realize that this is much more than just asking that the universal cover be
homeomorphic or diffeomorphic to the sphere). The standard proof with a
two ball covering is clearly not equivariant.

The equivariant question was solved first in Grove, Karcher & Ruh 1974
[647], see also Im Hof & Ruh 1975 [756]. These results also yielded diffeo-
morphisms. But the pinching constant in this line of investigation depended
on the dimension and was not near optimal: sometimes 0.98, even if it goes
close to 0.68 when the dimension goes to infinity. For equivariant pinching,
homeomorphism or diffeomorphism, there are better constants, but the ques-
tion of the best constant is open; see the survey Shiohama 1990 [1133]. For
the simply connected diffeomorphism problem, after intermediate results ap-
peared, the best constant today is dimensionless and around 0.654, proved
in Suyama 1995 [1169], which mixes different techniques.

But nobody knows if 1/4 is possible or not. Even worse: there is no exotic
sphere known which has positive curvature. One knows only of ones with
nonnegative sectional curvature: Gromoll & Meyer 1974 [607]. In section 1.6.
of Weiss 1993 [1251] it is announced that many exotic spheres cannot be
strictly 1/4-pinched. See also Grove & Wilhelm 1997 [657].

Historically the differentiable pinching problem was solved by Calabi (un-
published) using the center of mass technique (see §§6.1.5 and §§§12.4.1.1)
and in Shikata 1967 [1131] by methods close to those which will appear in
the third part below, namely by an abstract method based on the fact that
differentiable manifold structures are in a suitable sense “isolated.” This is
the place to note that the general theorems of §12.4 can yield almost any
pinching type result but without an explicit constant, since the constant is
obtained by a contradiction argument of the following type: assume one has
a sequence of more and more pinched manifolds. Then one can prove (with
additional hypotheses, which are automatically fulfilled in the positive pinch-
ing case), that one has a limit Riemannian manifold which is by construction
the standard sphere. The isolation implies then that for some (not explicit)
pinching constant one is already “on the sphere.”

In the other direction, the method of Ruh 1971 [1076] is completely geo-
metric and works equivariantly, which is obviously not the case for the other
methods seen in this section. In Ruh’s method the sphere will be seen from
“outside.” The fact that the curvature is very pinched enables us to construct
a line bundle τ on the manifold Md which resembles the normal bundle of
the standard sphere in Rd+1 enough to yield finally an embedding from M
into Rd+1. What one proves is that the bundle product of the tangent bundle
TmM with τ is trivial. This embedding yields finally a sphere close to the
standard one and hence diffeomorphic to it. Such a bundle is called stabi-
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lized, a name coming from algebraic topology where the technique of making
the product of some bundle with some suitable trivial bundle is frequently
employed.

the normal bundle
of Sd is IRd+1

Md

build on M an abstract
flat line bundle

f f(M)

IRd+1

U

embed M
in IRd+1

Fig. 12.4. (a) The normal bundle of Sd in Rd+1 (b) Build on M an abstract flat
line bundle (c) Embed M in Rd+1

In Gromoll 1966 [600] there was a very natural and geometric proof, but
clearly not equivariant. One starts with the above proof of the sphere theorem
by covering with two balls B (p, r) and B (q, r). The result (this is classical dif-
ferential topology) will be diffeomorphic to the standard sphere if the gluing
is close enough to the identity. The gluing takes place ideally in the hyper-
surface made up by the points equidistant from p and q. This yields a map
between the unit tangent spheres at p and q, i.e. a map φ : Sd−1 → Sd−1.
This map is governed by the behaviour of the geodesics emanating from p
and those from q. A refinement of Rauch’s comparison theorems on the be-
haviour of the corresponding Jacobi fields finally permits one to prove that
the above map is isotopic to the identity. But Gromoll’s pinching constant
goes closer and closer to one as the dimension goes to infinity.

12.2.2.2 Sphere Theorems Invoking Bounds on Other Invariants
We will now enter into the spirit explained in the introduction. The game is
to replace the one or the two bounds on sectional curvature by bounds on
some other curvature or geometric invariants: diameter, volume, etc. A result
in this direction is that of Otsu, Shiohama, & Yamaguchi 1989 [988]:

Theorem 299 If K > 1 and the volume of the manifold is close enough to
that of the standard sphere, then it is diffeomorphic to a sphere.
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Fig. 12.5. Gromoll’s proof of the sphere theorem

This result was first obtained with an abstract constant by the type of reason-
ing by contradiction as sketched above. In that text the constant is explicit
and the proof uses again a method “from outside:” using geometric argu-
ments one builds up an embedding of the manifold into Rd+1 such that the
image bounds a ball.

There is also a “differentiable pinching” result yielding manifolds diffeo-
morphic to the standard sphere. It uses in the hypothesis a pure metric
invariant called packd+1 (M) for a Riemannian manifold M of dimension d.
This packing invariant is purely metric—curvature has nothing to do with
it. It is equal to one half of the maximum of the minimum nonzero mutual
distances between d + 1 points. The maximum is to be taken over all such
sets of points in M . The visual picture is to pack inside the manifold d + 1
balls of radius as large as possible; the centers of the balls will build up a
simplex. A packing number can be defined also for any integer smaller than
d+ 1. When one considers only two points instead of d + 1 one has nothing
but the definition of (half) the diameter. Then result is:

Theorem 300 (Grove & Wilhelm 1995 [656]) If the sectional curvature
of a d-dimensional manifold M satisfies K ≥ 1 and if packd+1 (M) > π/4
then this manifold is diffeomorphic to the standard sphere.

The proof uses Alexandrov geometry (see §§14.5.5) and is a method “from
outside” as was Ruh’s, except that it just uses the metric and the center of
good packing balls to get a suitable embedding. The center of mass technique
(see §§6.1.3) is essential here, as in many other places. The use of Alexandrov
geometry is natural when working only with the assumption K ≥ 1. A very
informative survey of these sort of results (and of some others below involving
the radius, defined in §§12.2.5) is Grove 1992 [645].



586 12 From Curvature to Topology

an optimal packing

M

suspending Md to embed
it in IRd+1 to finally

get a real sphere

Fig. 12.6. (a) An optimal packing (b) Suspending Md to embed it in Rd+1 to
finally get a real sphere

12.2.2.3 Homeomorphic Pinching We come back now to the homeo-
morphic pinching problem. and recall first that the KP

n (for K �= R) have a
standard metric with sectional curvature ranging from 1 to 1/4; see §§4.4.3.
So the sphere theorem is optimal as far as the pinching constant is concerned.
Next it is natural is to ask what happens at 1/4 and also a little below 1/4.
Note how mathematicians always proceed—they are never happy, they al-
ways want to go further. And if they cannot get the best, they manage to
find something interesting on the way. Here the situation is in three respects
quite satisfactory. We will give the results and thereafter the ideas for the
proofs. First we have the so called rigidity theorem which is a perfect answer
for the 1/4 question:

Theorem 301 (Rigidity theorem, Berger 1960 [149]) Assume that a
simply connected Riemannian manifold has sectional curvature between 1/4
and 1 and that it is not homeomorphic to a sphere. Then the manifold is
isometric to KPn (with K �= R) endowed with its standard metric.

A pleasant way to look at this rigidity result is to say that any change of
metric on a standard KP

n, no matter how small it is, will yield sectional
curvature outside a range of 1/4.

Second: one can go a little below 1/4 (how far below perhaps depends on
the dimension):

Theorem 302 (Durumeric 1987 [466]1) There is an (unknown) constant
ε(d) such that any 1/4 − ε(d) pinched simply connected manifold of even di-
mension d is homeomorphic to a sphere or some KPn.

This is unsatisfactory for the abstractness and the evenness restrictions.
The even dimension restriction is due to the fact that at that time it was not
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known how to go below 1/4 for the injectivity radius in odd dimensions: see
the note 6.5.2.5 on page 300. And a lower bound for the injectivity is needed
in convergence theorems. Since now we have the Abresch–Meyer theorem 93
on page 300 then theorem 302 on the preceding page extends now to any
dimension. But we are still left with the question of finding explicitly the
constants ε(d). A complete answer is still not known but definitive progress
is charted below. Note that the results are optimal when the dimension is
odd, and that in even dimensions the situation is vaguely similar to that met
in §10.10 when studying manifolds all of whose geodesics are periodic:

Theorem 303 (Abresch & Meyer 1996 [7]) LetM be a simply connected
compact manifold with sectional curvature between 1 and η(d). There is an ex-
plicit η(d) such that if d is odd then the manifold is homeomorphic to a sphere,
while if d is even one knows only that the cohomology rings H∗ (M,Q) and
H∗ (M,Z/2) are isomorphic to the corresponding cohomology rings of one of
the following manifolds of dimension d: Sd,CPd/2,HPd/4 or CaP2.

Also see Zizhou 1999 [1309] and Abresch & Meyer [8]. The best η is unknown;
it might well depend on the dimension. We refer to the Abresch–Meyer article
for the present best known value which is independent of the dimension and
is approximately 1

4 (1 + εodd)
−2 with η = εodd = 10−6, for d odd, and η =

1
4 (1 + εeven)

−2 with ε = 1/27000 for d even. We know that one cannot bring
these ε constants arbitrarily close to 0, in view of the existing examples
of positive curvature manifolds: see §§§12.3.1.1. Exceptions are dimension 2
(by the Gauß–Bonnet theorem 28 on page 155) and dimension 3 in view of
Hamilton’s results on the heat flow presented in equation 11.9 on page 553 and
in §§§12.3.1.1. In dimension 4 one finds only S4 or CP

2 with pinching 0.188 <
K < 1 by Seaman 1989 [1117]. His technique is a refinement of Bochner’s, see
§§12.3.2 and §15.6. One proves that the second Betti number can be at most
one by applying Bochner’s formula to two linearly independent harmonic 2-
forms. For higher dimensions we have to stop here for the pinching constant.
In fact, to go further below 1/4 will mean merely to look for a classification of
all manifolds (since any manifold has some Riemannian structure) or at least
for manifolds of positive curvature. See more on this in §§12.3.1. However
one should not forget the low dimensional exceptions. Note that for getting
a sphere from the above topological condition one needs to use the solution
of the Poincaré conjecture in dimension 5 or more.

Let us now give some idea of the proofs. For the rigidity theorem 301 on
the facing page the proof is quite simple and geometrical; it does not need
new tools. If one looks at the proof above for the sphere theorem one sees
that it still works when the diameter is greater (strictly) than π/2. Just look
at the Toponogov comparison with the sphere of constant curvature equal
to 1. So that we can assume that the diameter is equal to π/2. But this is
a very special, say critical, situation which we met in §§6.5.5: our manifold
has diameter equal to its injectivity radius. This is because of Klingenberg’s



588 12 From Curvature to Topology

p

-u

u

-u0

z

u0

y

s in  t .v
2

s in t .v

Cut (p)

Fig. 12.7. Proof of the rigidity theorem

theorem 92 on page 300 (which is valid only in even dimensions). We saw
many implications of that theorem in §§6.5.5 and §§10.4.2, but could not
conclude anything without curvature conditions. But here we have the con-
dition 1/4 ≤ K < 1. Pick any point p and look at its cut-locus Cut-Locus (p)
as in §§10.4.2. It is a nice submanifold. If it consists only in one point we are
finished—we are on the sphere of constant curvature equal to 1. If we are not
in this case, then we might have geodesics still going from p to the same given
q in Cut-Locus (p). Then the corresponding Jacobi fields have to satisfy the
equality in Rauch’s comparison theorem (proposition 75 on page 283) and
the curvature condition shows that this field has to be of the form sin(t)v
(for a parallel transported vector field v) and the curvature has to be equal
to 1 along it. Then if we look at geodesics from p going to different points
in Cut-Locus (p), the tangent vectors to Cut-Locus (p) will correspond this
time to the opposite situation for the equality case in the Rauch comparison
theorem (proposition 75). Again the curvature condition implies that such a
Jacobi field is of the form sin(t/2)v where v is a fixed (parallel transported)
vector and more: the curvature is equal to 1/4 along it. Finally Jacobi fields
can be only of two types : sin(t/2)v (for curvature 1/4) or sin(t)v (for curva-
ture 1). This enables us with some work to completely reconstruct the metric
by the geodesics starting from p “à la Cartan” as seen in §§6.3.1. So we get
the standard KP

n, including RP
n.

For the odd-dimensional result the above will not apply, even if we know
by theorem 93 on page 300 that the injectivity radius is not too small. In
fact this case is treated, at the same time as that of even dimension, by the
horseshoe technique which we explain now. If one appeals to the theorem 304
on page 590, we have a dichotomy for the diameter. If it is larger than π/2
then we have a sphere. So from now on we suppose that the diameter is closed
to π/2. We hope now that the following heuristic thought will work: when
the diameter and the injectivity radius are equal, the geodesics are periodic
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Fig. 12.8. How to build a map from RPn to M

and of length π. In the present case the diameter being very close to the
injectivity radius, one can hope that any geodesic γ starting from p say, will
be almost closed, namely that d (γ(π/2), γ(−π/2)) will be small, hopefully
even smaller than the injectivity radius. If this is the case one could then
connect them by a unique segment, then making some kind of a horseshoe.
The trick is now that of theorem 222 on page 489 and this implies exactly the
conclusions of the theorem. These heuristic ideas have been made to work.
This is a beautiful geometric achievement carried out in Abresch & Meyer
1994 [8]. But it involves a very technical tool, namely generalized Rauch
estimates on Jacobi fields Y to control not only their norms ‖Y (t)‖ but also
to control their angular velocity ‖Y ′(t)‖ / ‖Y (t)‖ with curvature estimates.
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Fig. 12.9. The horseshoe trick
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12.2.2.4 The Sphere Theorem with Lower Bound on Diameter, and
no Upper Bound on Curvature But the game is far from being finished,
because one would like to get results with weaker hypotheses in the spirit of
the introduction. A spectacular event was:

Theorem 304 (Grove & Shiohama 1977 [654]) Let M be a Rieman-
nian manifold with K ≥ δ > 0 and a diameter larger than π

√
δ/2. Then

M is homeomorphic to a sphere.

So the upper bounds for the curvature completely disappear. This is not
too surprising today as we saw for Colding’s formulas in §§6.4.2 and in the
philosophy in §§6.4.3 because of Myers’s results. In a manner different from
chapter 6 on page 243, we comment here a little bit about the possibility
of getting rid of an upper bound for the curvature and still controlling the
topology. Very roughly, let us look at the two pictures in figure 12.10.

K              ∞

more and more    K > 0 more and more    K < 0

K       ∞
K       ∞

also

Fig. 12.10. (a) More and more positive curvature (b) More and more negative
curvature

One sees that smaller and smaller fingers give rise to huge positive cur-
vature, and still the topology stays the same. Oppositely if one adds fingers
“with holes,” then this introduces negative curvature and smaller and smaller
fingers give more and more negative curvature. Of course this does not prove
anything. We will below introduce techniques to realize this dream.

The first technique was very new; it still uses Toponogov’s theorem 73 on
page 281, but the main point which is absolutely fundamental is to be able
to go beyond the injectivity radius. We comment now in detail because the
authors invented a new tool, the notion of critical point for distance functions,
which turned out to be of basic importance thereafter up to the present day.

The trick is to use the distance function d (p, ·) from a point p and have
the following definition:

Definition 305 A point q is said to be critical for the distance function
d (p, ·) if for any direction v at q there is a segment (a shortest geodesic) γ
from p to q whose speed vector γ′ at q makes an angle with v not larger than
π/2.
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p

the open balls B(p,r) remain diffeomorphic
 to IRd even if their boundaries are not smooth

Fig. 12.11. The open balls B (p, r) remain diffeomorphic to Rd even if their bound-
aries are not smooth

The geometer will like to see some other equivalent views of critical dis-
tance. The point q will be not critical (for d (p, ·), and one can call it regular)
if there exists a tangent vector v at q such that all the segments from q to p
make an angle with v larger than π/2. Or: all of the directions of the segments
from p to q are contained in some open hemisphere of the unit sphere UqM .

p

q p

q p

q

Fig. 12.12. Critical distance

As an example, we saw above in theorem 298 on page 581 that is the case
when d (p, ·) is maxima at q. Another case would be the antipodal point of
p on a geodesic loop through p. Is this notion coherent with the notion of a
critical point for a smooth function on a differentiable manifold as given in
§§10.3.2? The distance function d (p, ·) is differentiable at every point q not
in the cut locus of p, and its gradient is the velocity of the unique segment
from p to q. So q is certainly not critical. Moreover along this vector, the
first derivative of the distance is positive. In the smooth case, at a critical
point there is no direction where the first derivative is nonzero. And the
definition above for the distance function says exactly that. Conversely, if
q is not critical, looking at the subset of the unit sphere at q made of the
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vectors which are the speed at q of the set of all segments from p to q, one
sees immediately that there is some vector w which makes an angle with
all of these vectors larger than π/2. Going along this direction will exactly
generalize a positive first derivative.

To prove theorem 304 on page 590 one imitates the proof that a manifold
covered by two open balls is a topological sphere (see the discussion following
theorem 297 on page 580). One just builds up from these two balls a smooth
function with only one maximum. In the Riemannian case one could look at
the “equidistant” Sd−1 and smooth the angles along it.

smoothing to get a nice deformation

Fig. 12.13. Smoothing to get a nice deformation

There is, as suggested just above, a nice smoothing argument based at
each noncritical point to find a vector of strictly increasing distance. This is
just dittoing the basic fact of Morse theory (see §§10.3.2) that the topology
of the sublevel domains do not change when one follows the gradient as long
as one does not meet any critical point. Then one has only to remark that the
two conditions of the theorem imply that if p and q have distance between
them equal to the diameter, then Toponogov’s theorem implies immediately
that there is no other critical point for d (p, ·) besides p and q. The critical
point technique is now a basic tool in many situations. Surveys on it are:
Cheeger 1991 [334], Grove 1985 [643], Meyer 1989 [916], Grove 1990 [644],
Karcher 1989 [780]. See also Gromov’s theorem 326 on page 607 on manifolds
of nonnegative curvature.

12.2.2.5 Topology at the Diameter Pinching Limit In the same spirit
as we did for the rigidity theorem 301 on page 586, we want of course to study
what happens in theorem 304 on page 590 at the exact value of diameter
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π
√
δ/2. The horizons of ignorance were pushed far away with the following

diameter rigidity theorem:

Theorem 306 (Gromoll & Grove 1987 [603]) A simply connected com-
pact manifold M with sectional curvature K ≥ 1 and diam(M) ≥ π/2 is ei-
ther (1) homeomorphic to the sphere or (2) isometric to a compact symmetric
space or (3) has the cohomology algebra of CaP2.

Note that the conclusion is close to theorem 301 on page 586, but still not
finished in the case of CaP2. For the nonsimply connected case the answer is
complete: one gets a spherical space form or the very special CP2k+1/Z2. No
other such space form exists because of Synge’s theorem 64 on page 269, as
already remarked in §§6.6.3.

But we want more, in the spirit of the introduction and the skeleton of
this chapter, i.e. we want to relax the diameter a little bit below the limiting
value of π

√
δ/2. This was partially achieved in

Theorem 307 (Durumeric 1987 [466]) For a suitable ε, any compact
Riemannian manifold of diameter larger than π

√
δ/2−ε with sectional curva-

ture K ≥ 1 is homeomorphic to a spherical space form manifold or a simply
connected manifold whose cohomology ring is generated by a single element
(which is the case for the KPn but the converse at the topology level is not
true).

So that for theorem 306 and theorem 307 the situation is still not finished
today and in some sense close to the situation in §§6.5.5. We will now explain
the proof of theorem 306 and why it fails for manifolds which remind us of the
Cayley plane. Very roughly speaking, if our manifold is not a sphere, then we
have a critical diameter as in the proof of theorem 301 on page 586. So one
has again the situation of a point p and its cut locus Cut-Locus (p). Now one
looks at the map UpM → Cut-Locus (p), one proves that is is a Riemannian
submersion and one studies the corresponding metric foliation of UpM into
spheres. But such foliations are extremely rigid—in Gromoll & Grove 1988
[604] it is proven that such a foliation is metrically congruent to the standard
Hopf fibration (see §§4.1.3) except possibly for S15 →M8 which corresponds
to the hypothetic Cayley plane.

To conclude as we did in theorem 301 on page 586 one should use the
radius:

Definition 308 The radius of a metric space is the minimum of the radii of
balls which contain (hence coincide with) the whole space.

The radius is a finer invariant than the diameter. For example, think of a very
thin ellipsoid. Its radius is close to half its diameter, as shown in figure 12.14
on the following page
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radius = diameter radius close to half the diameter

Fig. 12.14. (a) Radius = diameter (b) Radius close to half of the diameter

To have a large radius says much more than only a large diameter. And
this invariant can have strong effects—just see theorem 321 on page 603 and

Theorem 309 (Wilhelm 1996 [1263]) Any simply connected compact Rie-
mannian manifold with sectional curvature at least K ≥ 1 and radius at least
π/2 is either homeomorphic to a sphere or isometric to a KPn.

The proof is very geometric again. It is a strong refinement in the case of the
15 dimensional sphere S15 of the Gromoll–Grove Riemannian submersion
theorem 306 on the preceding page

It is proven in Grove & Petersen 1993 [649] that K ≥ 1 and radius larger
than π/2 implies homeomorphy to a sphere. For more on this see the very in-
formative Petersen 1998 [1019]. In the spirit of weaker and weaker hypotheses
see Petersen & Wei 1996 [1024]. We will meet the radius again in theorem 321
on page 603.

12.2.2.6 Pointwise Pinching There is also the pointwise pinching prob-
lem: instead of pinching the ratio of minimum and maximum curvatures over
the whole manifold, we control the ratio of minimum and maximum curva-
tures at each point:

Definition 310 At each point m ∈M define the curvature ratio to be

infP K(P )
supP K(P )

where the sup and inf are taken over all 2-planes P ⊂ TmM at the point m.

Theorem 311 If for every point m ∈ M on a simply connected compact
Riemannian manifold one has curvature ratio less than 1/4, then the manifold
M is homeomorphic to a sphere.

Of course the Toponogov triangle comparison theorem and methods of
§§12.2.2 are hopeless here. The above result is a corollary of theorem 336
on page 615 as we will see in §§§12.3.1.4. Historically the first result concern-
ing pointwise pinching was obtained in Ruh 1982 [1078], but for a pinching
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depending on dimension and requiring strong pinching, i.e. close to 1. In ex-
change the proof applies to the equivariant case and yields diffeomorphism.
Its proof involves a great deal of analysis and reduces ultimately to using
the difficult theorem 296 on page 579 concerning pinching comparison with
symmetric spaces, which we mentioned. There are many other results of that
vein; see the almost final result of Margerin 1991, 1993, 1994 [895, 897, 898],
chapter 5 for detailed statements and the technique of the proof, as well as the
nice survey on deformation techniques along Ricci flow introduced already in
§§11.4.3 which uses a lot of analysis. Also see section 4 of Besse 1994 [184]
and the last chapter of Hebey 1999 [691].

12.2.2.7 Cutting Down the Hypotheses Again one would like milder
hypotheses. Motion in this direction starts with sectional curvature, then
one tries to replace it by Ricci curvature, then by scalar curvature and finally
by various integral norms for various curvatures. The subject advances so
rapidly today that we can only give recent references: Petersen, Shteingold
& Wei 1996 [1021], Gallot 1988 [540], Anderson & Cheeger 1991 [49], Gao
1990 [546], and Petersen & Wei 1996 [1024]. Various norms are introduced
and though natural they are still very long when written down explicitly.
Curvature operator pinching on noncompact manifolds is discussed in Chen
& Zhu [359].

12.2.3 Pinching Near Zero

The space forms with zero curvature are flat tori and their finite quotients
(see §§6.6.2). Might there be some ε > 0 such that if a manifold has di-
ameter bounded by 1 and curvature bounded on both sides by ε and −ε,
then this manifold admits a flat structure? Unlike positive curvature pinch-
ing, the answer in the present case is no. There are other manifolds known
to be “almost flat.” They can be viewed metrically as compact quotients of
nilpotent Lie groups. Topologically they are nothing but successive fibrations
whose fibers are always a circle and some finite quotient. Heuristically this
curvature smallness is possible because a circle (a curve) always has zero cur-
vature, and is a direct consequence of the Riemannian submersion formulas:
see equation 15.17 on page 747.

The basic paper Gromov 1978 [609] succeeded in proving the converse:
the solution of the pinching problem is true, but the answer consists in not
only flat manifolds but the so-called infranilmanifolds.

Theorem 312 (Ruh 1982 [1077]) There is a universal constant ε(d) > 0
such that if a Riemannian manifold Md satisfies −1 ≤ K ≤ 1 and diamM <
ε(d) then Md is an infranilmanifold.

Note that some normalization is needed, since scale changes g �→ λg with
λ greater and greater will make the curvature smaller and smaller: Kλg =
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λ−1Kg. Some readers might prefer normalizing by |K| < ε and diam = 1, or
even better in one shot:

|K| diam2 < ε.

Gromov proved that under such a condition, a compact Riemannian manifold
has a finite covering which is the quotient of a simply connected nilpotent
Lie group. Ruh found a little more and his work yielded an infranilmanifold,
i.e. for any thusly pinched manifold M there is a nilpotent Lie group N
and a discrete subgroup Λ of the semidirect product N � Aut(N) of N by
its automorphism group Aut(N) such that M is diffeomorphic to N/Λ and
moreover Λ is of finite index in N . This is an analogue of the Bieberbach
theorem (see §§6.6.2): compact flat manifolds are finite quotients of tori.

A completely detailed proof of Gromov’s result is given in Buser &
Karcher 1981 [296]. Their techniques are purely geometric but a complete
proof is quite long and involved. Two good sketches of it are: Sakai 1996 [1085]
pages 317 and up, and Fukaya 1990 [531] §8 and §9. Using Toponogov’s trian-
gle approach, one studies in detail the fundamental group as isometries of the
universal cover. The curvature being extremely small, the exponential map is
a covering map at very large distances, and then globally not much different
from a covering. The elements of the fundamental group almost commute, as
can be seen by also controlling the parallel transport (remember the golden
triangle §15.2,§15.4, §15.5). The curvature is the parallel transport around
infinitesimal parallelograms, so that one has to prove a kind of integrated
version of this. The control on the commutators of the fundamental group
for its elements generated by small geodesic loops is a generalization of a
famous lemma of Margulis which was used for the rigidity of space forms (see
§§6.6.4). Then one can boil down to nilpotent groups. Except for the best
ε(d) which is still to be found, this result is then optimal. Gromov’s ε(d) is
of the order of

ε(d) ∼ e−e
ed2

.

Also recall theorem 295 on page 579 where one effectively gets only flat space
forms as manifolds, but with the extra hypothesis of a lower bound on volume.
This was observed in Gromov 1978 [611].

12.2.4 Negative Pinching

Negative pinching provides even less control on topology than zero pinching.

Theorem 313 (Gromov & Thurston 1987 [640], Farrell & Jones 1989,1993 [505, 509])
For any given larger than 2 and any ε > 0 there are manifolds of dimension d
with curvature satisfying −1 ≤ K ≤ −1 + ε which bear no metric of constant
curvature.

Do not hope even for a general result around 1/4 for the negatively curved
HypnK, since this was ruled out in Farrell & Jones 1994 [510]. The techniques
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used to construct these manifolds are very geometric. In Gromov & Thurston
1987 [640] one starts with space forms and builds up clever gluings along to-
tally geodesic hypersurfaces inside them. In Farrell & Jones 1989 [505] one
makes connected sums with exotic spheres and then controls the curvature of
suitable metrics with the formulas for curvature in Riemannian submersions
which we record in equation 15.17 on page 747. In the first type of construc-
tion the final topology can be quite sophisticated but in the second technique
one gets only manifolds homeomorphic to space forms since one makes con-
nected sums with various exotic spheres. Note that from §§§12.4.1.2 ever
larger diameters are forced by the Gromov’s theorem 315. The large variety
of these “counterexamples,” still not classified, explains the sense in which
we wrote above that there is less control on negatively pinched manifolds. In
other words, there is no structure theorem as in theorem 312 on page 595
where we had a generalized Bieberbach theorem.

But one has the following related optimal result:

Theorem 314 Assume that a compact Riemannian manifold M has −4 ≤
K ≤ −1 and that π1(M) is a group isomorphic to the fundamental group of a
compact space form of negative curvature which is not of constant curvature
(i.e. not real hyperbolic). Then M is isometric to that space form, i.e. is
locally symmetric.

This was proven in Ville 1985 [1217] for four dimensional manifolds. The
complex case was proven independently in Hernandez 1991 [707] and Yau
& Zheng 1991 [1298]. For the quaternionic and the Cayley case the result
follows from Hernandez 1991 [707], Corlette 1992 [404], Gromov 1991 [624]
and Aravinda & Farrell 2000 [58, 59].

We also have a good pinching result, optimal for the ingredients if one
considers the counterexamples just above:

Theorem 315 (Gromov 1978 [611]) There is a number ε depending on
d,D, V so that a manifold with −1 < K < −1 + ε of dimension d and with
either (1) diameter smaller than D or (2) volume smaller than V carries a
metric of constant negative curvature.

Gromov proved this directly but it is also a consequence of combining theo-
rem 295 on page 579 with the important intermediate result:

Theorem 316 (Gromov 1978 [611], Heintze 1976 [698]) There is a uni-
versal constant v(d) such that any compact manifold of dimension d with
−1 ≤ K < 0 has volume larger than v(d).

The proof is again very geometric; one plays on the manifold with the smallest
possible periodic geodesics generating the fundamental group, as in the proof
of theorem 90 on page 297. The diameter condition is missing: this comes
from an inequality of Gromov 1978 [611] which bounds the diameter as a
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function of only the dimension and the volume under the negative curvature
condition of theorem 314 on the page before. The proof is very geometric—
volumes are compared in two opposite ways, with curvature estimates and
with the special forms that isometries of negative curvature manifolds must
take, as in hyperbolic spaces.

Note 12.2.4.1 (The philosophy of negative curvature) Let us consider
for the moment manifolds which are complete, but not necessarily compact.
The philosophy of Gromov is that it is extremely hard to understand the
class of manifolds of negative curvature and, for example, to construct new
ones. Recall first that in §§6.6.2 we had examples of Gromov & Piatetski-
Shapiro of nonarithmetic space forms, and the examples of theorem 315 on
the preceding page. Now in Gromov & Thurston 1987 [640] one finds, for any
ε > 0 some manifold of negative curvature, but which never admits a metric
such that its sectional curvature can be bounded by −1 ≤ K ≤ −ε. The
construction consists in taking a space form M of constant curvature, and
finding in it a totally geodesic submanifold of codimension 2. Then one looks
at suitably ramified coverings of M branched along N . The final proof is very
hard. It uses once again the diffusion of cycles used already on page 358 and
theorem 274 on page 546.

It is also hard to construct real analytic examples. One can find some in
Abresch & Schroeder 1992 [9]. Do not forget Gromov’s finiteness theorem 364
on page 637 for negatively curved analytic manifolds. �

Note 12.2.4.2 (Most geometries are negatively curved) Even more em-
barrassing is that geometric objects (not necessarily manifolds) of negative
curvature are very numerous. This contrasts with the rarity of compact man-
ifolds of negative curvature. Gromov even has a “vague” conjecture to the
effect that “in high dimensions every hyperbolic manifold is arithmetic.”

We explain now why most geometries are of negative curvature. The sim-
plest way to construct geometries is to glue together Euclidean (flat) simplices
or more generally polytopes. In dimension two, our claim comes from the fact
that when one glues polygons with more than 6 vertices, then at every ver-
tex the sum of the angles will be larger than 2π. For such a piecewise flat
geometry, the curvature is concentrated at the vertices (a distribution type
of curvature) and its values are

K = 2π − sum of the angles at that vertex,

a value which is negative since one has to glue at least three polygons. For
higher dimensions, it is less clear how one can carry out such a construction
because the vertex condition is very complicated and still not understood.
For more on this, see the category of CAT (k) spaces in §§14.5.6. �
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12.2.5 Ricci Curvature Pinching

In pinching the Ricci curvature, we face first the question of which Rieman-
nian manifolds have constant Ricci curvature. This is nothing but classifying
all Einstein manifolds, the topic of the third part of chapter 11 Even if you
want to ignore our ignorance concerning this classification, still the pinching
question makes sense and there is the

Theorem 317 (Anderson 1990 [39]) There is a constant ε depending
only on numbers d, i,D, σ such if any compact manifold M with Rieman-
nian metric g satisfies |Ricci−σg| < ε, Inj (M) > i and diam(M) < D then
M carries an Einstein metric on the manifold under consideration.

At least today, such a theorem has not helped in the search for Einstein
manifolds. But another type of pinching can be considered if one thinks back
to Myers’ theorem 63 on page 268 which said that if you assume the Ricci
curvature is at least (d − 1)k, then the diameter is bounded by π/

√
k and

equality happens only for the standard sphere. Then one can ask for a Myers-
type pinching result. Surprisingly enough it is shown in Anderson 1990 [38]
that such a pinching result cannot exist (see also Otsu 1991 [987]). This
was achieved by building suitable nonspherical examples, with tools from the
theory of Riemannian submersions, where Ricci > d− 1 and diameter comes
closer and closer to π, even though the examples are not spheres. But if the
diameter is replaced by the volume then

Theorem 318 (Perelman 1994 [1008]) There is a number ε(d) such that
if a Riemannian manifold M of dimension d satisfies both

Ricci ≥ d− 1 and Vol(M) > β(d) − ε(d)

then M is homeomorphic to the sphere.

This is not inconceivable, because Bishop’s theorem 107 on page 334 yields
an upper bound for the volume so that the diameter is also automatically
pinched. The metric aspect of the proof is very geometrical but quite intri-
cate. It mixes techniques of critical point theory, contractibility of balls in
concentric ones of larger radius (see §§§7.2.4.6 and the proof of theorem 376
on page 649) and playing cleverly with algebraic topology (see the notion
of controlled topology, on page 649). One proves by induction on k that any
embedded sphere Sk can be filled up (Gromov’s view of it is “homology gener-
ates shadow,” and “shadows have volume”). Then all of the homotopy groups
below the dimension vanish and one then applies the solution of the Poincaré
conjecture, for dimension 3 (just see theorem 279 on page 553). Needless to
say, the injectivity radius is ignored. We just give the two pictures of Perel-
man’s text in figure 12.15 on the next page.

But this result is now superseded by:
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(a)

p

p(1-d0)

p(1-2d0)

q

qΔ

φ(Δ) φ(Δ)∼

φ(δΔ)∼

p(di+1-d0(2-(i+1)/k))

(b)

Fig. 12.15. Two pictures from Perelman’s book
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Theorem 319 (Cheeger & Colding 1997 [337]) There is a number ε(d)
so that if a Riemannian manifold Md satisfies both

Ricci ≥ d− 1 and Vol ≥ β(d) − ε(d)

then Md is diffeomorphic to the sphere Sd.

The proof is given in appendix 1 of the quoted text. Moreover the volume
bound can be explicitly computed. This is only the emerged tip of an ice-
berg, still not finished to be fathomed. We will see below in theorems 321 on
page 603, 350 on page 624 and 351 on page 624 other results of that genre.
Together with the Colding L2 Toponogov theorem 77 on page 288 for posi-
tive Ricci curvature, another systematic tool introduced by the authors for
the general study of manifolds with a lower bound on Ricci curvature is that
of suitable warped products (see the note 4.3.6.1 on page 214). We suggest
that the reader read the introduction and appendix 2 of Cheeger & Colding
1997 [337] for a survey of ideas, results and a program concerning manifolds
with a lower bound on Ricci curvature. This program is carried out under
the banner of synthetic geometry, a word—as well as a program—forged in
Gromov 1978 [612].

An important intermediate result was

Theorem 320 (Colding [386]) Under the same hypothesis as in theorem 319
the Gromov–Hausdorff distance (see theorem 380 on page 653) between the
manifold and the standard round sphere Sd can be made as small as desired.

We will now sketch the proof of theorem 320 in detail to help the reader to
realize how surprisingly strong metric conclusions can be obtained with only
volume estimates. Other theorems with Ricci lower bounds use this technique
intensively, so that we are choosing theorem 320 as an archetype. What we
are going to do now is a deep refinement of what was begun in theorem 108
on page 335. In all this we do not make a precise value for ε, since we are
interested only in the ideas of the proof.

The Bishop–Gromov volume estimate theorem 107 on page 334, using the
upper bound on ball volumes and the monotonicity, first shows this: if the
total volume is close to that of the standard sphere, then all balls in our man-
ifold have volumes close to those of the same radius in the standard metric on
a sphere. Then one sees that if two points p, q are such that d (p, q) > π − ε,
then for any other point x we have d (p, x)+d (q, x)−d (p, q) < ε. If not then
one could put into the manifold a ball centered at x which would add too
much volume to M , as pictured in figure 12.16 on the next page.

This shows sphere-like behaviour but is far from enough. Again with theo-
rem 107 on page 334 one can show that the various annuli B (x,R′) \B (x,R)
also have volume almost equal to that of the same annuli in the standard
round sphere. This, at least as regards the measure, shows that the distance
functions d (p, ·) behave almost like the ones in the round sphere. The aim
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p

q

π - ε

x

will add too
much volume

Fig. 12.16. The darkened ball adds too much volume

is now to show the same behaviour but from the perspective of the metric.
This is what Colding’s inequality theorem 77 on page 288 is good for. Now
the almost-isometry with the sphere is constructed as follows. Recall (from
§1.9) that in the round sphere, the first spherical harmonics are the cosines
of the distance functions from points:

cos d (p, ·)

and that the standard embedding of the sphere Sd in Ed+1 can be realized
by taking d+ 1 points p1, . . . , pd+1 as in figure 12.17 on the facing page and
mapping

x �→ (cos d (p1, x) , . . . , cos d (pd+1, ·)) .
This embedding is mimicked for our manifold M by choosing two sets of
points (almost antipodal) (p1, . . . , pd+1) and (q1, . . . , qd+1) such that

d (pi, qi) > π − ε,

d (pi, pj) = π/2,
|d (pi, qj) − π/2| < ε.

That choice is possible by various improvements of the metric inequality
above. Then one finishes the proof by showing that the map M → Ed+1

given by
x �→ (cos d (p1, x) , . . . , cos d (pd+1, x))

yields the desired metric approximation of Sd. To get a diffeomorphism re-
quires much more work. This was done in Cheeger & Colding 1997 [337] using
techniques, due to Reifenberg, originally used to prove existence of minimal
submanifolds.

Another Ricci pinching result, but with “distances” instead of volumes
is as follows. It was proven in Grove & Petersen 1993 [649] that K > 1 and
radius > π/2 implies homeomorphy to a sphere. In definition 308 on page 593
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Fig. 12.17. Mapping the sphere into Euclidean space

the radius of a metric space M was defined as the smallest number R such
that there is a point m with B (m,R) = M . Now we have:

Theorem 321 (Colding 1996 [385]) If a compact Riemannian manifold
satisfies Ricci ≥ d − 1 and its radius is close enough to π then it is homeo-
morphic to the sphere. 2

The idea of the proof is, as before, to show that the Gromov–Hausdorff
distance (see §§§12.4.2.3) between the manifold and the standard sphere can
be made as small as we wish. As in the work of Grove & Petersen, this is
done by squeezing suitable balls in the manifold and defining with them a
map to the sphere.

We mention once again the basic philosophy introduced by Gromov, and
commented upon in theorem 108 on page 335 and theorem 382 on page 653;
namely that the nonincreasing property in Bishop’s theorem (as extended by
Gromov beyond injectivity radius) for manifolds with lower bounded Ricci
curvature, apparently a result concerning the measure, finally can give ex-
tremely strong two-sided metric inequalities.

12.3 Curvature of Fixed Sign

We are going to see again here how different the landscape is for positive and
for negative curvature. We suggest that the reader take another brief glance
at the table 12.1.2.2 on page 574.

12.3.1 The Positive Side: Sectional Curvature

Some surveys: Gromoll 1990 [601], Abresch & Meyer 1996 [7], appendix A,
and Greene 1997 [591]. We are still in an almost complete mystery. We de-
scribe now the only known examples of compact manifolds with positive
2 How close is close enough can be made explicit.
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sectional curvature: because of Myers’s theorem, except for a finite classifi-
cation problem (although difficult), we can afford to look only at the simply
connected case.

12.3.1.1 The Known Examples

12.3.1.1.1 Positive Curvature First come the spheres and the KP
n met al-

ready in §§6.4.3. Now we recall equation 4.38 (or equation 15.15 on page 745)
which gives the sectional curvature of normal Riemannian homogeneous
spaces G/H :

K(v, w) =
1
4
‖[v, w]H‖2 + ‖[v, w]Q‖2

.

Hence every such space has nonnegative sectional curvature. MoreoverK(v, w)
can vanish only if the (total) bracket of v and w vanishes, since its two com-
ponents in a direct sum have to vanish. So it should not be too hard a job
to find the pairs (G,H) for which this vanishing can never happen for two
linearly independent vectors. This was done in Berger 1961 [150], with one
omission (see just below). Then in Wallach 1972 [1231] and Bérard Bergery
1976 [142] the classification was extended to any (that is to say not necessarily
normal) homogeneous space. The final result is:

Theorem 322 Except for spheres and the KP
n there are only three such

homogeneous “exceptions”, two spaces of dimension 7 and 13 and a family
Wp,q of 7 dimensional spaces, nowadays called the Aloff–Wallach manifolds.

Wallach’s manifolds were met in §§§11.3.4.2. The extension needs various
tricks, since the sectional curvature is given by the very unexplicit and com-
plicated Nomizu equation 15.15 on page 745. In particular there is geometric
trick relating isometries for Riemannian manifolds of even dimension to the
positivity of the curvature. This relation is a global version of an infinitesimal
one which says:

Theorem 323 (Berger 1966 [152]) If the curvature is positive and the di-
mension even, then every Killing vector field (or, the same thing, every one-
parameter group of isometries) has a fixed point.

The proof is a direct application of the Bochner technique and can be seen
as the positive analogue of Bochner’s nonexistence result for Killing vector
field in manifolds of negative Ricci curvature; see §15.6.

A funny and happy coincidence happened. The list of Berger 1961 [150]
was incomplete, missing one example. But this missing space in the list turned
out to be isometric to the Aloff–Wallach space W1,1, as discovered in Wilking
1999 [1267]. We now describe in detail the Aloff–Wallach manifolds, because
of their importance in other places. As manifolds, the Wp,q are the 7 di-
mensional quotients SU (3) /T (p, q) of the Lie group SU (3) by the T (p, q)
circle. This means that the direction of the circle (a compact one-dimensional
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subgroup) is given by the point with coordinates (p, q) in the integral lattice
defining a maximal torus of SU (3). Recall that all maximal tori of SU (3) are
of dimension 2 and conjugate. Moreover this “universal lattice” is the regu-
lar hexagonal one; see figure 11.4 on page 541. In Aloff & Wallach 1975 [26]
various homogeneous metrics are constructed on these Wp,q using Nomizu’s
formulas. The construction of such a metric depends essentially on two real
parameters, because the isotropy action of a T (p, q) on the tangent space at
the origin splits into three irreducible parts and then on each irreducible part,
all invariant positive definite quadratic forms are proportional; see the end of
§§4.3.4. Note that in the semi-desert area of manifolds of positive curvature,
Aloff–Wallach manifolds are in fact a fascinating family.

We mention three of their properties. First, by varying the couples (p, q)
we find that they have an infinite number of homotopy types (see §§4.1.4).
For some couples one can get the same homotopy type among nondiffeo-
morphic ones. Second, they carry for every (p, q) a metric with a positive
lower pinching not much different from 16/ (29 × 37); see Huang 1981 [743].
Third they also admit homogeneous Einstein metrics and, if the volume is
normalized to 1, the set of their Einstein constants (which are all positive)
is infinite: see Wang 1982 [1236], Wang & Ziller 1986 [1239]. Note that these
Einstein metrics are not of Aloff–Wallach type. In particular, the Einstein
metrics have sectional curvature of both signs. Another of their properties is
that the set of positive scalar curvature Einstein metrics, when the volume
is normalized to be one, does not converge to a smooth metric. This shows
that the Palais–Smale C-condition (see Jost 2002 [768]) is not valid for Rie-
mannian metrics, at least as we understand them today. We met already this
type of question in §§§11.4.6.4.

Only four other types of (inhomogeneous) examples are known. They are
in dimension 6 and 7: Eschenburg 1992 [493], Taimanov 1996 [1178] and in
dimension 13: Bazaikin 1996 [121]. The last ones are in a family closely
related to the Aloff–Wallach examples. Pinching constants for these various
spaces have funny coincidental properties which are explained in Taimanov
1996 [1178]. Taimanov’s study is pursued in Püttmann 1999 [1044] where the
pinching constant 1/37 appears and is explained via Taimanov’s deformations
of Aloff–Wallach metrics. The starting point is to embed the Aloff–Wallach
manifolds as totally geodesic submanifolds in the 13-dimensional examples.
Moreover there is enough “room” (transversality) to deform the metric quite
a lot and still keep the totally geodesic property. One even gets a series of
metrics which converge to a smooth one with a pinching constant equal to
1/37. This supports the conjecture that the best pinching constant for Aloff–
Wallach manifolds is 1/37 and this was proven in Wilking 1999 [1267]. For
best pinching results, also see Püttman 1999 [1044].

No other manifolds are known of positive curvature, except of course
small enough deformations of the preceding ones. But there are theoretical
restrictions which will be the object of the next section.
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12.3.1.1.2 Nonnegative Curvature If we turn to manifolds of nonnegative
curvature, the situation is not really much better and seems as mysterious.
As examples of manifolds with nonnegative curvature, we have all symmetric
spaces of “positive” type; see §§4.4.3. As well we find the normal homogeneous
spaces G/H of compact Lie groups; see above. This does not make a long
list, since the maximal Lie subgroups of compact Lie groups were completely
classified by Dynkin 1952 [468]. One can also perform Riemannian products
of the preceding examples. Besides those, before 1998, the only known ex-
amples were some exotic spheres and the connected sum of two symmetric
spaces of rank one: see Cheeger 1973 [331] and Gromoll & Meyer 1974 [607].
Those examples are built using a clever mixture of large group actions (low
cohomogeneity) of isometry groups and Riemannian submersion techniques
to compute the curvature. Now it seems that it might be that manifolds of
nonnegative curvature are more numerous than previously thought. In Grove
& Ziller 1999 [658], among other examples, it is proven that all SO (3) and
SO (4) principal bundles over the sphere S4, and all S3 bundles over S4, admit
nonnegative curvature metrics. For almost nonnegative curvature metrics, see
Schwachhöfer & Tuschmann 2001 [1113].

This still does not tell us the foggiest about:

Question 324 Is there any difference—at the level of possible manifolds—
between positive and nonnegative sectional curvature?

A baffling remark in Yau 1982 [1295], page 670:

Fact 325 No one knows any compact simply connected manifold with non-
negative curvature for which one can prove that it does not admit a metric of
positive curvature.

For example, Gromov’s bound in theorem 326 on the facing page on Betti
numbers does not make any difference between positive and nonnegative. Yau
starts with Hopf’s conjecture on S2 × S2; see question 294 on page 571. For
the nonsimply connected case, Rong’s results (see theorem 330 on page 611)
provide a partial answer.

It is not surprising that many people tried to address Yau’s remark, start-
ing with the Hopf conjecture on S2 × S2, by trying to deform such a metric
with K ≥ 0 into one with K > 0. This means considering some one parameter
family g(t) of metrics and computing the various derivatives at t = 0 of the
sectional curvature. Technically it is very easy to compute such a derivative
for a given tangent plane, but what is difficult is to find a variation for which
all the derivatives would be positive. Today this approach still does not work;
see Bourguignon 1973 [236] for formulas and reasons why natural approaches
do not work. One reason lies in the fact mentioned on page 227: the structure
of the sectional curvature as a function on the set of tangent planes (say at
a given point) is practically not understood. In particular one does not know
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where to look for its minimum. Related to this, one should also read Cheeger
1973 [331], and the important Wilking 2002 [1270].

Note 12.3.1.1 (Hopf’s questions) Two of the three favourite questions
that Hopf was asking since the 1930’s are still almost completely open: (1)
does a given sign for the curvature imply a given sign for the Poincaré char-
acteristic? (2) Does S2 × S2 admit a metric with positive curvature? Hopf’s
conjecture on the Poincaré characteristic is true for dimensions 2 and 4; for
dimension 2 by the Gauß–Bonnet formula, for 4 as follows: (see equation 11.6
on page 546 or equation 15.13 on page 742):

8π2χ(M) =
∫
M

(
|R|2 −

∣∣∣∣Ricci− scalar
4

g

∣∣∣∣2
)
dVM

in invariant form. But in a nice basis, the integrand becomes

K12K34 +K13K42 +K14K23 +R2
1234 +R2

1342 +R2
1423

(with the obvious notations for the sectional curvature). This implies Hopf’s
conjecture as explained in Chern 1955 [365]. But starting in dimension 6
we will see that the formula is so complicated that it cannot say much of
use (cf. Bourguignon & Polombo 1981 [246]); for the most part, just some
nonvanishing results in the spirit of §§11.3.5. Starting in dimension 6, Hopf’s
question is still open. There is only a positive result for the Kähler case,
which uses L2-cohomology; see §14.1.

The latest news for S2×S2 is in Kuranishi 1990 [840]. Even more itching is
Yau’s assertion 325 on the facing page. This is very irritating, since Synge’s
theorem trivially excludes RP

2 × RP
2 (as well as many other products of

manifolds). Rong’s theorem 330 on page 611 exclude quite a few more. A
recent general list of problems is in Petersen 1996 [1016]. �

12.3.1.2 Homology Type and the Fundamental Group

12.3.1.2.1 Homology Type On the “positive” side one knows at least that
not every manifold can carry a metric of nonnegative curvature (a fortiori of
positive curvature).

Theorem 326 (Gromov 1981 [613]) There is universal n(d) such that
any compact manifold of dimension d with K > 0 has the sum of its Betti
numbers (for every field) bounded by n(d).

For the historian we note here that before Gromov’s result in 1981, in the
simply connected case at least, believe it or not, the only restriction coming
from the condition K ≥ 0 was that of Lichnerowicz, already valid under only
the nonnegativeness of the scalar curvature: see §§12.3.3. For the fundamental
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group, one has theorem 345 on page 621 of Bochner under the assumption of
positive Ricci curvature.

With the above theorem we are left, in a weak sense, with only a finite
number of homology types (see §§4.1.4), but an infinite number of homotopy
types. Indeed Aloff–Wallach spaces provide examples of infinitely many ho-
motopy types. The tools are somewhat, but not closely, analogous to Morse
theory. They require subtle algebraic topology arguments, based on com-
pressibility of balls and topological contents of them. The principal difficulty
is that one knows nothing about the injectivity radius (it can be very very
small, etc.), since we ask only for K ≥ 0 without any kind of normalization.
One uses in a significant manner the notion of critical point for distance func-
tions; see definition 305 on page 590. The basic lemma is that, by Toponogov’s
theorem for triangles, a succession of critical points for the distance function
to a given point and whose distances are growing at least at a geometric pro-
gression, has to be finite (the bounding cardinal being universal). In short:
“critical points cannot be too far away.”

From this we can easily give the proof. If the function is d (p, ·), then let
γ and η be segments from p to two critical points q and s. Then the very
definition of a critical points enables us to find a segment τ from q to s such
that the angle between the speed vectors γ′(q) and τ ′(q) is larger than or
equal to π/2. Assume that d (p, s) ≥ λd (p, q). Then Toponogov’s theorem for
K ≥ 0 as applied to the above triangle shows that the angle between γ′(p)
and τ ′(p) has to be large (large than some angle function of λ, larger and
larger as λ gets larger and larger).

p

s
q

ηγ'(p) η'(p)
γ

γ'(q)

≥ π/2

Fig. 12.18. Compressing balls up to meet critical points

Now we have the classical fact:

Proposition 327 The number of points which one can place on the unit
sphere Sd so that their spherical distances are larger than some given number
is bounded from above as a function only of the dimension d and that distance
bound.

From this we get the above claim: a set of critical points with respective dis-
tances from p larger than a given ratio has cardinality universally bounded.
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A rough (but not too bad by the way) estimate of the number in propo-
sition 327 on the facing page can be obtained just by a measure argument,
computing the number of disjoint spherical caps. For refined estimates, which
is a central problem in pure and applied mathematics, that of spherical codes,
see the bible Conway & Sloane 1999 [403] or the very recent survey Conway
1994 [402].

Then one has to play with distance functions to different points. The
lemma is certainly not enough because we do not know (universally) the
injectivity radius. One plays with the topological content of various balls,
and always compresses those balls as much as possible without having them
meet a critical point. One finds finally a covering by balls with the number
of balls universally bounded, and every ball having a topological content (as
well as their intersections) which is also universally bounded. The proof is
finished by a Mayer–Vietoris argument. The reader can look at the various
presentations, which also provide simplifications of the original text: Cheeger
1991 [334], Meyer 1989 [916], Grove 1990 [644] and section 11.5 of Petersen
1998 [1019].

There are two questions concerning theorem 326 on page 607 which come
to my mind. How about an optimal n(d)? Gromov’s bound was double expo-
nential in d. In Abresch 1985 [4] the author manages to go down to a bound
simply exponential in some constant times d3. The most optimistic conjec-
ture would be 2d, because this 2d is the sum of the Betti numbers of the torus
T d. This conjecture is not disproved today; and possibly then equality only
for flat tori. Recall that we know so few manifolds of nonnegative curvature.

The second question is in the general spirit of the introduction in §§12.1.1:
to what extent can we relax the condition K ≥ 0?

Theorem 328 (Gromov 1981 [613]) The sum of the Betti numbers (over
any field) of a compact manifold has a bound which is universal in the di-
mension and exponential with rate of exponential growth given by the positive
number − infK diam(M)2.

So we have partial finiteness for homology types with only a lower bound on
the sectional curvature and an upper bound for the diameter; see §§4.1.4. Easy
examples, taken among the ones given just after theorem 374 on page 645,
show the optimality of these ingredients and the fact that finiteness for ho-
motopy type is hopeless. But of course there is always the problem of optimal
constants in the bounds.

12.3.1.2.2 Fundamental group We turn now to restrictions on the fundamen-
tal group. We recall first that by Synge’s theorem 64 on page 269, even di-
mensional compact positively curved manifolds are either simply connected or
have simply connected 2-1 covers, so now we concentrate on odd-dimensional
manifolds. The fundamental group π1(M) is finite by Myers’ theorem 63 on
page 268.
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Theorem 329 (Gromov 1978 [609]) There is a universal constant N(d)
such that the fundamental group of a manifold with K > 0 is generated by at
most N(d) generators.

δ1(p)

≥ π/3

δ2(p)
p

δ2δ1-1(p)

in ( 
~

              M,g)
    ~

the kissing problem

all distances ≥ π/3

Up
 ~
M

Fig. 12.19. (a) Triangle in the cover M̃ (b) The kissing problem: all distances
≥ π/3

The proof is not a volume of balls argument as in Milnor’s theorem 109
on page 335 (to be discussed below) for nonnegative Ricci curvature, but a
metric argument. One chooses by induction a “smart” basis δi (i = 1, . . . , n)
for the fundamental group as realized by deck transformations of the univer-
sal Riemannian covering of our manifold. This means that the displacement
functions are successively as small as possible. Fix a point p in the covering
manifold and look at segments γi from p to δi(p). Toponogov’s theorem 73 on
page 281 then shows that any angle between two speed vectors δ′i(p) has to
be larger than or equal to π/3. Look at these unit tangent vectors as points
of the unit sphere Sd−1 ⊂ TpM . Their mutual spherical distances have to be
not smaller than π/3. The number of such points is universally bounded in
dimension d. As in proposition 327 on page 608, in the present special case
where the spherical distance is equal to π/3, a poor (but not too poor) bound
is easily obtained by a measure argument for spherical caps. For the curious
reader we cannot resist mentioning here that this is the famous kissing num-
ber. Its exact value is known only in dimensions 2, 3, 8 and 24. A good part
of the book Conway & Sloane 1999 [403] is devoted to it. One will find there
various estimates for it and the current state of the art in techniques for its
estimation. The wording “kissing” is explained easily: one looks in Ed for the
maximum number of unit balls which can touch the boundary of one given
unit ball without intersecting one another.

But we would like more—namely an upper bound for the possible group
structures, and this as a function of the pinching. An old conjecture of Chern
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was that every Abelian subgroup of the π1 of a manifold of positive sectional
curvature is cyclic. In Rong 1996 [1067], using the very technique used for the
proof above, it is proven that this is true, but only up to an index which is
bounded by a universal constant w(d, δ) in the dimension d and the pinching
δ. Rong’s conjecture today is that w(d, δ) can be chosen independent of δ.
With a much deeper analysis of collapsing, one has the partial result (see also
Rong 1997 [1069] where more refined analyses are made).

Theorem 330 (Rong 1996 [1066]) There are numbers w(d) and w′(d, δ)
so that for any δ-pinched manifold M of dimension d its π1(M) either has a
finite cyclic subgroup of index less that w(d) or has order less than w′(d, δ).

Finally Chern’s conjecture was invalidated in Shankar 1998 [1127]; the coun-
terexamples are suitable quotients of the Aloff–Wallach manifold W1,1. Note
the amusing fact that this was the missing example mentioned in the story
of §§§12.3.1.1.

12.3.1.3 The Noncompact Case In the study of positive and nonnegative
sectional curvature, noncompact manifolds also enjoy optimal results, so we
will make an exception to our rule of studying only compact manifolds.

Theorem 331 (Gromoll & Meyer 1969 [605], Cheeger & Gromoll 1972 [344])
A complete noncompact manifold of positive sectional curvature and dimen-
sion d is diffeomorphic to Rd. A complete noncompact manifold of nonnega-
tive curvature always admits at least one totally geodesic and totally convex
submanifold N called a soul such that the manifold is diffeomorphic to the
normal bundle of any of its souls N (see figure 12.20).

s
K > 0 K ≥ 0

a soul,
but not
unique

Fig. 12.20. (a) Complete with positive curvature; diffeomorphic to the plane (b)
Complete with nonnegative curvature: a soul (which is not unique)

The cylinder shows the optimality of the theorem when K ≥ 0 and the
nonuniqueness of souls in general. The proof of theorem 331 shows that more-
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over “the isometry group of a complete manifold of positive sectional curva-
ture is itself compact.” For the compact case this result is well known, and
follows from the classical result which says that the isometry group of a
complete manifold is a Lie group. This is an easy fact, since an isometry is
clearly determined by its effect on an orthonormal frame at one point. On
a compact manifold, the set of orthonormal frames at one point is compact;
see Kobayashi 1995 [826] if needed. On the other hand there are examples
of manifolds with positive Ricci curvature and whose isometry group is not
compact.

How much zero curvature is permitted was recently made precise in

Theorem 332 (Perelman 1994 [1009]) A single positive sectional curva-
ture not entirely in the soul yields a soul reduced to a point and thereby yields
diffeomorphism with Rd.

Note also that, in a very precise sense, theorem 331 on the preceding page
reduces the classification of complete manifolds with positive sectional cur-
vature to that of compact ones, but as we saw above, this classification is
in a very primitive state. We sketch now the very geometrical proof of this
theorem. It involves nice arguments of convexity mixed with Toponogov’s
theorem and plays with Busemann functions in disguise. Besides the original
texts and the surveys Eschenburg 1994 [494] and Meyer 1989 [916] the theo-
rem is completely proven in the books Sakai 1996 [1085] and Petersen 1997
[1018].

Some definitions before we go on. In the noncompact realm, two are basic:

Definition 333 A ray γ is a geodesic defined on [0,∞) such that γ is a
segment from γ(0) to γ(t) for any positive t up to infinity. A line is a geodesic
defined on (−∞,+∞) = R which is a segment on any interval.

many ends
imply many

rays

a line

never this

p

qi

a ray
how to get aray : go to infinity

Fig. 12.21. (a) Getting rays to go to infinity (b) Many ends imply many rays

In a primitive sense, on a ray you can go to +∞, and on a line you can
go both to +∞ and to −∞. In a (complete) noncompact manifold, there is
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always a ray starting from any given point p. To build one, just take a limit of
segments from p to a sequence of points qi such that d (p, qi) tends to infinity
with i. There is a limit to this sequence of rays because of the compactness
of the unit tangent sphere at p. More: there are at least as many rays as ends
of the manifold. The ends of a manifold are the connected components which
remain distinct during an exhaustion of the manifold by compact domains.
For example a paraboloid has one end, a cylinder two ends, etc.

On the other hand, lines do not always exist. Their existence will turn
out below to have extremely strong consequences. In term of the cut-locus
Cut-Locus (p) of the point p (see §§6.5.4), a ray from p is a geodesic defined
on [0,∞[ which never meets Cut-Locus (p). Although they are not directly
used here, we mention the Busemann functions which will often be used later
on in our story:

Definition 334 The Busemann function bγ associated to a ray γ is given,
for any point q in the manifold, by

bγ(q) = lim
t→∞ d (q, γ(t)) − t

The existence of the limit is easy, and we remark that, restricted to γ, the
function bγ reduces to bγ(t) = −t. What is important for our intuition is that
bγ(q) can be considered as the distance d (γ(∞), q) between q and the point
γ(∞), with the translation-normalization placing the origin at γ(0). Then
one will have distance spheres, with γ(∞) as center, which will be the level
sets of bγ , and metric balls which are the various inverse images b−1

γ ([r,∞])
but with radius r which can also be of any sign. Corresponding here to the
rays in standard balls, going from the center to points or the sphere, are here
rays, which are also sometimes called asymptotes. Beware that they are not
unique in general. The corresponding spheres generalize the horospheres of
hyperbolic geometry.

∞

γ(o)

γ(t) a ray γC (γ)
is

strictly
convex

Fig. 12.22. A ray

The amazing idea of Gromoll & Meyer 1969 [605] was this: let γ be any
ray and consider the various balls B (γ(t), t), and take their union for all t
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from 0 to ∞. Now introduce the complement C(γ) of this infinite union. The
Toponogov theorem 73 on page 281 for positive sectional curvature implies
that C(γ) is a totally convex set in the manifold, i.e. any segment between
any pair of its points is always contained in it; see §§6.1.3. With the defini-
tion 334 on the preceding page, the set C(γ) is nothing but the complement
of the metric ball b−1

γ ([γ(0),−∞]). At the same time, we know that on man-
ifolds of nonpositive curvature, these Busemann balls themselves, and not
their complements, are totally convex: see §§6.3.3. Such sets can be nicely
visualized in the paraboloids

z = ax2 + by2

in E3.
The next ideas for the proof are as follows. The proof will be finished

when one can produce a pole, which by definition is a point such that its
exponential map is a diffeomorphism. For example, all points are poles in
simply connected manifolds of nonpositive curvature (see §§6.3.3). But poles
need not exist in noncompact manifolds of positive curvature. One finds ex-
amples by suitably modifying paraboloids, as shown in Gromoll & Meyer
1969 [605]. However simple points always exist. A point p is said to be simple
if there is no geodesic loop from p to p. This is equivalent to saying that {p}
is totally convex. Simple points are uncovered as follows: pick some point p
and examine all of the rays γ emanating from p. Look at the intersection Q
of all of the associated totally convex sets C(γ). Now if Q, which is totally
convex, were not compact then one would be able to “escape from it” and
then prove the existence of a line. The positivity of the curvature implies
easily the nonexistence of lines. This is (for example) a particular case of
theorem 349 on page 623, but can be proven in many ways. It remains to
show that Q being totally convex and compact, it must contain at least one
simple point. Now differential topology mixed with the existence of simple
points shows that the manifold is diffeomorphic to Rd.

We will now cease considering only manifolds of strictly positive curva-
ture, because this old proof is superseded by a proof for manifolds with only
nonnegative curvature, which we will now explain. The basic fact, proven
with Toponogov’s theorem, is that:

Theorem 335 (Cheeger & Gromoll 1972 [344]) On a compact Rieman-
nian manifold of nonpositive sectional curvature, if γ is any ray, then the
associated Busemann function bγ is a convex function (see proposition 60 on
page 256).

Then one introduces the function which is the minimum of the various Buse-
mann functions associated to the totality of rays issuing from a given fixed
point x. This is still a convex function—call it fx. Its superlevel sets are
convex. In fact they are compact since, if not, one could produce a new ray,
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exclude
geodesic

loops

intersection of
of the various

C (γ)
for various rays

Fig. 12.23. (a) Exclude geodesic loops (b) Intersection of the various C(γ) for
various rays

contradicting the minimal definition of fx. In particular the maximal super-
level set Cx is compact. If it is a point, we are finished. If Cx is a submanifold,
we have found a soul. If not a submanifold, it is still a totally convex set, and
then there is some work to do. The work consists in shrinking Cx into a soul,
by considering the distance function to the boundary of Cx. All of the details
are geometric but quite long and technical; see them in section V.3 of Sakai
1996 [1085] or in section 11.4 of Petersen 1998 [1019], or in Greene’s article
in Grove & Petersen 1994 [650]. The proof proceeds such that, when the soul
is not a point, one meet rectangles with zero curvature, and this finishes the
positive curvature case and the whole story.

12.3.1.4 Positivity of the Curvature Operator

12.3.1.4.1 Positive Curvature Operator Topological spheres can be charac-
terized (up to homeomorphism for dimension at least 5) by a suitable “posi-
tive curvature” condition, namely that of the curvature operator (see §§12.1.2
for this curvature invariant). Recall that the curvature operator of the stan-
dard sphere is the identity. To observe optimality of the results below, one
has only to notice that the KP

n (with K �= R) has only a nonnegative curva-
ture operator. For example, on CP

n the curvature operator vanishes on the
Kähler 2-form.

Theorem 336 (Micallef & Moore 1988 [917]) A simply connected man-
ifold with positive curvature operator is homeomorphic to the sphere.

The question of a possible diffeomorphism is still open, as well the equiv-
ariant question for the nonsimply connected manifolds, except in dimension
4. The case of dimension 2 comes from the Gauß–Bonnet theorem 28 on
page 155 and that of dimension 3 is a consequence of the Hamilton’s theo-
rem 279 on page 553. For dimension 4 we have an optimal result:
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Theorem 337 (Hamilton 1986 [679]) A manifold of dimension 4 with
positive curvature operator is diffeomorphic to S4 or RP

4.

The curvature operator seems to have been considered for the first time (at
least in relation with topology) in Bochner & Yano 1952 [213] where it was
proven that if the curvature operator is 1/2-pinched then all of the real Betti
numbers have to vanish, yielding only real homology spheres. The technique
used was Bochner’s one. It was realized that the apparently complicated term
Curvp (R;ω, ω) (see on page 734) for harmonic p-forms has to look close to
that of the curvature operator. Real understanding came in

Theorem 338 (Meyer 1971 [915]) If the curvature operator is positive,
then the terms Curvp (R;ω, ω) are positive for every p.

The proof of the homeomorphism (in any dimension) uses strong geomet-
ric analysis, namely existence of minimal harmonic maps of the sphere S2

into our manifold. Then one analyses the second variation, which has to be
positive for minimal harmonic maps. This will finally yield the fact that the
index cannot be the right one and then one proves that homotopy groups of
the manifold vanish in dimension smaller than that of half the dimension of
the manifold. It remains only to use Smale’s solution of the Poincaré conjec-
ture for dimensions greater than four. In fact the proof above uses only the
condition K isotr

C
> 0 of positivity for isotropic planes (see the hierarchy in

§§12.1.2).
An interesting byproduct of the paper of Micallef and Moore is the

solution of the “pointwise” (1/4)-pinching problem already mentioned in
§§§12.2.2.6: we assume that at every point m ∈M one has 1/4 < K(m) ≤ 1.
Then the manifold is homeomorphic to the sphere, because this sectional
curvature pinching implies the positivity of the curvature of isotropic planes.
This is a nice computation done in Micallef & Moore 1988 [917] and left to
the reader as an exercise. Note that such a result is completely out of the
reach of triangle comparison theorems and that the result, at least today, is
only for simply connected manifolds and yields only homeomorphism.

Hamilton’s proof in dimension 4 is completely different. It is via defor-
mation of Riemannian metrics under the Ricci flow; see §§11.4.3. Under such
a deformation, the curvature operator defect to be the identity (that of the
standard sphere) decreases strictly, and then the positivity and the dimen-
sion condition enables Hamilton to show that the deformation equation can
be continued up to infinite time so that, at the end, one has constant sec-
tional curvature and, in dimension 4, the positively curved space forms are
only the standard S4 and RP

4 thanks to Synge’s theorem 64 on page 269.
The nonsimply connected case, starting dimension 5 , is open.

12.3.1.4.2 Nonnegative curvature operator The classification of manifolds
with nonnegative curvature operator is finished:
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Theorem 339 A simply connected manifold with nonnegative curvature op-
erator is a Riemannian product whose components are among

1. a manifold homeomorphic to the sphere
2. a symmetric space
3. a Kähler manifold biholomorphic to CP

n.

By theorem 336 on page 615 we can assume that R∗ has some zero part.
Then one has equality in theorem 338 on the facing page. Bochner’s formula,
as written by Meyer, shows that there should be a nonzero exterior form
with vanishing covariant derivative, i.e. invariant under parallel transport,
hence invariant under the holonomy group. Now we apply the holonomy
group classification theorem 397 on page 669. It remains only to throw out
the holonomy groups Spin (7) and G2, to take care of the cases where the
holonomy is Sp (1)Sp (n), and finally the Kähler holonomy. Various authors
contributed to this; see the references in Chen 1990 [360], and a good part of
the proof in the book Petersen 1997 [1018].

12.3.1.5 Possible Approaches, Looking to the Future

12.3.1.5.1 Rong’s Work on Pinching Back to a “classification” of the mani-
folds of positive curvature, we saw that we are still lacking any general state-
ment. We quote here four different approaches to attack the problem. The
first and the most promising is that of Rong 1996 [1067]. Thanks to the
finiteness theorem 372 on page 642, in a given even dimension there are only
finitely many diffeomorphism types of manifolds with 0 < δ ≤ 1, from Klin-
genberg’s lower bound for the injectivity radius in theorem 92 on page 300. If
the dimension is odd, we no longer have Klingenberg’s lower bound of π for
the injectivity radius. What we quote now uses collapsing theory quite heav-
ily; see §§§12.4.3.1. The first thing to do is to look at the odd-dimensional
case. We will assume positive pinching constant δ.

Theorem 340 (Rong 1996 [1067]) Suppose that M is a δ pinched, pos-
itively curved, simply connected, compact Riemannian manifold. Modulo a
finite number of cases, one can modify the Riemannian metric into a new
one, still of positive curvature with pinching larger than δ/2, but admitting a
free circle action of isometries.

The dimension hypothesis fits well with theorem 323 on page 604. The quo-
tient is sadly enough only an orbifold (see §§14.5.2), also of positive curvature
by the Riemannian submersion formulas (see equations 4.40 on page 231
and 15.17 on page 747). This almost reduces the classification to that of
the even dimension case and the classification of some circle bundles over
them (always modulo a finite number). For results along these lines, see
also Tuschmann 1997 [1204]. The starting point is to look at the condi-
tions in Cheeger’s finiteness theorem 372 on page 642 and to assume that we
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have a very small volume. But then our manifold should be collapsing; see
§§§12.4.3.1. Thereafter one applies structure results for collapsing manifolds
and the main point now is to change the metric into a new one which satisfies
the conditions above. This is achieved by using Ricci flow (see §§11.4.3). There
are also results reducing the possibilities for the dimension of the collapsed
manifold; see Rong 1997 [1068].

Of course, in looking for a complete classification, naturally we look at
all manifolds Md of a given dimension and admitting a positive curvature
metric and write δ(M) for the infimum of its pinching constants (see below if
in doubt). Define δ(d) as the infimum of all of these δ

(
Md

)
. Is δ(d) positive?

12.3.1.5.2 Widths In another direction, a very geometric approach is to use
the purely metric concept of widths, introduced by Urysohn in 1924 (see
Burago & Zalgaller 1988 [283] for references). These widths can be seen as
k-dimensional diameters, but they require the notion of dimension for general
metric spaces. For a metric space M its k-width, denoted by Widthk (M),
is the lowest bound of the numbers δ such that there exists a k dimensional
metric space P and a continuous map f : M → P such that all its preimages
have diameters at most δ.

For example the ordinary diameter verifies

diamM ∈ [Width0 (M) , 2 Width0 (M)] .

For convex bodies in Rd a classical inequality is

Theorem 341 There is universal constant c(d) such that any convex body
C verifies

VolC
c(d)

≤
d−1∏
k=0

Widthk (C) ≤ c(d)VolC

The reader can look at the trivial case of rectangular parallelepipeds (but
they have boundary) and of ellipsoids. Widths in Riemannian geometry were
introduced in Gromov 1988 [623], where it was conjectured that

Conjecture 342 Theorem 341 holds true for manifolds of nonnegative cur-
vature.

The underlying idea is that such a manifold “looks like” a convex body, even
like an ellipsoid. A more illuminating perspective, but more imprecise, being:
such a manifold “looks like” the parallelepipedic set

d−1∏
k=0

[0,Widthk (C)] .

Gromov’s conjecture was settled affirmatively in Perelman 1995 [1010]. The
proof is completely geometric but very involved.
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Note 12.3.1.2 (Rational homotopy) A third approach to nonnegative
curvature is that of the so-called elliptic rational homotopy in Grove &
Halperin 1983 [646] which is indirectly linked to the study of manifolds all of
whose geodesic are periodic; see §10.10.3 Rational homotopy is directly linked
with Sullivan’s fine theory of de Rham cohomology; see §§§4.1.4.2. This ap-
proach leads to the the so-called “double soul” problem; see more in Petersen
1996 [1016], problem 21.

The main fact of algebraic topology required in this theory is

Theorem 343 (Felix & Halperin 1982 [512]) The class of d dimensional
compact manifolds is divided into exactly two subclasses: either the homotopy
groups πp

(
Md

)
are finite for all p < 2d− 1, or the numbers∑

q≤p
dimπq

(
Md

)
⊗ Q

grow exponentially in p. Manifolds in the first class are called rationally el-
liptic, in the second rationally hyperbolic.

The exact class, except for the definition, of rationally elliptic manifolds is
not known, but for example all compact homogeneous spaces are elliptic. One
knows that rationally elliptic spaces satisfy dimH∗

(
Md, Q

)
≤ 2d. Think of

the torus and the comments in §§§12.3.1.2 on Gromov’s theorem. This shows
that, in a sense defining the assertion itself, most manifolds are rationally
hyperbolic. Putting those together motivates (afterwards!) Bott’s old conjec-
ture to the effect that a simply connected manifold of nonnegative curvature
is rationally elliptic. The second byproduct was used heavily in §§10.3.5 for
the existence of infinitely many periodic geodesics. The Betti numbers of the
loop spaces of rationally hyperbolic manifolds also grow exponentially. �

12.3.1.5.3 The best pinched metric A last approach would be to look at the
best pinched metric on a given manifold admitting a metric of positive cur-
vature. There is an optimal pinching δ (of course δ < 1/4 to be of interest).
At least in even dimensions, now the hypothesis δi ≤ K ≤ 1 for a sequence of
pinching constants δi converging toward the upper bound δ satisfies the hy-
pothesis of convergence in the comments following theorem 384 on page 655:
the diameter is bounded above by Myers’ theorem 63 on page 268 and the
volume from below because of Klingenberg’s theorem 92 on page 300 on the
injectivity radius. So we have an optimal metric which, as far as we know, is
of class C1,α. It seems that there is no text studying this approach. The main
difficulty was already mentioned in Yau’s fact 325 on page 606: it seems very
hard, at least today, to use the pinching condition.

3 This connection should not be too surprising, considering the KPn.
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Note 12.3.1.3 (Moduli) There is very little known concerning moduli: as-
sume that some manifold admits at least one metric of positive curvature.
How does the set of all positively curved metrics look? We know only today
that it can fail to be connected; an example being the two Aloff–Wallach
manifolds W−4638661,582656 and W−2594149,5052965, which are diffeomorphic
but do not belong to a connected family of positive scalar curvature metrics;
see Kreck & Stolz 1993 [834] and §§12.3.3. �

12.3.2 Ricci Curvature: Positive, Negative and Just Below

Historically, results on manifolds with a lower bound for Ricci curvature
have appeared continually but slowly, and they are not very complete. In
particular, for positive or nonnegative Ricci curvature, they start with My-
ers’ theorem 63 on page 268 which was obtained using the second variation
formula. Next came Bochner’s theorem 345 on the facing page. After that,
there was a partial result in Calabi 1958 [300] and Lichnerowicz’s bound on
λ1 which we gave in theorem 181 on page 433. Thereafter came the splitting
theorem 348 on page 622. During those times there was a great harvest of
theorems about sectional curvature; see all of the present chapter. However,
the pioneering “little green book” Gromov, Lafontaine & Pansu 1981 [616]
triggered an avalanche, to the effect that a lower bound on Ricci curvature
can be in some cases be as strong as one on sectional curvature. The essence,
the little snowball that started this avalanche, has been explained in §§6.4.3.

But in general the sad fact remains that today, for simply connected man-
ifolds, there is no topological condition known as a consequence of positivity
of Ricci curvature besides those to be seen in the next section for scalar
curvature. A typical example: can any product Md = S2 × Nd−2 carry a
metric of positive Ricci curvature? This question is motivated by the trivial
fact that such a product has a positive scalar curvature metric—just shrink
the S2 factor enough. Its sectional curvature will swallow all of the other
terms in the summation. Is there any stable homotopy restriction prevent-
ing positive Ricci curvature? Recall also the trichotomy in §§§12.3.3.4: Ricci
flat manifolds still present a mystery (see fact 281 on page 557). One is only
provided with a lot of examples, which we will meet if we have not already
met them. However there is a conjecture in Stolz 1996 [1162], which will we
just paraphrase since it is quite technical, referring to §§14.2.2 for the precise
notions. On spin-manifold M4k, the first Pontryagin class p1(M) admits a
“half,” denoted by 1

2 p1(M).The conjecture is

Conjecture 344 Every spin-manifold satisfies

1
2

p1(M) = 0

and if it admits a metric with positive Ricci curvature, then its Witten genus
φW (M) vanishes too.
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Although this condition is only the vanishing of a numerical invariant, this
would at least split the class of positive scalar curvature metrics from that
of positive Ricci curvature metrics. The game definitely requires loop spaces
and uses recent concepts of the geometry of the (infinite dimensional) loop
spaces. A very vague and bold idea is that Ricci curvature downstairs on
the manifold means positive scalar curvature on its loop space for a suitably
defined “metric.”

Note 12.3.2.1 (Three Dimensions) It is only in dimension 3 that the
situation is completely understood. In theorem 279 on page 553 (originally
published in Hamilton 1982 [678]) we saw that, using the deformation tech-
nique along the Ricci flow from equation 11.9 on page 553, any positive Ricci
metric on a 3-manifold can be deformed into one of constant sectional curva-
ture. Note that in dimension 3, Ricci and sectional curvature have the same
number of parameters, namely 6, and determine one another. �

Note 12.3.2.2 (Positive Ricci Versus Positive Sectional Curvature)
But certainly the topological implications of positive Ricci curvature are not
as strong as positive sectional curvature: Gromov’s bound on Betti num-
bers in theorem 326 on page 607 splits the two categories, because there are
examples of nonnegative Ricci curvature with arbitrarily large Betti num-
bers. Proof of the existence of such manifolds was achieved simultaneously
in Anderson 1990 [40] and Sha & Yang 1991 [1126]. Sha and Yang built up
connected sums, using delicate metric surgery on double warped products.
An extra difficulty here is that one needs to spread the modifications all over
the manifolds during the gluing operation. In Anderson 1990 [40] one uses
models from Gibbons & Hawking 1978 [559]. This construction was put into
the more general framework of the Schwarzschild metric in Anderson 1992
[42]. More recently Perelman 1997 [1012] built up examples showing that
Betti numbers can still be not bounded when the Ricci curvature is bounded
from below, even if the volume is bounded from below, and the diameter
from above. Contrast this with the finiteness theorems in §§§12.4.1.1 and
§§§12.4.1.2. Also see Boyer & Galicki 2002 [252]. �

But at the level of the fundamental groups, we have very strong and
optimal recent results for nonnegativity and just below. Before going on, do
not forget that Myers’ theorem implies that the first real Betti number b1 (M)
vanishes.

Theorem 345 (Bochner 1946 [210]) If Ricci ≥ 0 on a compact manifold
M of dimension d then b1 (M) ≤ d and equality implies that the manifold M
is isometric to a flat torus.

This was the first appearance of what is called now Bochner’s technique
which appears in many places throughout this book. There are many other
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applications, e.g. in the proof of theorem 339 on page 617, §§12.3.3, §15.6,
and the very geometric §§6.4.2. The reader might grasp the force of it in
the surveys Bourguignon 1990 [239], Bérard 1988 [136], and Wu 1988 [1278].
Because of its importance and of its first appearance in our text, we will give
details of the proof. It rests first on the formula in equation 15.7 on page 733,
valid for any 1-form ω:

Theorem 346 (Bochner 1946 [210])

−1
2
Δ
(
|ω|2

)
= |Dω|2 − 〈Δω,ω〉 + Ricci (ω∗, ω∗)

which is straightforward application of the Ricci commutation formulas; see
more generally §15.5 and §15.6. In proposition 79 on page 289 we took for ω
the differential df of a function, very often a distance function. In theorem 323
on page 604 we used the form ω which is dual to a Killing vector field. Back
to our present purpose, we now apply the Hodge–de Rham theorem 406 on
page 691 for harmonic 1-forms ω, namely we assume that Δω = 0 and in-
tegrate the equation in theorem 346 over the compact manifold. By Stokes
formula 34 on page 188 the integral of any Laplacian vanishes, so that if
moreover Ricci ≥ 0 we are left on the right-hand side with an integral with
Dω = 0 and Ricci(ω, ω) = 0 at every point. Then if the Ricci curvature
is positive, ω = 0 and again b1 (M,R) = 0 by de Rham’s theorem 32 on
page 186 and we recover part of Myers’ theorem. Now we see that the non-
trivial elements in b1 (M,R) yield 1-forms ω such that Dw = 0, i.e. they have
vanishing covariant derivatives. This implies a product decomposition on the
universal covering (see theorem 56 on page 251) Md = Nd−k × Rd−k.

The next result was Milnor’s theorem 109 on page 335: π1(M) has poly-
nomial growth. But adding the pure group theoretical result of Gromov’s
theorem 352 on page 625:

Theorem 347 The fundamental group of a manifold of nonnegative Ricci
curvature is almost nilpotent, i.e. contains a nilpotent subgroup of finite index.

This does not finish the classification of possible groups. Somewhat analo-
gously to theorem 331 on page 611 reducing the study of complete noncom-
pact manifolds of positive sectional curvature to the compact case, we have
the following reduction theorem:

Theorem 348 (Cheeger & Gromoll [343]) If a complete Riemannian man-
ifold (not necessarily compact) has nonnegative Ricci curvature then its uni-
versal covering splits isometrically as a Riemannian product N × Ek where
N has nonnegative Ricci curvature and contains no lines.

We have to prove that the existence of a line (see definition 333 on
page 612) implies a splitting into a Riemannian product with a flat man-
ifold. For the Ricci case, the proof was very new, using Busemann functions
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Fig. 12.24. (a) Along a ray, Busemann functions are superharmonic (b) A line
and its two Busemann functions (c) The double superharmonicity forces agreement

(see definition 334 on page 613) in Riemannian geometry and the fact that
they are always superharmonic; see note 6.4.2.1 on page 289. this was al-
ready noticed in Calabi 1958 [300]. Busemann functions figure in particular
in section III.22 of Busemann 1955 [290]. The philosophy, as in §§6.4.3, is
that sectional curvature yields convexity properties for the distance function,
while Ricci curvature can only control the Laplacians of distance functions.

Using these two tools and a little bit of analysis (which is needed because
distance functions are not necessarily smooth everywhere), the fundamental
lemma is

Theorem 349 If a complete Riemannian manifold contains a line (see
defintion 333 on page 612 for the definition of line) and has nonnegative
Ricci curvature then it splits isometrically as a Riemannian product N × R.

It is interesting to note that such a statement, under the much stronger
hypothesis that of nonnegative sectional curvature, was obtained back in
Toponogov 1964 [1195] using precisely his comparison theorem. Toponogov’s
proof went as follows: take a line γ and some point p not on γ. Now consider
the two triangles {p, q, γ(t)} and {p, q, γ(t′)} made up by a foot point q for
the distance from p to γ and the points γ(t) and γ(t′) when t goes to −∞ and
t′ goes to +∞. Apply Toponogov’s theorem 73 on page 281 to both. Equality
will be forced in Toponogov’s theorem by the limit of the triangle inequality,
and this in turn forces the sectional curvature in the triangles to be zero.
This being valid for any point p in the manifold, one gets exactly the zero
curvatures needed to prove the product decomposition (see equation 4.38 on
page 229). For manifolds with nonnegative Ricci curvature, one defines two
Busemann functions b+ and b− with the points γ(−∞) and γ(+∞) of the line
under consideration and applies the maximum principle for superharmonic
functions to the sum b+ + b−.

Note 12.3.2.3 (Simply connected compact positive Ricci curvature manifolds)
Concerning simply connected Ricci positive manifolds, we should mention a
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Fig. 12.25. Toponogov’s approach to splitting

relation with theorem 219 on page 485. The main idea is that the very proof of
Myers’s theorem, when iterated, proves immediately that Ricci > (d−1)δ im-
plies that any geodesic of length larger than kπ/

√
δ has index at least k(d−1)

(k being any integer). Mixed with theorem 219, this leaves some hope that
we might deduce topological implications from positive Ricci curvature via
the Betti numbers of the loop spaces of the manifolds. We mentioned already
in §§10.3.5 that this line of inquiry has not been fruitful, precisely because no
Ricci curvature assumption is needed in theorem 219 nor in theorem 227 on
page 491. For general considerations on the positive Ricci curvature question,
see pages 75–86 of Gromov 1991 [627], chapter 7 of Gromov 1999 [633] and
the references quoted in the introduction of Wilhelm 1997 [1264]. �

12.3.2.0.4 Just below zero Ricci curvature The challenge now is to relax our
hypothesis and to go below zero. There is a heuristic hope that we might ob-
tain some results, since Ricci ≥ 0 implies b1 (M,R) ≤ dimM it is reasonable
to expect that some heuristic semi-continuity will yield that b1 (M,R), being
an integer, will remain no greater than dimM when the Ricci curvature is
not too large a negative quantity (with some normalization). And moreover
we expect equality only for flat tori. Partial results appeared in Gromov 1999
[633] and Gallot 1981 [539]. But a more ambitious semi-continuity would be
to control the fundamental group, in view of theorem 347 on page 622. Today
both hopes are fulfilled, by

Theorem 350 (Colding 1997 [387]) There is a constant ε = ε(d) > 0
such that any compact Riemann manifold of dimension d with diam(M)2 Ricci >
−ε(d) and b1 (M) = d is homeomorphic to a torus (as long as d �= 3).

Theorem 351 (Cheeger & Colding 1996 [336]) There is a constant ε =
ε(d) > 0 such that every compact Riemannian manifold of dimension d with

diam(M)2 Ricci > −ε(d)

has a nilpotent subgroup of finite index in its fundamental group.

The second result is incredibly stronger than the “old” pinching around zero
result theorem 312 on page 595. In fact this result was conjectured by Gromov
and proved in the case of lower bounded sectional curvature in Fukaya &
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Yamaguchi 1992 [533]. The proof involves a deep study of collapsing under
only a lower bound, which is done in Yamaguchi 1991 [1282]. Moreover the
authors mentioned there that their technique could be extended to the Ricci
curvature lower bound modulo some reasonable “splitting” conjectures. The
proof of the Ricci case uses the same outline as the proof of the sectional
case, but also new techniques coming from a deep study of the geometry of
noncompact Riemannian manifolds with lower bounds on Ricci curvature—in
particular an extension to Gromov–Hausdorff limits (see §§§12.4.2.3) of the
splitting theorem of Cheeger and Gromoll. In both theorems, an underlying
idea is that when ε is small enough, many aspects of the geometry behave
as if the Ricci curvature were positive. Another ingredient is to extend the
splitting theorems 350 on the preceding page to more general metric spaces,
namely Alexandrov spaces (see §§14.5.5).

A sketch of the proof of the first result is as follows. One starts with
Gromov’s proof in Gromov 1999 [633] to the effect that b1 (M,R) ≤ dimM
for small enough ε : on the universal covering of a suitable finite covering of
diameter D, one constructs a basis of π1(M) (seen as deck transformations,
and in the spirit of the proof of theorem 329 on page 610) so that the gener-
ators displace the points not too much, but so that every element displaces
them enough (in order to avoid overly squeezed triangles). Independently,
on suitably large balls, one constructs d harmonic functions which have L2

small Hessians and have L2 almost orthogonal gradients. One mixes this
with predictability arguments (which are possible thanks to Colding’s for-
mula in theorem 76 on page 286) and a smart basis as above to obtain, when
inf Ricci× diam(M)2 goes to zero, a Gromov–Hausdorff limit (see §§12.4.2)
which is a torus.

In the preceding results, one difficult point is to prevent collapsing, since
one does not have a bound for the injectivity radius. Kontsevich is devel-
oping a description of the closure of the set of nonnegative Ricci curvature
manifolds; this is important in theoretical physics.

Note 12.3.2.4 (Structure at infinity) For the proof of theorem 351 on
the facing page, an essential technique is to study the structure at infinity
of the manifolds under consideration. This technique is important and was
introduced in Gromov 1981 [614] to prove:

Theorem 352 (Gromov, 1981 [614]) If a finitely generated group has
polynomial growth, then it is a subgroup of finite index of a nilpotent Lie
group.

The proof introduced two basic concepts, and was so revolutionary that
we will explain its scheme in detail. First one considers a group Γ as a metric
homogeneous space by saying that the distance between two elements g, h of
Γ is the length of the element h−1g, which is defined to be the number of
generators (in a fixed generating set) needed to write down h−1g. The Cayley
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graph of Γ is built up by joining two points when their distance is exactly
equal to 1. One looks now at the limit, when ε goes to zero, of the sequence
of metric spaces (Γ, ε−1d). This limit was solidly defined in Gromov’s paper,
i.e. we have to find some topology on the space of all metric spaces and hope
for convergence. This topology is that of the Gromov–Hausdorff metric which
we will define in detail and comment on in §§§12.4.2.3. This metric was the
second new concept introduced in the article. The rest of the proof is long and
hard. One shows first that the limit is a nilpotent Lie group and thereafter
one realizes Γ as a subgroup of it. So one has introduced “the structure at
infinity of the group” and considered it as a object in and of itself. This
structure at infinity is not be confounded with the sphere at infinity S (∞)
to be met in §§§12.3.4.3. �

Back to the proof of theorem 351 on page 624. One studies the sequence
of Riemannian metrics on M given by ε−1g when ε goes to zero, and looks
for a nice limit. For a general Riemannian manifold such a limit can be awful.
The wonderful point here is that the hypothesis Ricci ≥ 0 implies that the
limit is a metric cone, namely a metric product of some compact metric
space with R+. Technically things are much more complicated, because all of
the limits we have been considered are taken for the non-compact universal
covering of the manifold under consideration. Then limits have to be taken in
the pointed category, and the limit can depend on the base point. Moreover
to prove theorem 351 one has only a Ricci curvature bound which can be
negative, since very small, and all the above has to be applied to a limit in
the category of manifolds with Ricci diamM2 ≥ −ε. One needs to introduce
generalized Riemannian manifolds, in the spirit of §14.5. All together, the
proof is extremely long, hard and subtle. The authors employ some synthetic
Ricci curvature Riemannian geometry; see the second appendix of Cheeger
& Colding 1997 [337].

When they exist, limit cones are not so simple and their study shows
that the wording “the structure at infinity” is a subtle concept. The fact is
that those cones need not be unique when the base point varies, even under
conditions stronger that the positivity of the Ricci curvature; see Perelman
1997 [1011].

Note 12.3.2.5 (Thin triangles) A new technique for studying complete
manifolds with nonnegative Ricci curvature was introduced in Abresch &
Gromoll 1990 [5]. One proves that under a diameter growth condition the
topology is bounded. The result can also be thought of as a weak quantitative
generalization of the splitting theorem. This article was the first appearance
of “thin” triangles. Colding’s L1 Toponogov theorem 76 on page 286 is the
dramatic generalization of this previous result. The strongest splitting result
is the one for Gromov–Hausdorff limits, in Cheeger & Colding 1996 [336], §6.
�
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12.3.3 The Positive Side: Scalar Curvature

We advance to scalar curvature. The story here is one of the most beautiful
chapters of recent Riemannian geometry (even if still not finished). However
Gromov has some complaint about it, which we will address soon. We as-
sume in this section that dimM ≥ 3, since the Gauß–Bonnet theorem 28 on
page 155 solves all of our questions when dimM = 2. The pinching question
as well as the negative sign questions are completely ruled out by

Theorem 353 (Kazdan & Warner 1975 [801]) Every manifold admits
a metric with constant negative scalar curvature.

The proof uses the formula for scalar curvature under a conformal defor-
mation and suitable approximations. We are left with the positive and the
nonnegative case. Today we know exactly which are the simply connected
manifolds able to carry metrics of positive scalar curvature. We use freely
here in advance notions from §§14.2.2:

Theorem 354 (Gromov & Lawson 1980 [635], Stolz 1992 [1161]) Every
compact simply connected manifold of dimension at least five, which is not
spin, carries a metric of positive scalar curvature. A spin manifold of dimen-
sion at least five carries a metric with positive scalar curvature if and only if
its α-genus is zero.

This complete classification was achieved through successive efforts of both
geometers and topologists. The main geometric tools are those of Gromov
& Lawson 1980 [635]. They consist in proving, using Riemannian smooth-
ing functions in a clever way, in conjunction with Riemannian submersion
formulas 15.17 on page 747, that any surgery of codimension smaller than
3 will yield a manifold of positive scalar curvature, provided only that the
two manifolds used in the surgery (see §§4.3.7) both admit metrics of posi-
tive scalar curvature. For more details we refer the reader to the very good
recent survey Rosenberg & Stolz 1994 [1071]. The first result goes back to
Lichnerowicz 1963 [867], see §§14.2.2 for more on the tools.

12.3.3.1 The Hypersurfaces of Schoen & Yau A completely different
tool has been used in

Theorem 355 (Schoen & Yau 1979 [1109]) In a manifold M with non-
negative scalar curvature, every homology class in Hd−1 (M) can be realized
by a hypersurface which admits some metric with nonnegative scalar curva-
ture.

By induction on the dimension, one can see that this result implies topolog-
ical restrictions. The proof is based on results of geometric measure theory,
(see §§14.7.2) to get existence of minimal hypersurfaces. But it works only



628 12 From Curvature to Topology

in dimensions less than seven. This dimension bound is needed in geomet-
ric measure theory to be sure to get submanifolds; higher dimensions can
give rise to singularities. The authors construct a subtle conformal change
of the induced metric on the minimal hypersurface, using essentially the fact
that the second variation for the volume along the hypersurface has to be
nonnegative. Details can be seen in pages 91–95 of Gromov 1991 [627].

Comments on the advantages of both tools figure on page 246 of Rosen-
berg & Stolz 1994 [1071] and the section 523 of Gromov 1996 [631]. According
to Gromov, the main question is to find the geometric concept unifying both
techniques—see more on this soon below, and for the beginning of some uni-
fication, see Akutagawa & Botvinnik 2000 [14].

12.3.3.2 Geometrical Descriptions The above results do not finish the
story. First, the non-simply connected case is well advanced but still not
finished and connected in part with the famous Novikov conjecture, one of
the driving forces of recent topology. See Gromov 1996 [631], the survey
Rosenberg & Stolz 1994 [1071], and the references there for more on this.
And there are also the low dimensions still to be mastered.

Second, the topologist’s description is not really geometrical. Moreover,
as we are going to see, the proof of the main result above is everything but
geometrical except for the surgery control. A contrario, the product S2 ×N
of any manifold N with the 2-sphere always carries a metric of positive scalar
curvature (just shrink the two-sphere enough that its curvature will dominate
that of N) by equation 12.1 on page 574. Moreover minimal hypersurfaces
of a manifold with positive scalar curvature carry metrics with the same
property, at least in low dimensions. This is the nice construction mentioned
above of Schoen & Yau 1979 [1109]. So there is a lot of work left to check
that these two special examples fit with the hypothesis of theorem 354 on
the preceding page. A geometric classification in that spirit was started very
recently in Gromov 1996 [631].

S2 S2

x x

N

shrinking S2 forces the scalar curvature
to become positive 

O

N

Fig. 12.26. Shrinking S2 forces the scalar curvature to become positive

There is a fascinating purely geometric statement in Llarull 1998 [872]:

Theorem 356 (Llarull 1998 [872]) A Riemannian metric g on the sphere
Sd such that g ≥ gstandard (this means everywhere, i.e. all of the lengths of
curves are larger or than equal to their lengths in the standard round metric)
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has necessarily one point m such that scalar(m) < d(d− 1) (the value of the
scalar curvature for gstandard) unless g is the canonical metric.

But the proof uses all of the spinor theory of the proof sketched below of
the above classification. A striking simple example, to illustrate the power
of Lichnerowicz’ theorem, is the famous K3 surface, the algebraic surface in
CP3 cut out by the equation

x4 + y4 + z4 + t4 = 0,

which admits a Ricci-flat metric by Yau’s theorem 280 on page 555, but
for which one cannot prove today in an elementary direct geometric way
that it never admits a metric with positive scalar curvature (or even positive
sectional curvature).

Note 12.3.3.1 (Volumes of Balls and Divergence of Geodesics) Bishop’s
theorem 107 on page 334 on the growth of the volumes of balls does not extend
here. One has only an infinitesimal version of it, useless for global purposes.
It would be very useful, according to Gromov, to find macroscopic (local)
consequences of positive scalar curvature. Another question (which might
well be linked with the preceding one) is to decide whether or not a C0 limit
preserves the nonnegativeness of the scalar curvature. The reader can see
this question in a more general setting in §§12.4.3. Note that this is false for
negative scalar curvature by Lohkamp’s result in §§12.3.5. According again
to Gromov a starting point for proving this and understanding the theory
clearly is the following. The nonnegativeness of sectional curvature is equiva-
lent to the nondivergence of geodesics as compared to the Euclidean case. For
scalar curvature one has (in a sense not yet made precise) “nondivergence”
but only in (at least) one direction. �

12.3.3.3 Gromov’s Quantization of K-theory and Topological Im-
plications of Positive Scalar Curvature In Gromov 1996 [631], Gromov
succeeded in extracting some topological implications from the inequality
scalar > ε2. The topology under consideration is K-theory (see §§§14.2.3.4).
This is part of Gromov’s program to quantize algebraic topology. We saw
such an example in his theorem 219 on page 485 on geodesics, and another in
the notion of simplicial volume in §§§11.3.5.2. Here K-theory is quantized as
follows (we are being very sketchy, skipping the question of the parity of the
dimension). A new invariant called the K -area(M) of a Riemannian manifold
is defined as

Definition 357 The K -area(M) is the minimum of the inverse of the largest
curvature of all nontrivial vector bundles over M .

More precisely, one considers all possible complex vector bundles, metrized “à
la Riemann” i.e. one puts some metric on the fibre and introduces some con-
nexion which preserve that metric. Such a vector bundle X has an associated
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“sectional” curvature. As soon as at least one Chern class of X is not zero,
these curvatures cannot all vanish. One takes the maximum of the curvature
on all tangent planes, denoting it by ‖R(X)‖. Then K -area(M) is the min-
imum of the ‖R(X)‖ when one runs through all such bundles and metrics.
The K stands both for the curvature and the K-theory. The fundamental
inequality is :

Theorem 358 If scalar(M) > ε−2 then K -area
(
Md

)
< c(d)ε2 for a con-

stant c(d) depending only on the dimension of M .

The quoted article also proves the gap theorem 175 on page 428 (as well as
many, many other things). The inequality in theorem 358 is a generalization
of the theorem 359 on the facing page of Gromov and Lawson on the torus.

12.3.3.4 Trichotomy Third, we have the trichotomy problem if we are
interested in the limiting case of nonnegative scalar curvature. On the strictly
positive side, things are solved, and on the strictly negative side also, since in
fact a long time ago, in Kazdan & Warner 1975 [801, 802], it was proven that
any manifold can carry a metric of negative scalar curvature. But what about
in between? With a little more than the Kazdan–Warner results (see Besse
1987 [183], section 4.E for details), one knows that for the class of manifolds
between these there is only a third possible case: that of manifolds which
cannot carry a metric of positive scalar curvature but can carry a metric
of zero Ricci curvature. We met this mostly open question in §§12.3.2 and
in §§§11.4.6.4: the zero Ricci curvature Riemannian manifolds are still very
mysterious today.

Fourth, the total set of positive scalar curvature metrics on a given com-
pact manifold can fail to be connected. This implies a fortiori examples of
nonconnectedness for the spaces of positive sectional and Ricci curvature.
The first example was Gromov & Lawson 1983 [636] for the sphere S7. In
Kreck & Stolz 1993 [834], the subject is considered further. They make use
there of the Aloff–Wallach manifold met before. Particularly nice are the two
Aloff-Wallach manifolds W−4638661,582656 and W−2594149,5052965, which are
diffeomorphic but cannot be connected by a path of positive scalar curvature
metrics between the two Aloff–Wallach metrics. For more examples one can
consult (among others) the (kind of) survey Lohkamp 1996 [874] (for both
signs, by the way) and Lawson & Michelsohn 1989 [850], page 329. Note
that nonconnectedness is important but does not say anything about the
topological structure of the components; compare with §§12.3.5.

12.3.3.5 The Proof At this point it is important both historically and for
the future to look at the proof of the above results. An expository sketch
can be found in pages 95–100 of Gromov 1991 [627]. The tools are of three
completely different types. The first is the above surgery, 100% geometrical.
The second part is pure algebraic topology, namely cobordism theory. This
theory will tell you which manifolds can be built up by surgery with simple
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building blocks (among them some of the KPn). One has to show that any
manifold satisfying the conditions above can be obtained by surgery with
building blocks which do have positive scalar curvature. All of this will insure
the sufficiency of the condition.

The necessity is a completely different story and needs a new tool. It
started with Lichnerowicz 1963 [867]. This was historically the first condition
obtained from the positivity of the scalar curvature (and in those times even
of the positivity of the sectional curvature!). Assume the manifold admits a
spin structure (see §§14.2.2) and follow the general scheme in the proof of
theorem 345 on page 621. Then the generalization of Bochner’s technique (see
§15.6) is available through the theory of elliptic operators to yield harmonic
spinors, namely those which vanish under the Dirac operator D/ . For this
Dirac operator the new “Bochner formula” is surprisingly simple and reads
in short

D/ 2 = D∗D +
scalar

4
.

So scal > 0 implies that there are no harmonic spinors. Then the Atiyah–
Singer index theorem (see §§§14.2.3.5) implies that some invariant called the
Â-genus has to vanish. To go to the α-genus needed some extra work which
was achieved in Hitchin 1974 [719].

12.3.3.6 The Gromov–Lawson Torus Theorem Last, not least, we can-
not resist to quote the very appealing

Theorem 359 (Gromov & Lawson 1983 [636]) On a torus, a metric of
nonnegative scalar curvature has to be flat.

For surfaces, this result is a direct consequence of the Gauß–Bonnet for-
mula 28 on page 155. The technique of the proof (suitably twisted spinor
bundles, using the fact that a torus has larger and larger coverings which are
still tori) is put in a general framework in Lawson & Michelsohn 1989 [850],
IV.§7. The idea is that the Bochner formula for the generalized Dirac operator
of those bundles has two terms; the first is the scalar curvature, the second
reflecting more the downstairs metric. Their behaviour, when one considers
larger and larger coverings, forces the curvature of the torus to vanish. In one
direction at least, Gromov’s formula in theorem 358 on the preceding page
captures the essence of this torus theorem.

12.3.4 The Negative Side: Sectional Curvature

12.3.4.1 Introduction This topic is an entire world in itself and is quite
beautifully developed. In fact, since Hadamard in 1898 and 1901, results on
negative sectional curvature have kept flowing in. First by Cartan in the
1920’s, by Eberhard Hopf in 1939, Preissmann in the 1940’s and then the
results described below. Due to this huge amount of results we are forced to
choose a very sketchy exposition.
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The von Mangoldt–Cartan–Hadamard theorem 72 on page 278 of the
1920’s, clarified by the Hopf–Rinow theorem 52 on page 249, implies that
complete manifolds of nonpositive sectional curvature have a universal cov-
ering which is diffeomorphic to Rd. This follows from the stronger fact that
any pair of points is joined by a unique geodesic which is automatically a
segment. So the simply connected case “looks like” hyperbolic or Euclidean
geometry. Then apparently for the naive observer the entire problem con-
sists in studying the fundamental group: its algebraic nature, classification,
differences between the negative and the nonpositive case, etc. But the sub-
ject turned out to be not so simple and in particular the characterization of
possible groups is still far away. Also one might hope that the compact neg-
atively curved manifolds look close to space forms, see §6.6. But the theory
of negative pinching seen in §§12.2.4 might raise suspicions.

In fact the subject has enjoyed many strong results. But at the same time
it appears ever more difficult to get a deep understanding of the possible
fundamental groups. In particular, the theory of compact negatively curved
manifolds is misleading, so we will make another exception to our rule of
studying only compact manifolds. We will see below many nice results on
the fundamental groups of compact negatively curved manifolds. But to date
there is no property known which they satisfy and which is not satisfied
by hyperbolic groups. This notion of hyperbolic group was introduced in the
monumental Gromov 1987 [622]; Ghys & de la Harpe 1988 [558] is a book
explaining the subject. The force of this notion sits in its four equivalent
definitions, ranging from group theory to Riemannian manifolds. Roughly
speaking (and using the word metric for groups) hyperbolic groups enjoy
the same asymptotic isoperimetric behaviour and the same large triangle
inequalities as in classical hyperbolic spaces. All of this is a strong incentive
to leave, at least for the moment, the world of compact (or even finite volume)
negatively curved manifolds.

It is important to mention that it is always difficult to construct compact
manifolds of negative curvature—we will meet this question again.

12.3.4.2 Literature There is a recent survey of the field: Eberlein, Hamenstädt,
& Schroeder 1990 [472], but note that the authors admit not being complete
even in 50 pages.4 The book Ballmann, Gromov & Schroeder 1985 [106] was
quite complete when it appeared. The more recent book Ballmann 1995 [103]
is a complete exposition of the “rank rigidity” for manifolds of nonpositive
curvature and finite volume, see below. Note that space forms (see §6.6) ap-
pear in many instances in this survey. We refer the reader to §6.6 to complete
our very partial and biased exposition, which follows Gromov’s philosophy.
It is impossible not to refer to the basic texts: Gromov 1987 [622], Gromov
1993 [629]. See also the “beginner” text Gromov 1991 [627],

4 We admit not being complete in quite a few more.
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As remarked in the introduction of Eberlein, Hamenstädt & Schroeder
1990 [472], the field involves very different techniques coming from different
fields of mathematics. Here we note common ground with dynamical systems
in §10.6, and space forms of §6.6. In particular, to simplify the exposition,
we have put as much as possible of the dynamical results in §10.6 and the
rigidity results for space forms (of negative curvature) in §6.6.

12.3.4.3 Quasi-isometries To study simply connected negatively curved
manifolds, we can begin naively by comparing different metrics of negative
curvature on Rd. The most sensible notion of equivalence, ignoring the fine
detail, is that of quasi-isometry. Two metrics are said to be quasi-isometric
if there are two constants such that each is squeezed between the other mul-
tiplied by these two constants. It turns out that it is very difficult to decide
whether two given metrics (say of negative curvature) are quasi-isometric. We
will soon appreciate the difficulty. Any diffeomorphism between two compact
Riemannian manifolds lifts up trivially to a quasi-isometry between their uni-
versal coverings. Now the universal covering of a compact negatively curved
manifold has curvature bounded from above and below. So we forget the
original compact manifold and start with our first question:

Question 360 Classify metrics on Rd with negative sectional curvature K
bounded from above and below: a ≤ K ≤ b < 0, up to quasi-isometries.

The classification turns out to be extremely difficult as soon as d ≥ 3. For d =
2 use the conformal representation theorem and compute the curvature. One
gets a Laplacian for the conformal factor, and the bounds on curvature finally
yield a bounded function. Hence when d = 2 all metrics of uniformly negative
curvature are quasi-isometric. The only similar case in higher dimensions
is when both metrics under consideration admit an orthogonal one point
symmetry. This time the Jacobi field equation gives a conformal factor which
is bounded.

But that is the end of the easy part. We will still stay in the negatively
pinched range, since without curvature conditions the game is of no inter-
est. It is first difficult to prove that the two space forms which come under
consideration, namely Hyp4 and Hyp2

C, are not quasi-isometric. This is a
corollary of the Mostow rigidity theorem 99 on page 318. In that direction,
it seems very difficult to classify spaces satisfying either −4 < K ≤ −1 or
−4 ≤ K ≤ −1. For example, it was already difficult to get an example with
curvature which could not be rescaled to lie in the range −4 ≤ K ≤ −1 (see
Mostow & Siu 1980 [950]). We meet the difficulty of constructing manifolds
of negative curvature (see also §6.6 and §§12.2.4). Even if one performs some
geometric manipulations on known examples, the original examples always
come from number theory. A contrario, as remarked in the note 12.2.4.1 on
page 598, singular objects of negative curvature are in some sense “most”
of the natural geometric objects (in dimension 2, glue heptagons or more-
gons; in higher dimensions things are more subtle). One now has a quite
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large family (depending on real parameters) of manifolds such that no two
are quasi-isometric. This is in essence in Pansu 1989 [995]. Moreover those
metrics are homogeneous.

12.3.4.3.1 The fundamental groups We continue to consider the possible neg-
atively curved metrics on Rd but look at it from the other side:

Question 361 Can any discrete finitely generated group act by isometries
with nonbounded orbits on a negatively curved metric on Rd?

There is no restriction known today besides the trivial one obtained from the
fact there must be a quotient which is a K(π, 1): our group should have some
homology in some dimension. No conjecture seems in view; see Gromov 1993
[629]. The above considerations play a role in Novikov’s conjecture, which
has become a gargantuan influence on geometry and topology in the last ten
years; see the very end of Gromov 2000 [634].

From the other direction, one has a good understanding of how certain
special groups can act. In Kleiner & Leeb 1997 [810] it is shown that any
quasi-isometry of an irreducible symmetric space of rank at least 2 then it
is of bounded distance from an isometry; this is false for the reducible case.
This can be seen as a contribution to the understanding of symmetric forms
of rank at least two, which are still the source of problems

12.3.4.3.2 Tools We look still further at a simply connected manifold of
nonpositive or negative curvature. First, any half-geodesic is a ray and every
geodesic is a line (see definition 333 on page 612 and theorem 72 on page 278).
In particular, we have a lot of Busemann functions (see definition 334 on
page 613), which are convex along with all of their sublevel sets. We have all of
the consequences listed in §§6.3.3, e.g. the convexity of the distance function
on M ×M , the distance functions from points, and the norm of Jacobi field.
Extremely important is the infinitesimal version of the notion of Busemann
function, which played a basic role in Anosov’s theorem 243 on page 504:
consider a line γ, the point p = γ(0), and any unit tangent vector u orthogonal
to γ′(0). As drawn in figure 12.27 on the facing page, there is a unique
Jacobi field Y (resp. Z) along γ such that Y (0) = u and limt→∞ Y (t) = 0
(resp. limt→−∞ Z(t) = 0). And of course we have the Toponogov comparison
theorem 73 on page 281 for K < 0: here there is no restriction on the size of
the triangle, so one always has a super-Euclidean geometry, and even more
when K is bounded from above by a negative constant.

Basically the smarter tools all consist in compactifying, since working with
the infinite is hard. The main idea, caricaturally, is to actively contemplate
the manifold from infinity via its compactification to be seen below. This
is not to be confused with the structure at infinity met in theorem 352 on
page 625. A baffling example of this technique was the proof of Gromov’s
result on discrete groups with polynomial growth. For example, a lattice, seen
from infinity, looks like a vector space, while a hyperbolic structure looks like
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Z (-∞) = 0
Z

Y
Y (∞) = 0

γ γ

a line γ and its two associated
Jacobi vector fields Y and Z

Fig. 12.27. A line γ and its two associated Jacobi vector fields

a tree. We are still on the same manifold Rd with a nonpositively curved
metric, most often with a lower bound for K. We extract a few things from
the basic reference Ballmann, Gromov & Schroeder 1985 [106] for detailed
proofs and from the survey Eberlein, Hamenstädt & Schroeder 1990 [472].

Definition 362 One defines the sphere at infinity S (∞) of this situation,
by considering on the set of all rays the following equivalence relation: two
rays γ and δ are said to be equivalent if the distance d (γ(t), δ(t)) is bounded
as t goes to infinity. Then S (∞) is the quotient by this equivalence relation.

This was already in Hadamard 1898 [674] in studying negatively curved sur-
faces. One puts a topology on S (∞), the cone topology defined in an obvious
way using only rays emanating from a given fixed point. It does not depend
on the point chosen and if one varies the metric only by quasi-isometries, one
induces homeomorphisms on the different realizations of S (∞).

M

S∞ (M)

M

identify
bounded two

by two geodesics

Fig. 12.28. Constructing the sphere at infinity S (∞)

We would like to have a measure and a metric on S (∞). The metric
which Gromov calls the Tits metric is very special. It is actually a metric,
i.e. finite everywhere, when the curvature is negative (more precisely, when
the curvature has a uniform negative upper bound). This is linked with the
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visibility condition introduced in Eberlein & O’Neill 1973 [473]. We say that
one point is visible from another if there is a geodesic joining them. There are
some more subtle families of metrics one can define on S (∞) which undergo
quasi-conformal transformations under quasi-isometric maps.

When the curvature is only nonpositive, then the Tits metric becomes a
kind of jigsaw metric, finite for some pairs of points. The typical examples are
the symmetric spaces of rank larger than one (see §§4.3.5). The Tits distance
between rays is exactly the Euclidean angle. More generally, these finite parts
are associated to flat parts which we are going to meet below. The totality
is more a jigsaw (or railway) metric than a Carnot–Carathéodory one (see
§14.5). We think we can help the reader to get some feeling about the field by
mentioning that two equivalent rays, in a simply connected manifold of uni-
formly negatively bounded curvature, have distance d (γ(t), δ(t)) decreasing
exponentially with time t. For the many structures on S (∞) and their re-
lations with various codings of periodic geodesics, see the survey Ledrappier
1995 [859]. Also see Bergeron 1999 [178].

12.3.4.4 Volume and Fundamental Group We turn now to properties
of compact manifolds of negative (resp. nonpositive) curvature and of their
fundamental groups.

12.3.4.4.1 Volumes Let us turn first to their volumes. As was the case for
space forms in §6.6, the possible volumes are discrete and in particular iso-
lated from 0 for space forms of any type.

Theorem 363 (Heintze 1976 [698]) Any manifold of sectional curvature
K bounded as −1 ≤ K < 0 has volume no smaller than a constant c(d) > 0
depending only on the dimension.

This is often called the Heintze–Margulis lemma, because it was obtained by
Margulis in the special case of space forms to get rigidity results; see §§6.6.2.
We used it in studying negative pinching to obtain the negative finiteness the-
orem 315 on page 597. Both authors provide a purely geometric proof, using
a “collar” argument. The strong divergence of geodesics in negative curvature
as well as the nature of hyperbolic isometries force a tube around the smallest
periodic geodesic to have not too small a diameter and then one applies the
comparison theorem as for the tube argument in the proof of theorem 90 on
page 297. We naturally hope here that negatively curved compact manifolds
have finiteness results with milder conditions than the four ones needed in
the general Cheeger finiteness theorem 372 on page 642. This was achieved
in Gromov 1978 [611], and is discussed in detail in Ballmann, Gromov &
Schroeder 1985 [106] and improved in Fukaya 1984 [527]. We mention here
a finiteness theorem of Gromov which is true for real analytic manifolds but
false in the differentiable case. It is extremely rare in Riemannian geometry
to have a result which distinguishes between these two categories.
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Theorem 364 (Gromov) If a compact Riemannian manifold M has sec-
tional curvature satisfying −1 ≤ K < 0 and if the Riemannian metric is
analytic then the sum of its Betti numbers is bounded by c(d)Vol(M), where
c(d) is a universal constant, depending only on the dimension d.

This result is optimal, as shown by examples. The examples are obtained by
connected sums, a typical smooth but not analytic operation. See Ballmann,
Gromov & Schroeder 1985 [106] for details of the proof. Compact space forms
of negative curvature were already hard to construct; see §6.6. For variable
curvature, we saw examples in §§12.2.4, but real analytic ones are harder to
construct, since gluing and surgery cannot be controlled “cheaply” with only
Riemannian submersion formulas; see Abresch & Schroeder 1992 [9].

12.3.4.4.2 Fundamental Groups The first statement describing the structure
of fundamental groups of negatively curved compact manifolds, due to Mil-
nor, was already discussed as theorem 104 on page 330. It states that for
compact manifolds, negative curvature implies that the fundamental group
has exponential growth. In Gromov 1978 [611] (and see 2.5.6 in Buser &
Karcher 1981 [296] for details) a bound is obtained for the number of gen-
erators of this group. As in proposition 327 on page 608 and theorem 329
on page 610, Gromov uses the triangle comparison theorem and then counts
points on the unit sphere whose mutual distances are bounded from below.

The most general statement is in Farrell & Jones 1989 [507], which is a
topological version of Mostow’s rigidity theorem 99 on page 318:

Theorem 365 (Farrell & Jones 1989 [507]) Let M be a compact hyper-
bolic manifold (i.e. a space form) and of dimension larger than 5 and let N
be any topological manifold which is homotopically equivalent to M . Then M
and N are homeomorphic.

This is also presented in the book Farrell 1996 [504].

Theorem 366 (Gromoll & Wolf 1971 [608]) If the manifold is compact
with nonpositive curvature and with a fundamental group which is alge-
braically a product of groups, with moreover no center, then the manifold
itself is a Riemannian product.

The proof consists in improving the original idea of Preissmann 1943 [1041]
which we will now elaborate. Preissmann’s result was

Theorem 367 (Preissmann 1943 [1041]) Abelian subgroups of the fun-
damental group of a compact negatively curved manifold are cyclic.

Proof. Consider two commuting deck transformations and look at any paral-
lelogram they generate (see figure 12.29 on the following page). If this is not
a squeezed (degenerate) parallelogram, then you can cut it into two triangles
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and apply the fact that the sum of the angles is smaller than π by the asser-
tion 2 on page 279. Adding together these angles, one contradicts the angle
property of this parallelogram.

the sum of angles is egual to 4π
for two commuting elements of π1

the total sum
will be strictly

less than
2π + 2π = 4π

Fig. 12.29. (a) The sum of angles in equal to 4π, for two commuting elements of
π1 (b) The total sum will be strictly less than 2π + 2π = 4π

With more work on this idea, one finds

Theorem 368 (Lawson & Yau 1972 [851]) In compact manifold with non-
negative sectional curvature, commuting elements of π1 require flat parts,
namely the presence of a free Abelian subgroup in π1 implies the existence of
flat totally geodesic tori in the manifold.

This can be seen as a converse of the Bieberbach theorem 98 on page 316
for the classification of flat space forms. The idea behind the proof is very
natural: extend Preissmann’s technique. If two elements commute, seen as
deck transformations, this will imply the existence of a parallelogram with
equal sides and angles. But then we are in the equality case of Toponogov’s
theorem which implies that the filled up parallelogram is flat and totally
geodesic.

12.3.4.5 Negative Versus Nonpositive Curvature For negative curva-
ture we saw that, at least today, hyperbolic groups are the “final answer.”
The big problem now is to appreciate the difference between negative and
nonpositive curvature, both in the compact manifold as well as for the fun-
damental groups. There are extremely strong results which show in essence
that the two cases can be dramatically separated. Otherwise put, to go from
one to the other you have to make quite a jump. We give the latest result
and refer to Eberlein, Hamenstädt & Schroeder 1990 [472] for a survey and
to Ballmann 1995 [103] for the proofs.

When thinking about nonpositive curvature (as well analogously as for
nonnegative curvature), it is always educational to keep in mind the two
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completely different types of examples, namely (1) the products of manifolds
of negative curvature and (2) the symmetric spaces of rank larger than 1. We
met this alternative twice before, for nonnegative curvature in §§§12.3.1.4
and for the simplicial volume of Gromov in §§§11.3.5.2. In both cases there
were a lot of planes with zero curvature, but the way they were located in
the set of planes was completely different. In a product, (see equation 4.38
on page 229) any plane made by two vectors with one tangent to the first
manifold in the product, and the second tangent to the second manifold, has
zero sectional curvature. For symmetric spaces (see §§4.3.5), they have a rank
which is the common dimension of their totally geodesic flat submanifolds,
which are moreover all conjugate by the action of the isometry group. This
is interesting only when the rank is at least two—otherwise these totally
geodesic submanifolds are just individual geodesics. In particular, every di-
rection is contained in at least one such flat. At the infinitesimal Jacobi field
level,

Lemma 369 In a symmetric space of rank at least two, given any unit vec-
tor, along the geodesic it generates there is a nontrivial parallel Jacobi field
(orthogonal to the geodesic of course and non zero).

This never happens for generic manifolds. In a Riemannian manifold, we de-
fined the rank in definition 68 on page 273, and we met it again in §§§12.3.1.4.
The strongest result today is the following “tout ou rien” result for compact
Riemannian manifolds of nonpositive curvature. We assume any reasonable
irreducibility condition.

Theorem 370 On a compact manifold of nonpositive curvature, either the
rank of the space is at least two, and then it is a space form with its symmetric
space metric, or the rank is one, and then the geodesic flow is ergodic on the
subset of the unit tangent bundle made up by the vectors of rank one.

Today it is still unknown if this subset of rank one vectors is of full measure.
A basic tool used here is theorem 397 on page 669.

Note that the rank, a geometric invariant, can be (at least conceptu-
ally) computed from the fundamental group; see Eberlein, Hamenstädt &
Schroeder 1990 [472]. The existence of flats and what they really imply is a
major issue today; see for example Hummel & Schroeder 1998 [750].

The above dichotomy admits many extensions with weaker hypotheses;
for example, compactness could be replaced with completeness and finite
volume, or a group “duality condition” and also to metric spaces mimicking
Riemannian manifolds of nonpositive curvature; see the CAT (0) spaces in
§§ 14.5.6 on page 706.

12.3.4.5.1 Sectional Curvature Just Above Zero Finally we end with the ques-
tion systematically treated in this chapter: to relax just a little bit our re-
quirement of nonnegative curvature. It is important to realize that without
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extra hypotheses, everything is permitted. At least for the simply connected
case: a construction of Gromov was published in Buser & Gromoll 1988 [295]
and generalized in Bavard 1987 [118]. There examples are built, for any ε,
of metrics on spheres and other 3-dimensional manifolds whose curvature
satisfies K < ε and are of bounded diameters. But also see Fukaya & Yam-
aguchi 1991 [532]. Their results are that one can obtain restrictions on the
fundamental group—namely that this group is almost nilpotent, only with
an extra hypothesis, like K > −1 and an upper bound on the diameter. The
above shows again that, in a rough sense, upper bounds for the curvature (if
not 0) mean nothing for the topology. This idea will frequently reappear in
§§§12.4.1.2

12.3.5 The Negative Side: Ricci Curvature

We have here the strongest possible answer: Lohkamp 1994 [873] belongs to
a series of papers where it is shown that, caricaturally, negative curvature
“means nothing” or, equivalently, “permits everything.” Worse: any metric
(typically of positive curvature) can be continuously approximated by a met-
ric of negative Ricci curvature (of course not with too much differentiability).
His tools come from analysis, related to the h-principle of Gromov 1986 [620],
and also from looking at the formula giving the variation of Ricci curvature
under deformation of metrics where one can see that it is quite easy to lower
Ricci curvature.

Another very important point fact is that, on any manifold, the total
set of metrics of negative Ricci curvature is topologically trivial, i.e. not only
connected, but contractible. Note that this contrasts sharply with the positive
case: see the note 12.3.1.3 on page 619. We suggest that the reader consult the
very informative Lohkamp 1996 [874]. In fact, the freedom left by negative
Ricci curvature is even more unbelievable; see theorem 167 on page 424 for
the results of Lohkamp 1996 [874].

12.4 Finiteness, Compactness, Collapsing and the Space
of Riemannian Metrics

In §§12.4.1 and §§12.4.2 we are going to present ideas in the reverse of the
natural order, which would be from weaker to stronger structures. The route
we follow is the same as in the surveys Abresch 1990 [4], Fukaya 1990 [531],
in appendix 6 of the book Sakai 1996 [1085], in Petersen 1997 [1018], and in
the second edition Gromov 1999 [633] of the pioneering book Gromov 1981
[616].

12.4.1 Finiteness
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12.4.1.1 Cheeger’s Finiteness Theorems Before introducing Cheeger’s
work, it might be useful to recall here some facts about the three ratios
homotopy/homology, homeomorphy/homotopy, diffeomorphy/homeomorphy
which were explained in §§4.1.4. under the heading “the classification of man-
ifolds.” Here we will look at such a classification in the sunlight of Riemannian
geometry. The two first ratios are in general infinite. We just mention that
even the classification of homology spheres is not finished. For the second,
the theory of characteristic classes is an ideal tool; a lucid exposition is in
Milnor & Stasheff 1974 [925]. The third ratio is always finite in five or more
dimensions; basic texts are Hirsch & Mazur 1974 [716], Kirby & Siebenmann
1977 [805]. These finite numbers can be computed explicitly using topological
information on the manifold under consideration. Recall that dimension 4 is
an exception; examples with infinitely diffeomorphism types with the same
homeomorphism type can even be taken among algebraic surfaces.

We note that Gromov’s theorem 328 on page 609 is only a weak finiteness
result for homology types. The finiteness topic started in fact simultaneously
in 1966 with Cheeger 1967 [328] and Weinstein 1967 [1246]. For expository
reasons we present first the simplest case, which is the only one treated by
Weinstein. In despair of every classifying manifolds of positive sectional cur-
vature (remember how we suffered in §§12.3.1) Weinstein proved

Theorem 371 (Weinstein 1967 [1246]) If d is even, then there is only a
finite number N(δ) of different homotopy types of d dimensional manifolds
whose sectional curvature satisfies 0 < δ ≤ K ≤ 1.

Unhappily N(δ) goes to infinity when δ goes to 0, precisely as c(d)δ−d.
Note that in the other direction, Gromov’s theorem quoted above on Betti
numbers of nonnegatively curved manifolds implies a very partial bound but
only for (integral) “homology types.” The proof of the homotopy finiteness
was purely geometrical, covering the manifold with convex balls whose num-
ber can be estimated as only a function of δ as follows. Bishop’s theorem 107
on page 334 yields an upper bound for the total volume, while Rauch’s com-
parison theorem yields a lower bound for the volume of balls within the
injectivity radius: theorem 103 on page 330. Moreover we work within the
convexity radius which is larger than or equal to π/4 thanks to Klingenberg’s
theorem 92 on page 300 and 95 on page 302; it is here where the restriction
to even dimensions enters. Now we use the metric trick of lemma 125 on
page 357, packing as many balls of radius π/8 as we can implies that the
corresponding convex balls of radius π/4 cover. Such packings are called ef-
ficient. They have also the extra advantage that one can universally control
the number of balls which meet a given one. The number of these balls is
then controlled by the obvious measure argument. The homotopy type of our
manifold is that of a simplicial complex with as many vertices as the above
balls, as in figure 12.30 on the next page
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with convex balls covering the whole 
manifold one gets a simplicial

complex with the same topology

Fig. 12.30. With convex balls covering the whole manifold, one gets a simplicial
complex with the same topology

We will now look at the two next levels: homeomorphy types and then
diffeomorphy types. Note also that in any such finiteness result one can also
ask for explicit bounds for the size of those finite sets. We will see that in
some cases there is no such explicit bound because the proof is obtained by a
contradiction argument based on convergence of some infinite set; but there
are cases where one can give explicit bounds.

There is no hope to extend the above result to odd dimensions. For ex-
ample we saw that there is an infinite set of Aloff–Wallach manifolds Wp,q

(see §§§12.3.1.1) which are all homeomorphic, but not all diffeomorphic. See
theorem 3.9 of Kreck & Stolz 1993 [834]. One can still get not only homotopy
but even diffeomorphy finiteness theorems, but under stronger hypotheses.
Cheeger’s ground breaking insight, independent of Weinstein’s, was

Theorem 372 (Cheeger 1967 [328], Cheeger 1970 [330]) Consider the
set of Riemannian manifolds of a given dimension d > 4 satisfying the four
conditions

1. K > a

2. K < b

3. Vol > v > 0

4. diam < D

where a, b, v,D are four fixed real numbers such that v has to be positive while
a and b can be of any sign). This set of Riemannian manifolds contains only
finitely many different manifolds up to diffeomorphism.

Finiteness holds not only for homotopy type but also for diffeomorphism
type and without any assumption on the sign of the curvature. In some
instances one can effectively get rid of the condition that the volume be
greater than some lower bound. For example when one works within the
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class of manifolds with a non-zero characteristic number, as remarked in
Cheeger 1970 [330]. This comes immediately from Chern’s formulas used in
theorem 272 on page 543 with the spirit of the notion of minimal volume;
another instance is that of negatively curved manifolds, because of Heintze’s
theorem 363 on page 636.

The path of the proof is important for future considerations. First cover
the manifold by coordinate balls whose number is universally bounded (uni-
versal means of course in a, b, v,D and course the dimension d). This is essen-
tially still thanks to the Bishop volume estimate with Ricci curvature (which
comes here from the sectional curvature bound). The next problem is to get
a positive lower bound for the injectivity radius. This was the first part of
Cheeger’s work:

Lemma 373 The injectivity radius has a universal explicit (positive) lower
bound which is a function of a, b, v,D, d

as we saw in theorems 89 on page 296 and 90 on page 297. Finally, the number
of efficient packings as in the proof of theorem 371 on page 641 is bounded,
as are their intersection patterns. Remember that the four bounds are needed
in Cheeger’s control of the injectivity radius.

The second part goes by contradiction: assume that we have an infinite
number of manifoldMi satisfying the hypotheses of Cheeger’s theorem. Cover
them with exponential coordinate ball charts φik : B (0, r) → Mi as above.
One can assume that the number of balls (the number of values that k takes
on) is the same for all of them. On each Mi look at the transition functions
φ−1
ik φih. From the bounds K ≥ a and K ≤ b, the Rauch comparison theorems

(propositions 74 on page 282 and 75 on page 283) imply that the transition
functions are bi-Lipschitz, and hence converge after passing possibly to a
subsequence. So finally for large i the Mi have transition functions which are
very close, and they must therefore be diffeomorphic.5

one can control the transitions
thanks to Rauch comparaison

theorems via exponential maps

Fig. 12.31. One can control the transitions thanks to the Rauch comparison the-
orems via exponential maps

5 Of course there are many details which we have ignored.
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In fact Cheeger only proved finiteness for homeomorphisms, and to go
from homeomorphism to diffeomorphism types, he used the results from dif-
ferential topology mentioned above: the number of possible diffeomorphism
types on a given simply connected topological manifold is finite when d > 4.
However later on Cheeger managed to prove diffeo-finiteness for any dimen-
sion (under these four bounds) without appeal to differential topology; refer-
ences are Cheeger & Ebin 1975 [341] theorem 7.37 to be completed by Peters
1984 [1013].

12.4.1.1.1 Improving Cheeger’s Proof There are two ways to work more effi-
ciently at Cheeger’s result. The problem is to control with only the sectional
curvature (without the metric) some derivatives of the coordinate changes
along with their uniform norm. One is to use the compactness theorems; see
§§12.4.2. The other is to use the center of mass technique. The center of mass
in Riemannian geometry was introduced in §§6.1.5. Recall that it can be ob-
tained in convex balls by two equivalent definitions (hence its usefulness).
The first is to minimize the sum of the squares of the distances. The second
is to ask for a given linear dependence between the velocity vector from the
center of mass to the points under consideration. Then Peters’s proof goes
as follows: in the sequence of manifolds Mi considered above we will show
directly that Mi and Mj are diffeomorphic for i and j large enough, by con-
structing a diffeomorphism as follows. First we pass to a subsequence such
that the domains of the exponential charts φij and φik have the same inter-
section pattern both in Mi and Mj. Now around a point x in Mi we look at
all balls containing x and look at the various images y1, . . . , yN of x in Mj

given by the corresponding ball charts for Mj of the type φikφ−1
jk . The map

f : Mi →Mj is defined as

f(x) = center of mass of {y1, . . . , yN} .

Mi Mj

get a map for balls

B B'

B''

x

x

y

y'y''

define a unique image
thanks to the center of mass

of αy,y', y''

Fig. 12.32. (a) We get a map for balls (b) Define a unique image thanks to the
center of mass of {y, y′, y′′}
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The first being purely metric, and the second involving tangent vectors,
there is some C1 control automatically, as already commented upon in §§6.1.3,
via the Rauch comparison theorems (propositions 74 on page 282 and 75 on
page 283).

12.4.1.2 More Finiteness Theorems A priori it seems impossible in
Cheeger’s results to avoid injectivity radius estimates in order to get con-
tractible (or convex) balls. But remember Gromov’s proof for the Betti num-
bers of nonnegatively curved manifolds: one of the basic facts is that critical
points (see definition 305 on page 590) for distance functions cannot “arise
too far from the center.” Remember also theorem 304 on page 590 where one
also works with only a lower bound on sectional curvature, asking that the
diameter be large. One ignores the injectivity radius once again. This point
of view that “large positive curvature does not modify the topology” was
pictured in figure 12.10 on page 590. The critical point technique can be used
to get rid of the sectional upper bound in theorem 372 on page 642:

Theorem 374 (Grove & Petersen 1988 [648]) Given numbers

K ∈ R, v > 0, D <∞

the class of manifolds of a given dimension d and with

1. sectional curvature at least as large as K
2. volume greater than v and
3. diameter at most D

contains only finitely many homotopy types (the number of homotopy types
is bounded explicitly in d,D,K, v).

Easy examples show that no one of these three bounds can be removed
from the statement (see figure 12.33 on the next page).

The idea for the proof is to get rid of the injectivity radius estimate
(hence the convexity radius estimate) in Weinstein’s proof of theorem 371 on
page 641 and to replace it by some “criticality radius” to use the technique of
the proof of the Grove–Shiohama theorem 304 on page 590 and finally cover
the manifold by balls having the same topological properties as convex balls.
But the approach fails because the conditions in theorem 374 are not enough
to yield a uniform bound for the “one-point criticality radius,” as figure 12.33
on the next page shows. When the smooth rounding off of the cone (near its
vertex) gets smaller and smaller, the curvature still remains positive (but note
that it goes to infinity). However the radius of contractible balls goes to 0,
since there are smaller and smaller geodesic loops. But there are no periodic
geodesics, and this is the clue. Under the conditions in theorem 374 there is a
uniform bound for the distance of pairs of points which are mutually critical;
see figure 12.12 on page 591.
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(a) A counterexample of infinite topologies if K →
−∞

(b) With K → ∞ the injectivity radius can go to
zero

Fig. 12.33. Counterexample manifolds
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q

p

the ε-cone

filling up M 
completely

when p and q
are mutually

critical

q is ε-critical
to p

filling M 
completely
when p, q

are mutually
ε-critical

q

p
p

q

Fig. 12.34. (a) Filling up M completely when p and q are mutually critical (b) q
is ε-critical to p (c) Filling M completely when p and q are mutually ε-critical

To prove this, if p and q were antipodal points on a periodic geodesics,
then follow the proof of theorem 90 on page 297. Remember that when finding
Cheeger’s bound for the injectivity radius, the upper bound for the curvature
was used only to get rid of conjugate points; see the scholium 91 on page 298.
But for the proof of theorem 90 only volume and diameter bounds and a
lower bound on curvature were needed. This is exactly the situation here.
The proof of theorem 90 is generalized as follows.

Consider two mutually critical points p and q and the set Σ of segments
between them, and look at the set S of geodesics emanating orthogonally
from these segments and of length smaller than or equal to the diameter.
As in the proof of theorem 89 on page 296 the set S is in fact the whole
manifold, since any point p has in Σ a closest point q and the criticality con-
dition and the first variation formula show that the segment between p and
q is orthogonal to Σ. The volume of S is again essentially controlled by the
Rauch comparison theorem. To finish the proof one has to imitate the proof
of theorem 371 on page 641 but replace contractible balls by contractibility
properties in M × M around the diagonal, plus (among other things) the
following improvement, which is essential: there is a universal lower bound
for the ε-mutually critical points. The ε-criticality means that, in the defini-
tion 305 on page 590 the angle π/2 is replaced by π/2 + ε. The figure below
shows how to get a bound: one will get the whole of M by taking the union of
the set S above with the cone defined by the normal tangent hyperplanes at p
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and q having a vertex angle equal to ε. For an ε small enough, this completes
the proof. A consequence of this improvement with the ε-criticality is that
(see definition 163 on page 392)

Proposition 375 The manifolds in the class of theorem 372 on page 642
admit a uniform contractibility function.

Then one works as in §§10.3.4: to each segment between p and q one
associates canonically a geodesic in M ×M which is orthogonal in M ×M to
the diagonal Δ. Now one uses the uniform contractibility in M×M , and with
some tricks one is able to cover the manifold efficiently with suitable metric
balls whose radii is precisely controlled by the lower bound on the ε-mutual
criticality radius.

Fig. 12.35. Contracting M on its diagonal Δ for pairs (p, q) which are not ε-
mutually critical

12.4.1.2.1 Homeomorphism Finiteness It seems impossible to do better,
namely to obtain homeomorphy finiteness. However the picture of the cone
might indicate that large positive curvature does not change the topology,
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this being certainly not the case for negative curvature. However one has the
very strong:

Theorem 376 (Grove, Petersen & Wu 1990–1991) The class of man-
ifolds of given dimension d, lower bounded sectional curvature, lower bounded
volume and upper bounded diameter contains only finitely many homeomor-
phy types if d �= 3 and finite diffeomorphy types if in addition d �= 4.

Dimension restrictions when d = 3 are due to the status of the Poincaré
conjecture and when d = 4 where one has to be happy (today at least)
only with homeomorphisms. We remark here that it is also open today to
decide if the counterexamples (mentioned above) yielding infinitely many
differentiable structures on some topological manifolds of dimension 4 can
have metrics which satisfy these bounds. Also the numbers of such manifolds
cannot be universally bounded today with the kind of proof used.

The proof involves new ideas since those of theorem 372 on page 642.
It uses convergence techniques which we will see in §§12.4.2, working in the
Gromov–Hausdorff space of theorem 380 on page 653, and a lot of deep
algebraic topology. In particular the technique called controlled topology, is
employed, using in particular the existence of a contractibility function (see
definition 163 on page 392). The existence of such a function is ensured by
proposition 375 on the facing page.

In the same article there is the astonishing curvature-free result:

Theorem 377 (Grove, Petersen & Wu 1990 [651]) The class of com-
pact manifolds of a given dimension d �= 3, with a fixed upper bound on vol-
ume and fixed lower bound on injectivity radius contains only finitely many
manifolds up to homeomorphism (hence up to diffeomorphism if in addition
d �= 4).

This means we have finiteness with not a single curvature restriction and
with only two numerical invariants. The result follows immediately from the
proof of theorem 376 if one remarks that the bound on the injectivity radius
provides a contractibility function. It remains only to apply Croke’s inequality
from theorem 149 on page 380. A weaker homotopy type result under the
assumptions of theorem 377 was obtained in Yamaguchi 1988 [1281]. The
result theorem 377 was mentioned in §§11.2.3, motivating some very natural
questions.

Back to the Grove–Petersen–Wu finiteness result; Greene 1994 [591] and
Greene & Petersen 1992 [592] throw interesting light on it, in particular
making explicit the role of the volumes of tubes around periodic geodesics.

12.4.1.2.2 Integral Curvature Bounds As mentioned in §§§12.1.2.3 the urge
for stronger results, i.e. with weaker hypotheses, did not stop. In particu-
lar there are results obtained by replacing some pointwise bounds on the
curvatures by various integral bounds. Precise statements are always quite



650 12 From Curvature to Topology

elaborate, and hence not stated here; see Yang 1992 [1286], Petersen & Wei
1996 [1023], Petersen, Wei & Ye 1997 [1025] and the book Petersen 1997
[1018]. One geometric problem encountered in this programme is to control
the volume of a tube around a periodic geodesic; this was done in Petersen,
Shteingold & Wei 1996 [1021]. The proofs are not completely geometrical but
involve a lot of analysis.

12.4.1.3 Ricci Curvature We next wonder if it is possible to achieve finite-
ness of topological types with only bounds on Ricci curvature. We saw in
§§12.3.2 that Gromov’s homology finiteness for lower bounded sectional cur-
vature and upper bounded diameter does not extend to lower bounded Ricci
curvature. However this did not stop geometers asking what the infimum of
the Ricci curvature means, since controlling Ricci curvature is hopefully a
“reasonable” degree of curvature control: see §§6.4.3. Results started with
Abresch & Gromoll 1990 [5] and are now very strong. We make a partial
choice among them and refer to the very informative survey Anderson 1994
[45] and the references there. Note that some of these results are optimal with
respect to the ingredients in view of the examples in Perelman 1997 [1012].

Theorem 378 (Anderson 1990 [39]) Take any numbers λ,D > 0, I > 0,
where λ can be of any sign. There is a finite number of diffeomorphism types
in a given dimension under the assumptions:

Riccig ≥λ
diamg(M) ≤D
Inj (M, g) ≥I > 0.

Since one succeeded for sectional curvature to go beyond the injectivity
radius, we naturally wish to do the same here. The story is not finished but:

Theorem 379 (Anderson 1990 [39] and Anderson & Cheeger 1991 [49])
Pick numbers λ, v > 0, D > 0, Λ > 0. In any odd dimension there are only
finitely many diffeomorphism types of manifolds which bear a metric satisfy-
ing all of the conditions

|Ricci| ≤ < λ

Vol ≥v > 0
diam ≤D

and ∫
M

|R|d/2 ≤Λ.

When the dimension is even it is compulsory (there are examples) to add
orbifolds (see §§14.5.2).
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Note that in dimension 4 the Ld/2-bound on the full curvature tensor is
not needed thanks to the Allendoerfer–Weil formula 11.6 on page 546 or
equation 15.10 on page 738. It is not clear if it is reasonable to conjecture
that this extra condition is not really needed. Note finally that all of these
results were obtained by contradiction, and the proofs do not yield explicit
bounds for the numbers of diffeomorphism types.

The idea for the above results is to prove C1,α-compactness; see §§12.4.2.
One needs to know that Ricci curvature in harmonic coordinates, up to first
order terms, is equal to the Laplacian of the metric (see equation 6.22 on
page 291). But one has to control the harmonic radius (i.e. the largest balls
on which harmonic coordinates are well defined and linearly independent, see
§§12.4.2 for more on that). When using the bound on

∫
M

|R|d/2 the difficulty
is to understand how the curvature concentrates; this is achieved by looking
for singular points in sequences converging in the Gromov–Hausdorff space
to an orbifold, found by Anderson 1990 [39]. Then one rescales the metrics
around the singular points and shows that iteration of this process ends after
a finite number of times.

Results on manifolds with Ricci curvature bounds appear continually; we
mention Dai, Wei & Ye 1996 [424] which, using the smoothing technique of
§§12.4.3, proved many new results.

Note 12.4.1.1 (Scalar Curvature and Finiteness) From theorem 354 on
page 627 (for example) it is clear that there is not a single finiteness statement
to expect from bounds on scalar curvature. �

12.4.2 Compactness and Convergence

12.4.2.1 Motivation Climbing Jacob’s ladder, even in the fog, it is a natu-
ral question to ask for some kind of convergence and compactness within the
set of Riemannian manifolds satisfying various bounds. This means trying to
study the set of all Riemannian manifolds as an object in itself. Moreover we
met before many problems where a convergence theorem would have been
useful. Among various texts we suggest the surveys Fukaya 1990 [531] and
Petersen 1997 [1017].

Look for example at diffeomorphism finiteness theorems or even more
simply at the differentiable pinching problem. It is intuitive that in some
sense the set of differentiable structures is discrete. Within a compact subset
we have finiteness. And for example isolation of the standard sphere. Note
that would be a very pleasant proof but not yielding an explicit pinching
constant.

Another motivation is that of chapter 11: look at some functional on
the set (or some subset) of Riemannian metrics on a given manifold M .
Does there exist some Riemannian manifold realizing the infimum of that
functional (a best, an extremal Riemannian structure on M)? Sadly enough
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all of the convergence results we are going to see seem to be unable to give an
answer in that domain, see e.g. the minimal volume and the embolic volume
in §§11.2.3 and §§11.3.1 as well as Einstein manifolds in §§11.4.1.

12.4.2.2 History It seems that the first appearance of this direction was in
Shikata 1967 [1131], where an isolation result was obtained for differentiable
structures. Thereafter considerations of that kind were implicit in Cheeger
1970 [330]. Then the theorem (not numbered) on page 74 of Gromov 1983
[617]. The proof uses implicitly a convergence theorem that the author always
took for granted. According to him, since some people doubted it or at least
asked for more details, he published a proof in Gromov 1981 [616]. The proof
was still a little incomplete, and then Katsuda 1985 [790] offered a complete
proof. In 1985 various proofs of the optimal result (see below) started circu-
lating, all using centers of mass and harmonic coordinates. Printed references
are Greene & Wu 1988 [593], Peters 1987 [1014] and Kasue 1989 [783]. For
the Ricci flow, see Lu 2001 [882]. We now have to make things precise, since
the notion of convergence needs a topology.

12.4.2.3 Contemporary Definitions and Results We now present the
notions and the related results in the order which is currently the most sen-
sible, even if it looks as if it is adapted to more general geometric objects
than Riemannian manifolds. It is in fact unavoidable to begin in this general-
ity, and moreover simplifies considerably the proofs quoted above. We follow
mainly Fukaya 1990 [531] and refer to that paper for precise definitions. An-
other survey is Petersen 1990 [1015]. And of course the second edition of
Gromov 1981 [616] is Gromov 1999 [633].

Contemporary developments start with the Gromov–Hausdorff distance
dG−H between isometry classes of abstract compact metric spaces. We recall
a classical “exercise” of general topology. Consider all compact sets of a given
Euclidean space Ed and define a metric on this set as follows: dH(X,Y ) is the
infimum of the numbers ε such that X is contained in the ε-neighborhood of
Y and also Y is contained in the ε-neighborhood of X . See figure 12.36.

X

Y

f

g

f(X)

g(Y)
ε

ε

ε

Z

in Z
f(X) and

g(Y)should
 be ε-close

Fig. 12.36. In Z, f(X) and g(Y ) should be ε-close

A classical exercise is to show that the set made up of all of these subsets
is itself compact. Hausdorff’s definition extends trivially to closed subsets of
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any metric space, but for two isometry classes of abstract metric spacesX and
Y , one has to use the following trick: consider all so-called ε-approximations
f : X → Y , i.e. Y is equal to the ε-neighborhood of f(X) inside Y and for
every x, x′ ∈ X one has

|dX (x, x′) − dY (f(x), f (x′))| < ε.

Theorem 380 Define the Gromov–Hausdorff distance dG−H between two
compact metric spaces X and Y to be the infimum of positive numbers ε such
that there is an ε approximation X → Y and there is also an ε approximation
Y → X. The set of isometry classes of compact metric spaces, denoted Met,
endowed with the metric dG−H, is itself a complete metric space.

This definition and properties appeared first in Gromov 1981 [614, 616]. This
extends the well-known analogous statement for compact subsets of Ed. One
might prefer to define dG−H by the following equivalent definition: look at all
of the possible pairs of isometric embeddings f : X → Z and g : Y → Z into
various metric spaces Z (such triples always exist trivially) and look at the
infimum of the Hausdorff distance in Z of the pair f(X), g(Y ).

Theorem 381 For noncompact pointed metric spaces there is an analogous
statement, the convergence being now for the corresponding metric balls of
any radius.

We saw Gromov’s group-theoretic application of this concept in theorem 352
on page 625. In Met we have the Riemannian geometry result from Gromov
1981 [616]:

Theorem 382 Inside (Met, dG−H) the subset of Riemannian manifolds of a
given dimension d with diameter not larger than D and Ricci ≥ (d − 1)δ is
precompact.

The metric moral of the story is that one is left with a finite number
of “possible geometries.” The argument is just efficiently packing as many
balls of a given radius as possible, as in lemma 125 on page 357; then dou-
bling the radius one gets a covering. The number of balls can now be uni-
versally bounded from above with the radius under consideration. This is
quite surprising, since from theorem 107 on page 334 one has a priori only
an upper bound for the volumes of balls, while we need a lower bound for
the VolB (m, r) to control the number of nonintersecting balls in the whole
manifold, whose volume is Vol(M) ≤ Vol Sd (δ). The trick is to use the non-
increasing property of theorem 107, so that for any r

VolB (m, r)
VolB (Sd (δ), r)

≥ VolB (m,D)
Vol Sd (δ)D

(12.2)

which yields the desired universal bound for
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VolB (m, r)
Vol(M)

.

The desired metric approximations are found by the finite sets made up of
the centers of the balls. Maps between these sets are obtained by the pigeon
hole principle. But of course the closure of such sets is not in the realm of
(smooth) manifolds of dimension d. Just think for example of flat tori. Note
also that the assertion “a finite number of geometries” is really purely metric,
since we saw in §§12.3.2 that manifolds of Ricci curvature can have arbitrary
large Betti numbers.

If one exempts the splitting theorem 348 on page 622, then theorem 381
on the preceding page was the first to suggest to Riemannian geometers that
a Ricci curvature lower bound could be almost as important as a sectional
curvature one.

12.4.2.3.1 The Lipschitz Topology The next topology to come in our story
is the Lipschitz topology. In Met we will call it dL. Its value dL(X,Y ) is
the infimum of all numbers max

{
L(f), L

(
f−1

)}
where L(f) is the Lipschitz

constant of a Lipschitz homeomorphism f : X → Y . (More precisely, one has
to take the logarithm to get a metric, but it is useful to work without the
logarithm.) Recall that for any metric spaces X and Y , a map f : X → Y is
Lipschitz with constant k = L(f) if

d (f(x), f(x′)) ≤ k d (x, x′)

for every pair of points x, x′ ∈ X . In Shikata 1967 [1131] a discreteness
result concerning dL was proven. We work within the set RM (d, a, b,D, v)
of Riemannian manifolds of given dimension d with a ≤ K ≤ b, diameter at
most D and volume at most v > 0. If N is the dL limit of a sequence {Mi}
then for i large enough Mi is diffeomorphic to N . This is how Shikata solved
the differentiable pinching problem of §§12.2.2 (with an abstract constant).

But this is still not a convergence statement for any sequence (or some
subsequence) in the set RM (d, a, b,D, v). This was achieved in two steps.
The first is in Gromov 1981 [616], to be completed with Katsuda 1985 [790].
It tells us of local constancy of diffeomorphism type inside RM (d, q, b,D, v).

Theorem 383 (Gromov–Katsuda) In the space RM (d, a, b,D, v) for N
and a sequence Mi, if

lim
i→∞

dG−H (N,Mi) = 0

then
lim
i→∞

dL (N,Mi) = 0

and Mi is diffeomorphic to N for i large enough.

At this stage we still do not have a convergence statement. This needs
more work, which was carried out in the Gromov, Greene–Wu and Peters
references mentioned above. The precise statement:
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Theorem 384 From any infinite sequence {Mi} in RM (d, a, b,D, v) one
can extract a subsequence which converges toward a Riemannian manifold
(N, g) which is diffeomorphic to Mi for i large enough, but the metric g is
known in general to be only of class C1,α (for any α ∈ (0, 1)).

We did not define the C1,α class nor C1,α convergence in §§4.1.1. A function
f defined in some domain of Ed is said to be of class Cα if it is α-Lipschitz
continuous, that it is to say its Cα norm

‖f‖Cα = sup
x �=y

|f(x) − f(y)|
|x− y|α

is finite. The class C1,α is the class of continuously differentiable functions
whose first derivatives are in Cα. There is then an obvious norm taking into
account both f and df . Of course such classes and norms extend to any tensor
or to differentiable maps of Riemannian manifolds. In theorem 384 the metric
g is the C1,α limit of the metrics of the extracted sequence.

It is important to realize that, by nature, one cannot expect C2 conver-
gence nor a C2 limit for g. A trivial example is a cylinder with two hemi-
spherical caps, which can be trivially obtained as a limit of of surfaces all
inside RM (2, 0, b,D, v), as in figure 12.37.

a not C2 - limit

Fig. 12.37. A limit which is not C2

We saw in §4.5 that the difficulty in proving results like theorem 384 lies in
the fact that control on the curvature gives control on the metric but not on
its derivatives. This is because the Rauch comparison results (propositions 74
on page 282 and 75 on page 283) show only a C0 behavior. The basic trick is to
replace normal (geodesic) coordinates by apparently less geometric ones but
in fact better adapted to these questions. Those are the harmonic coordinates
(see definition 82 on page 291). One chooses d harmonic functions which are
linearly independent and satisfy ad hoc boundary conditions. One can do so
only within the harmonic radius which was first systematically introduced
and controlled in Anderson 1990 [39]. Such control is required in many results
and we refer for this to the various references which we will meet. With
sectional curvature bounds it is easier to control harmonic radius than with
Ricci bounds. For the historian we note that harmonic coordinates were used
a long time ago by theoretical physicists in Einstein 1916 [484] and in Lanczos
1922 [844]. The founding paper is Jost & Karcher 1982 [769]; also see Hebey &
Herzlich 1995 [693]. A recent regularization theorem was proven in Nikolaev
[967].
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The proof of theorem 383 on page 654 uses coverings with suitable balls
whose number is controlled as above in theorem 372 on page 642 and har-
monic coordinates on these balls.

If one wants to get smoother limits, one uses smoothing techniques which
are important in other instances and were discovered in Bemelmans, Min-Oo
& Ruh 1984 [127]. The tool which smooth the metric is the Ricci flow, see
§§11.4.3. Thereafter in Abresch 1988 [3] and in Shi 1989 [1130]. See other
statements in Fukaya 1990 [531]. The recent Petersen, Wei & Ye 1997 [1025]
throws an new light on smoothing, introducing new (optimal) norms to get
local geometric control. Smoothness means in particular that the absolute
value of the covariant derivatives of the curvature tensor of any order, es-
pecially the first one which is technically very useful, can be made as small
as required. Smoothing respects most geometric hypotheses and one can for
example add smoothness in RM (d, a, b,D, v), etc.

12.4.2.3.2 Compactness with Ricci curvature bounds As in instances met
above, and in view of theorem 382 on page 653 one is tempted to obtain
results of compactness (convergence) with slimmer hypotheses, in particular
with only Ricci curvature control. Convergence results where the curvature
control is mainly Ricci ≥ −(d − 1) started in Gao 1990 [546], followed by
Anderson 1990 [39]. The main result today is

Theorem 385 (Anderson & Cheeger 1992 [50]) One has precompact-
ness in the C0,α topology (for any α ∈ (0, 1)) under the conditions: Ricci > r,
injectivity radius > i > 0 and volume < V.

The link between finiteness and compactness is explained in Anderson &
Cheeger 1992 [50] and is of a quite general nature. If moreover the k-covariant
derivatives of Ricci curvature are bounded in absolute value by suitable con-
stants one has precompactness in the Ck+1,α topology. See an extremely brief
exposition in Hebey & Herzlich 1995 [693]. Note that these extra conditions
can be achieved by smoothing as seen above. The proof uses harmonic co-
ordinates (with a lot of analysis, e.g. Sobolev inequalities), and study of the
harmonic radius which can be bounded with the metric injectivity radius
(this is not too surprising) together with the Ricci bound; see Anderson 1990
[39], and Cheeger, Colding & Tian 1997 [340].

For applications of convergence theorems we refer the reader to the various
surveys above. We just note that in most cases, like pinching theorems or “just
below” theorems, the convergence theorem yields an unknown bound. One
always prefers direct proofs and explicit constants.

Note 12.4.2.1 (Noncompact manifolds) Most of the above results work
for (complete) noncompact pointed manifolds. These results are essential for
example when one studies the fundamental group and the structure at infinity
as seen in various places above. �
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12.4.3 Collapsing and the Space of Riemannian Metrics

12.4.3.1 Collapsing If a sequence of Riemannian manifolds does not con-
verge nicely6 then what is really happening? Do we have some kind of limit
space? For example, the limit might be a manifold of smaller dimension,
or a reasonable generalization of Riemannian manifolds (see §14.5), or just
some metric space. In some sense one is looking for a compactification of the
set of Riemannian metrics (of a given dimension) and wondering what goes
on when we travel to the boundary. This makes sense only within suitable
subsets, namely when we impose some curvature bounds and some metric
invariants. When there is no convergence towards a Riemannian manifold (of
the same dimension) we say that the manifold is collapsing. This is vague;
we will now study things a little more precisely, but we will have to be very
brief and incomplete to keep this book of reasonable size. Again the reference
we follow here is Fukaya 1990 [531], at least up to 1990. An informative text
is Pansu 1985 [994]. The core bible is made up of three parts: Cheeger &
Gromov 1985,1986,1990 [346, 347, 348], Fukaya 1987,1989 [528, 530] and by
the whole team: Cheeger, Fukaya & Gromov 1992 [342] whose introduction
is very helpful. In brief, the general philosophy is that either we have con-
vergence, or collapsing, and that collapsing implies a rich structure. For this
philosophy, see Lott 2000 [881].

12.4.3.1.1 Dropping the volume constraint The first situation we will study is
RM (d, a, b,D, v) without the volume condition, working instead in RM (d,−1, 1, D)
(with obvious notation) after normalizing from (a, b) to (−1, 1), which does
not hurt when shooting only for general statements. Then we have to study
the situation where the volume goes to zero, which by Croke’s local embolic
theorem 149 on page 380 implies that the injectivity radius goes to zero uni-
formly. Let us turn to examples. We saw above in the pinching around zero
problem that infranilmanifolds are in our class, and not only the obvious tori.
Note then that the limit space is the smallest possible one, namely reduced
to a point—the big theorem here is the converse of theorem 312 on page 595.

The other basic general example appeared in Gromov 1983 [617]: any
manifold admitting a circle action without fixed point, or even just fibered by
circles over some other manifold N , collapses to N . This is just an application
of Riemannian submersion formulas: take a fixed Riemannian metric invariant
under the circle action, and make the fibres smaller and smaller keeping the
“horizontal” metric components fixed. Just above we got the infranilmanifolds
as a particular case applying this trick to the successive circle fibrations which
come from the nilpotent structure. For the Hopf fibrations one sees collapsing
of the spheres S2n+1 → CPn. A fortiori of course this extends to manifolds
admitting any simple torus action. A more sophisticated collapsing of S3

comes from Clifford tori in S3 which are parameterized by [0, 1]. Each of
these tori (except the two circles at the ends) is flat. In each of them consider
6 As we have seen this is mainly because the injectivity radius goes to zero.
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a geodesic of this flat structure (not a geodesic in the ambient S3) with an
irrational slope, hence everywhere dense. If you shrink the metric more and
more along those geodesics, the metric will collapse to the unit interval [0, 1].
See figure 4.8 on page 173. Another example of the same vein would be to
collapse any symmetric space M onto its quotient by a maximal flat torus.

S3

S3

0 1

S2

collapse every 
Clifford torus
into a point

collapse every 
Hopf circle
into a point

Fig. 12.38. (a) Collapse every Clifford torus to a point (b) Collapse every Hopf
circle into a point

Consider a more elaborate example which we met already in figure 11.3 on
page 540. Take two surfaces N andN ′ with boundary (each boundary a union
of circles) and look at the products M = S1×N and M ′ = S1×N ′. They are
manifolds with boundary, and in each the boundary has the topological type
of a torus T 2. Then glue M and M ′ along that T 2 not in the trivial way but
interchanging the two circles in T 2 (exchange the parallels and the meridians).
The resulting manifold does not in general admit an S1 action. It does admit
one locally on both parts. These two actions agree in the common parts since
we have a torus action. It is still possible to define a collapsing structure
in RM (3,−1, 1, D) for this manifold. This example has been put in a very
general context in Cheeger & Gromov 1985,1986,1990 [346, 347, 348], where
the notions of F and T structures are defined. Other important notions are
that of polarized and pure polarized F structures. Detailed definitions are
also to be found at the end of the survey Fukaya 1990 [531]. Existence of
various structures of those types is linked with the topology of the manifold
but how exactly is still an open and important question. See the various
references for the state of the art. It is difficult to know when one needs to
work within manifolds with bounded diameter.

For a general F structure one can only build up Riemannian metrics with
−1 ≤ K ≤ 1 and injectivity radius going to zero. If the structure is polarized
then one can get the volume to go to zero, and if moreover it is pure polarized
then one really has collapsing in RM (d,−1, 1, D). In Cheeger & Gromov
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N u [0, 1] u N'

Fig. 12.39. N ∪ [0, 1] ∪ N ′

1985,1986,1990 [346, 347, 348] many results are obtained about collapsing and
the various Riemannian invariants. The above collapsing theory is used also to
study integral formulae for and the existence of characteristic numbers when
the manifold is no longer compact but still of finite volume; see Cheeger &
Gromov 1985 [346]. In reference to chapter 9, the spectrum during collapsing
is considered in Fukaya 1987 [528] and in the recent Kasue & Kumura 1996
[784] where the authors define an interesting notion of spectral distance. The
results are good—in a suitable sense one has convergence of eigenvalues and
even of eigenfunctions. This is not too surprising if we do not forget that the
spectrum is a robust invariant; see why in our discussion of Gromov’s mm
spaces in §14.6.

12.4.3.1.2 A byproduct of the work of Cheeger & Gromov is a structure
statement for any Riemannian manifold:

Theorem 386 (Cheeger & Gromov) There is a positive number ε(d) de-
pending only on the dimension d such that given any complete Riemannian
manifold M of dimension d with sectional curvature bounded by −1 ≤ K ≤ 1,
there is an open set U of M with the following properties: (1) at points in M
the injectivity radius is larger than ε(d) and on U (the thin part) there in an
F structure (of positive dimension).

the thin
part

thick part

Fig. 12.40. Cheeger & Gromov divide manifolds into “thick” and “thin” parts
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12.4.3.1.3 Collapsing down to a compact manifold Consider the structure
of the collapsing process when the limit set of {Mi} is a compact mani-
fold N . The answer appeared in Fukaya 1987,1989 [528, 530]. We are in
RM (d,−1, 1, D) and assume

lim
i→∞

dG−H (Mi, N) = 0.

For i large enough, there are maps fi : Mi → N which are fibrations. The
fibers are infranilmanifolds and fi is almost a Riemannian submersion. In
Cheeger, Fukaya & Gromov 1992 [342], the two points of view are united
to get very strong statement for collapsing. Finally the bold question of the
nature of the dG−Hclosure of RM (d,−1, 1, D) was addressed in Fukaya 1988
[529]. When one is interested in various closures on a given manifold things
are much easier, see chapter 11 on page 527.

12.4.3.1.4 Alexandrov Spaces Consider the limiting structure for families of
Riemannian metrics involving weaker curvature bounds. The first thing to do
is to discard K ≤ 1 as we did in §§12.4.1 for finiteness results but still keeping
K ≥ −1. It is intuitively clear that limits can now have singularities; think e.g.
of small fingers, bubbles, etc. A major discovery is that there is a reasonable
generalization of Riemannian geometry which is stable under metric limits
subject to the condition K ≥ −1. This is the notion of an Alexandrov space;
see §§14.5.5 for more on this. In case of collapsing under only K ≥ −1 with
a smooth limit one has a strong structure result in Yamaguchi 1991 [1282].

12.4.3.1.5 Ricci Curvature Control As so often before, we would now like
control on collapsing with only the Ricci curvature, plus of course various
metric invariants. This is an extremely active topic today and hence hard
to present concisely. Recall that the initial hope is Gromov’s basic view in
theorem 382 on page 653. Besides references of the preceding two sections, we
mention that Anderson 1992 [42] and Cheeger & Colding 1996 [337] are the
beginning of a series of articles taking into account previous results. Recall
that Colding’s L1,1 and L2 Toponogov theorems (theorems 76 on page 286
and 77 on page 288) play the role of Toponogov’s one when one has only a
lower Ricci bound. For some insight we mention that those results are part
of a programme of Anderson and Cheeger, including the conjecture:

Conjecture 387 Convergence in dG−H in the presence of a lower Ricci cur-
vature bound implies volume convergence.

This is now proven in Colding 1997 [387]. For the program of “Ricci syn-
thetic” Riemannian geometry, see appendix 2 of Cheeger & Colding 1997
[337]. 1997a).
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12.4.3.1.6 Integral curvature bounds Next in weakening the assumptions is
to use only integral bounds, sometimes mixed with various other ones. We
just mention (some of these we have already met): Gallot 1988 [540], Yang
1992 [1286], Gao 1990 [546, 547], Petersen 1997 [1018] and the expository
Anderson 1990 [44]. For the behaviour of the spectrum during collapse, see
Lott 2000 [881].

12.4.3.2 Closures on a Compact Manifold On a given compact mani-
fold M , consider the set RM (M) of all Riemannian metrics. On it we have
many topologies—the one already given by the Gromov–Hausdorff metric of
theorem 380 on page 653, but also the Ck topologies on RM (M) coming
from the various differentiable structures on M . The C0 case corresponds for
example to looking only at the metrics g, not at any of their derivatives. For
example controlling (or defining) the curvature demands working in C2 at
least. Some surveys are Lohkamp 1992 [876] and Lohkamp 1996 [874]. And
we now briefly state the results. Some of them are only rephrasing things
already seen more or less explicitly. Also see Nikolaev 1991 [967].

One should first remark on the trivial implications from dG−H closure to
the Ck closures. This explains why we will state only the strongest ones. The
notations will be obvious. The symbolK will stand for the sectional curvature
and the associated inequalities, etc. For each space X with topology T , the
notation X

T
will mean the closure of X in the T topology. Our inequalities

start with the sectional curvature:

Theorem 388 For any compact manifold and any real number k

K≥k(M)
dG−H

= K≥k(M)

and

K≤k(M)
dG−H

= K≤k(M)

These observations come essentially from the Rauch comparison theorem
(proposition 74 on page 282). If one passes now to Ricci curvature

Theorem 389

Ricci≥α(M)
C0

= Ricci≥α(M)

and (for the moment the best we know):

Ricci≥α(M)
dG−H �= RM (M) .

It is unknown if
Ricci≥α(M)

dG−H

= Ricci≥α(M).

Lohkamp’s result of §§12.3.5 says exactly that
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Theorem 390

Ricci≤α(M)
C0

= scalar≤α(M) = RM (M)

and

scalar≤α(M)
dG−H

= Ricci≤α(M)
dG−H

= RM (M) .

As written in Lohkamp’s survey, we wrote the four equalities for dramatic
effect, although two are consequences of the others.

The complete mystery alluded to in §§12.3.3 is

scalar≥α(M)
C0

particularly when α = 0. Kontsevich is currently developing a picture of the
closure of the set of nonnegative Ricci curvature metrics, with applications
in mind to theoretical physics.
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In this chapter, up to and including §13.4, manifolds need not be
compact, or even complete, but must have no boundary. Starting in
§13.5, manifolds are once again assumed compact without boundary, unless
otherwise stated.

13.1 Definitions and Philosophy

Knowing the importance of groups in mathematics, it is quite natural to
try to capture some part of Riemannian geometry in a group. The notion of
parallel transport is the key; see proposition 61 on page 264 and §15.4. Given
two points p and q in a Riemannian manifold M and a curve c from p to q,
the parallel transport from p to q along c is an isometric linear isomorphism

cp→q : TpM → TpM

between these Euclidean spaces. Let us now consider loops c based at p, and
look at

c∗ = cp→p : TpM → TpM.

This isomorphism is not the identity in general; it is only an element of the
orthogonal group O (TpM) (this group is by definition the set of all Euclidean
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isomorphisms of TpM). Such a parallel transport was used in Synge’s theo-
rem 64 on page 269. Parallel transport obviously transforms a composition
of paths into a product of Euclidean isomorphisms, and therefore:

Definition 391 As the curve c varies through all possible loops at p, the set
of associated c∗ in O (TpM) is a subgroup, denoted by Hol(p) and called the
holonomy group of M at p. If one considers only loops which are homotopic
to a point (contractible) one gets a subgroup of Hol(p) denoted by Hol0(p),
and called the restricted holonomy group of M at p.

p c p

c

c-1

p

c

d

doc

p

c

k

k-1

q

k-1 o c o k-1

Fig. 13.1. (a) A loop (b) Traveling backwards along a loop c gives the loop c−1

(c) Composition of loops (d) Holonomy groups at different points are conjugates

But one is essentially interested in the group structure, and this one does
not depend on the point: just connect p and q by any path k, and then the
map c �→ k−1ck will yield subgroups of the universal orthogonal group O (d)
conjugate under an inner automorphism. That is why from now on will speak
of the holonomy group of a Riemannian manifold M (restricted or not) and
write Hol(M),Hol0(M).

We naturally hope that Hol(M) will reflect the Riemannian structure
quite strongly and yield some classification of Riemannian manifolds. Such
a classification, at least in a special case, was Élie Cartan’s hope in Cartan
1923,1924 [320] where he introduced the notion of holonomy group into the
theory of general relativity; then he did calculations up to dimension 3 in
Cartan 1926 [313]. Holonomy groups played a crucial role in Cartan’s sub-
sequent discovery and classification of symmetric spaces, since he used their
holonomy groups to classify them in 1925; see the details of this story in
10.69 and 10.70 of Besse 1987 [183]. One may wonder why such a simple
notion was not introduced before. Since Cartan’s pioneering work, holonomy
groups underwent a scattered history until very recently—in particular they
were completely forgotten (or perhaps found too difficult to study) between
Cartan’s papers and the 1950’s. They came back to the fore briefly in Borel &
Lichnerowicz 1952 [224]. There are essentially only three surveys of the sub-
ject: chapter 10 of Besse 1987 [183], Salamon 1989 [1087], and the remarkable
Joyce 2000 [774] (which is devoted to the study of holonomy groups on com-
pact Riemannian manifolds). We mention also Wakakuwa 1971 [1226], but
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it is hard to find it in libraries outside Japan. The study of holonomy has
seen a recent revival in the hands of Bryant, Joyce, Merkulov, Salamon and
Schwachhöfer, and exciting applications in string theory.

The philosophy is: a manifold carries a structure invariant under parallel
transport if and only if this structure is invariant at a single point under the
holonomy group. Another fact is that we will see the curvature coming into
holonomy because, following the golden triangle of sections §15.2,§15.4, and
§15.5, the curvature is exactly the parallel transport along an infinitesimal
parallelogram. After the structure results of §13.3, the main theorem is the
classification theorem 397 on page 669. It is very surprising that there are
very few possibilities for the holonomy group, in fact only two if one excepts
very special manifolds. The corollary is that, with still very exotic structures,
only one category of manifolds has a nontrivial structure invariant by paral-
lel transport, namely Kähler manifolds which are, by definition, the complex
Riemannian manifolds whose complex structure is invariant by parallel trans-
port. We will now briefly describe the main results, after a short acquaintance
with some examples.

Recently holonomy groups became important in mathematical physics:
see Fröhlich, Granjean & Recknagel 1998 [523, 524] for a systematic presen-
tation of this hierarchy in terms of theoretical physics, and Andersen, Dupont,
Pedersen & Swann 1997 [36]. The holonomy group classification is also useful
when studying nonpositively curved manifolds; and, on the nonnegative side,
for the characterization of symmetric spaces among compact Kähler mani-
folds by their bisectional curvature see Mok 1988 [933] and theorems 339 on
page 617, 402 on page 683 and 403 on page 683.

13.2 Examples

The most natural question is: when is Hol(M) trivial, i.e. Hol(M) = {1}. The
answer is easy: Hol0(M) = {1} if and only if the manifold is flat (see §§4.4.1
and theorem 69 on page 275), proof is left to the reader. This is equivalent to
asking that the curvature vanish identically, or that the manifold be locally
Euclidean.

Recall that the special orthogonal group SO (d) is the normal subgroup
of O (d) consisting of elements of determinant equal to 1. Geometrically, this
means the subgroup of elements preserving orientation.

Of course SO (d) is the connected component of the identity of O (d).
Therefore one always finds Hol0(M) ⊂ SO (d) . It is easy to see that Hol0(M)
is always a normal subgroup of Hol(M). Therefore we have a surjective ho-
momorphism

π1(M) → Hol(M)/Hol0(M)

from the fundamental group π1(M). Because π1(M) is countable, the image of
this homomorphism is also countable. In conclusion, the condition Hol(M) ⊂
SO (d) is equivalent to the orientability of the manifold M .
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The next example is that of Riemannian products (see §§4.4.3) Md×Ne.
One sees easily that

Hol(M ×N) = Hol(M) × Hol(N),

this product group structure being precisely realized by the representation in
O (d+ e) acting on Rd+e which should be written as

{Hol(M) × Id (Re)} ⊗
{
Id
(
Rd

)
× Hol(N)

}
,

i.e. Hol(M) acts on tangent spaces to N by the identity, and Hol(N) on
tangent spaces to M by the identity. Such a reduction of a representation
is the strongest possible reducibility, called complete reducibility. This comes
from the fact that the parallel transport along a path in the product is the
direct sum of the parallel transports along the two projections of this path,
one in M and the other in N. We will see in §13.3 an amazingly strong
converse of this.

By definition, a Kähler manifold is one with a complex structure (this
means in particular that the coordinates changes are holomorphic for the
complex coordinates) together with a Riemannian metric which has with
this complex structure the best possible link, namely that multiplication of
tangent vectors by unit complex numbers preserves the metric, but moreover
the complex structure is invariant under parallel transport. This is equivalent
to the condition that the holonomy group be included in the unitary group,
hence equivalent also to ask for the existence of a 2-form of maximal rank and
of zero covariant derivative. An equivalent definition is this (but the proof is
a little tricky): we have a complex structure J with a Riemannian metric g,
and the two are compatible:

g (Jx, Jy) = g(x, y)

for every pair of tangent vectors x, y. Then one gets from the pair g, J an
exterior 2-form ω, called the Kähler form, defined as

ω(x, y) = g (x, Jy) .

The manifold is called Kähler if and only if ω is closed:

dω = 0.

In Lichnerowicz 1955 [868] pages 258–261 it is proven that the Kähler con-
dition is equivalent to the holonomy group being a subgroup of the unitary
group U (n); recall that the notation U (n) ⊂ O (2n) denotes the Euclidean
isomorphisms which preserve the complex structure J . Moreover the condi-
tion

Hol(M) ⊂ SU (n) ,
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(where SU (n), the special unitary group,denotes the elements in U (n) whose
complex determinant is 1), is equivalent to saying that our Kähler manifold
is moreover Ricci flat. This is because the Lie algebra of Hol0(p) is generated
by the curvature endomorphisms, thanks to theorem 396 on page 669. But
in the presence of a Kähler metric, taking the derivative of the condition to
have complex determinant equal to 1 forces the complex trace to vanish on
these endomorphisms, i.e. R(x, Jy) = 0. Now use the ideas of §§§13.6.1 to
check that the vanishing of those traces is equivalent to the vanishing of the
Ricci curvature.

The last example is that of symmetric spaces (see §§4.3.5). For an ir-
reducible, simply connected symmetric space G/H the holonomy group
Hol(G/H) coincides with H ; more precisely the adjoint representation of
H , i.e. it is the H action associated to the decomposition g = h⊕ m and the
relations

[h,m] ⊂ m and [m,m] ⊂ h.

This is a direct consequence of the formulas in §§15.8.1.

13.3 General Structure Theorems

We will now encounter the surprising fact that holonomy groups are few, and
thereby in some sense not too good for classifying Riemannian manifolds.
The first astonishing fact is:

Theorem 392 (Borel & Lichnerowicz 1952 [224]) The restricted holon-
omy group Hol0(M) of any Riemannian manifold (not necessarily complete)
is a closed connected subgroup of the orthogonal group, and in particular is
compact.

The proof is very hard; it uses the generation of the holonomy group by
lassos, see theorem 396 on page 669 and subtle characterizing properties of
Lie groups

Next we look at the reducibility of Hol(M) as it acts on Rd. That is to
say, we assume that Hol(M) leaves invariant some vector subspace V ⊂ Rd;
then it also leaves invariants its Euclidean orthogonal complement W.

Theorem 393 (de Rham) If Hol(M) is reducible, then the universal cover
of M is a Riemannian product.

Consider the example of a flat torus; most flat tori are not products, but are
locally products.

The proof is not too hard. The invariant subspaces V andW will yield two
complementary fields of planes on M , via parallel transport. They turn out
to be integrable (in the sense of Frobenius) and finally yield the desired Rie-
mannian product. This is very strong. It yields only completely decomposed
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representations; for example the obvious double diagonal action of O (d) in
O (2d) never appears.

If one now applies a trivial induction, recalling that flatness is equivalent
to trivial holonomy , one gets

Theorem 394 Take any Riemannian manifold M (not necessarily com-
plete) and a point p ∈ M. The tangent space TpM splits canonically into
the orthogonal direct sum

TpM = T0 ⊕ T1 ⊕ · · · ⊕ Tk

and the metric g into a local Riemannian product

g = g0 × g1 × · · · × gk

with g0 is flat and
Hol(p,M) = A1 × · · · ×Ak

where every Ai acts irreducibly on Ti and trivially on all the other factors.
The universal cover of M splits into a product of k factors.

It might be the place to recall the de Rham theorem 56 on page 251:
a locally reducible Riemannian manifold is a global Riemannian product as
soon as the manifold is simply connected and complete.

How should one compute the holonomy “theoretically?” We will now in-
troduce the curvature tensor R written here as an antisymmetric 2-form with
values in the endomorphism of tangent spaces, the way it appears in the lan-
guage of the note 15.4.0.1 on page 727. We apply this formula as in the lasso
in figure 13.2.

x

y
p

c-1

c

P T(c)(y)

P T(c)(x)

Fig. 13.2. Parallel transport to a point, and there apply the Riemann curvature
tensor

.
We fix a point p and examine the holonomy group Hol(p) and its Lie

algebra hol(p), which is the infinitesimal version of Hol(p), i.e. the tangent
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space to Hol(p) at the identity element. We consider any other point q in M
and any path c from p to q. Finally, pick a pair of vectors x, y ∈ TpM . Then
we plug in the parallel transport cp→q from p to q and the formula 15.3 on
page 729 implies that

Lemma 395 The endomorphism

c−1∗R (c∗x, c∗y) c∗ : TpM → TpM

belongs to hol(p), for any curve c (not necessarily a loop).

The converse is true, and is only a clever implementation of the Frobenius
theorem in the space of orthogonal frames:

Theorem 396 (Ambrose & Singer 1953 [29]) The holonomy Lie alge-
bra hol(p) is exactly the Lie subalgebra of so (d) (the Lie algebra of O (d))
generated by the elements

c−1∗R (c∗x, c∗y) c∗ : TpM → TpM

where c varies through all curves which start at p, and x and y are any tangent
vectors at p.

Despite its esthetic appeal, this is a very funny result. It is clear that one
does not need so many elements to compute Hol(p). Moreover in some sense
we used all of the holonomy to compute the holonomy. For example look
at a generic Riemannian manifold. Take some orthogonal basis {vi} of TpM
and consider the set of endomorphisms R(vi, vj) ⊂ so (d) . Since there are
d(d− 1)/2 such elements, and since d(d− 1)/2 is the dimension of so (d) , the
genericity implies equality. This proves two things: first, for a generic metric,
Hol0(M) = SO (d) , the total special orthogonal group. Second, we used only
one point, that is to say the “infinitesimal” holonomy group is already the
whole group. However theorem 396 is useful in some instances.

For an integral formula using a surface filling a loop, see Nijenhuis 1953
[965] page 54, and the comments on page 730.

13.4 Classification

By the above structure theorem 394 on the preceding page we have only
to consider the irreducible case, but we are still on not necessary complete
manifolds. Then, with the obvious divisibility dimension conditions, one has
only eight possibilities:

Theorem 397 If Hol0 is irreducible, then one of the following holds

– Hol0 = SO (d)
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– The manifold is locally symmetric.
– The manifold is locally Kähler and Hol0 = U (d/2)
– The manifold is locally Kähler, is Ricci flat and Hol0 = SU (d/2) and d ≥ 2
– Hol0 = Sp (1)Sp (d/4) and d ≥ 2
– Hol0 = Sp (d/4) and d ≥ 2
– d = 7 and Hol0 = G2 (an exceptional Lie group of dimension 14 described

on page 170)
– d = 8 and Hol0 = Spin (7) .

It is essential to remark that in this list it is not only the group structure which
is given but its precise orthogonal representation. The last six cases being
quite special, this explains why we said previously that there are essentially
two holonomy groups: there are basically only two cases, the general case
where the holonomy is the full (special) orthogonal group and the case of
Kähler manifolds. It is important to note that the use of the Bianchi identity
for the curvature tensor below is absolutely essential. This is seen in the
fact that any compact subgroup of the linear group can be realized as the
holonomy group of some Riemannian manifold but with a connection with
torsion, in particular not necessarily the Levi–Civita connection of §15.3.
This is a local result; for a global one it is just enough to add the topological
restriction that the tangent bundle admits the corresponding linear group
structure. See the references in one of the books quoted above.

A dramatic consequence: recall first that symmetric spaces are completely
know and form quite a short list. Then theorem 397 on the page before proves
that in most Riemannian manifolds there is no nontrivial “object,” say for
example tensors or spinors of various kinds, invariant under parallel transport.
The other way around: the existence of a tensor or spinor, which is not the
metric itself or the orientation, and is invariant under parallel transport,
implies that the metric is “known,” with the exception of the Kähler case.1

Where does theorem 397 on the preceding page come from? The result
appeared in Berger 1953 [148], but it was really conceptually proven in Simons
1962 [1139]. The key is to prove:

Lemma 398 If the holonomy group is irreducible but not transitive on the
tangent sphere, then the manifold is a a locally symmetric space.

We look at the orbit [v] of some unit tangent vector v ∈ UpM, and pick
up some vector z orthogonal to the tangent space Tv[v], such a nonzero z
exists since the orbit is not full. Note that equation 15.3 on page 729 implies
that

R(x, y)v ∈ Tv[v]

1 We say “known” in quotes because in fact the exceptional holonomy groups are
excruciatingly difficult to work with, and geometers are nowhere near a classifi-
cation.
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Fig. 13.3. Action of the holonomy on the unit sphere

for all x, y ∈ TpM, so that g(R(x, y)v, z) = 0 for every x, y. The symmetries
of R (see equation 4.28 on page 223) enable us to change this into R(v, z) =
0. This means, using lemma 395 on page 669, that we have a lot of pairs
of vectors (at every point of the manifold) for which R(v, z) = 0. This is
a situation we know from equation 4.38 on page 229 for products and for
symmetric spaces of rank larger than 1 from §§4.3.5. The idea is to organize
those v, z planes into totally geodesic submanifolds (see §§6.1.4) by mimicking
the geometry of symmetric spaces of rank larger than 1. To go further, we use
a saturation, thanks to lemma 395, of all of the curvature tensor in order to
get an algebraic object of curvature tensor type which is invariant by parallel
transport. But if the curvature tensor is invariant by parallel transport, this
one of the characterizing properties of symmetric spaces in theorem 36 on
page 209. More details can be found in the two references given above.

To finish with the proof of the list in theorem 397 on page 669 one appeals
to the classification of Lie groups acting transitively on spheres. This is by
the way a purely topological story—the group action is not asked to be lin-
ear. The results are in Montgomery & Samelson 1943 [935], Borel 1949,1950
[221, 222]. The list of possible groups (and respective dimensions of the
spheres acted upon) are those of theorem 397 on page 669 plus only two
other ones: S1Sp (d/4) and Spin (9) when in dimension 16. The Bianchi iden-
tity eliminates the circle S1, and the curvature tensor for Spin (9) enjoys so
many identities, using equation 4.27 on page 222, that it is algebraically de-
termined at every point and DR = 0 using the second Bianchi identity from
equation 15.5 on page 731, so that finally see that we are in a symmetric
space. This was carried out in Alekseevskii 1968 [17]; also see Brown & Gray
1972 [265] for details.

Direct application of the identity

R(x, y)z +R(y, z)x+R(z, x)y = 0

(the first Bianchi identity) plugged into the relations defining the respective
Lie algebras yields:
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Lemma 399 Manifolds with holonomy SU (d/2) ,Sp (d/4) , Spin (7) and G2

are Ricci flat.

It remains a great mystery that no Ricci flat compact manifolds are known
which do not have one of these special holonomy groups.

Symmetric spaces being completely known, and Kähler manifolds (holon-
omy U (d/2)) being treated separately below in §13.6, we have now only to
tell the reader what is known about the rare cases.

The picture in figure 13.4 on the facing page is a good summary; it is
taken from Salamon 1989 [1087].

13.5 The Rare Cases

13.5.1 G2 and Spin(7)

To exhibit a manifold having holonomy group G2 ⊂ SO (7) or Spin (7) ⊂
SO (8) turned out to be very difficult. Note first that no symmetric space
has such a holonomy. It is only in Bryant 1987 [267] that the first examples
appeared, but only local. Complete ones appeared in Bryant & Salamon
1989 [271]. Compact ones were proven to exist in Joyce 1996,1997 [772, 771],
which is explained in a more leisurely account in Joyce 2000 [774]. Joyce’s
construction is extremely expensive but a brilliant tour-de-force of geometric
analysis. It uses deformation of metrics, singular manifolds and the Atiyah–
Singer index theorem. For example, for G2, start with a manifold with a
reasonable G2-structure on its frame bundle. Such a structure has a torsion
which measures the defect for the structure under parallel transport. Joyce
first constructs manifolds with a G2-structure whose torsion is small enough.
Then Joyce uses a one-parameter deformation technique to get a torsion-
free G2-structure. The same technique applies to the Spin (7) case. Moreover
Joyce’s technique and results enable him to compute the dimension of the
moduli space in every case, and the cohomology of the resulting manifolds.
This dimension is always finite by lemma 399 and theorem 286 on page 559.

By our philosophy it natural to characterize such holonomies by the ob-
jects invariant under parallel transport. This turns out to have an elegant
solution: G2 holonomy is characterized by the existence of a parallel exterior
differential form of degree 3 (satisfying a certain nondegeneracy hypothesis).2

For Spin (7), the same thing but with a closed parallel 4-form.
There is also a strong relation between these special holonomy groups and

parallel spinors: see §§14.2.2. This is due to the fact that both G2 and Spin (7)
are simply connected (unlike SO (d)) and hence induce on a manifold with
such a holonomy group a canonical spin structure. Using parallel objects one
2 Following our definition of the Cayley numbers on page 172, and the definition

of G2 as the symmetry group of the Cayley numbers, the reader can easily see
the invariant 3-form.
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can define the G2 (resp. Spin (7)) holonomy manifolds very simply by just
asking that the manifold have a parallel spinor; see Moroianu & Semmelmann
2000 [941].

It is not clear if manifolds with these holonomy groups are numerous
or scarce. We only recall that on a given compact manifold, the space of
moduli for such structures is a finite-dimensional stratified real analytic set:
see theorem 286 on page 559.

13.5.2 Quaternionic Kähler Manifolds

Good references for this holonomy group are chapter 14 of Besse’s book, chap-
ter 9 of Salamon’s and the proceedings Gentili, Marchiafava & Pontecorvo
1998 [554]. Some more recent information will also be added and referenced
here. It is tempting to call a Riemannian manifold M4n quaternionic Kähler
if its holonomy group is Sp (1)Sp (n) ⊂ SO (4n) . But as far as its geometric
structure is concerned, the real definition of quaternionic Kähler is holonomy
contained in Sp (1)Sp (n) . This is important because unlike the holonomy
groups studied in §§13.5.1, there are irreducible symmetric spaces which of-
fer this inclusion. The complete list is easy to give (and appeared first in Wolf
1965 [1275]). The compact forms are

HP
n,SU (n+ 2) /U (n) ,SO (n+ 4) /SO (n) × SU (2)

and five low dimension exceptions. Note that such manifolds are never Kähler
if this inclusion is strict, nor quaternionic in any reasonable sense, but it
seems hard to abandon a terminology now standard. There are two symmetric
spaces having such a holonomy group, namely HPn and HypnH. They are of
rank one. Are there any nonsymmetric examples? We have today the fact:

Fact 400 There is not a single example known today of a quaternionic
Kähler manifold besides the two symmetric spaces HP

n and HypnH.

Let us see now what we know on the subject. We note first that Bianchi
identity, plugged into the Lie algebra relation, implies immediately that these
manifolds are Einstein; i.e. the Ricci curvature is proportional to the metric,
so that again the moduli space’s general structure will follow from Koiso’s
theorem 286 on page 559. In this chapter sometimes there is the need to take
some quotient by Z2 = Z/2Z. We will suppress this complication to simplify
visualization. This is seen clearly in the holonomy group Sp (1)Sp (1) which
is not O (4), but only

SO (4) = (Sp (1)Sp (1)) /Z2.

This is the reason for starting the study of quaternionic Kähler manifolds in
dimension 8.
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To describe a quaternionic Kähler structure, as opposed to the hy-
perkähler structure which we will see in §§13.5.3, we start with three en-
domorphisms I, J,K (think of the quaternions) of TM which preserve the
metric g and satisfy the quaternion multiplication table:

I2 = J2 = K2 = −1
IJ = K, JK = I,KI = J

Hyperkähler manifolds below will satisfy the same requirements, but have
I, J,K invariant under parallel transport. Here we asked only that they are
preserved as a whole triple, namely that there are three 1-forms α, β, γ such
that

∇XI = γ(X)J − β(X)K
∇XJ = −γ(X)I + α(X)K
∇XK = β(X)I − α(X)J.

Beware that these I, J,K exist only locally. What exists globally is the
two-parameter family uI + vJ + wK with u2 + v2 + w2 = 1, and by the
above formula this total global set is invariant by parallel transport. For the
characterization by invariant objects, there is a 4-form constructed as follows:
from I, J,K the metric g “à la Kähler” defines three 2-forms φ, ψ, η and the
desired invariant 4-form is

ω = φ ∧ φ+ ψ ∧ ψ + η ∧ η.

It is the existence of this parallel 4-form which explains the wording quater-
nionic Kähler. Moreover the existence of a nontrivial parallel exterior 4-form
implies that we are in a quaternionic Kähler structure and with such a struc-
ture for this 4-form.

The classification of quaternionic Kähler manifolds is a hard subject. At
first glance they look pretty rigid. Quoting Claude LeBrun: “they resemble
a symmetric space to an uncomfortable degree.” We list now some ques-
tions and the results obtained up to now, with an idea of the proofs. The
quaternionic Kähler manifolds fall into two different classes: since they are
Einstein, the scalar curvature can be positive or negative. If it were zero
then the holonomy would be contained in Sp (n). Briefly we will speak of
positive (respectively negative) quaternionic Kähler manifolds. By Myers’
theorem 62 on page 266 the complete positively curved ones are necessarily
compact. We first study the complete negatively curved noncompact case.
First there exist nonsymmetric homogeneous negatively curved quaternionic
Kähler manifolds, and they were classified by Alekseevskii (see references in
Besse’s book). It is not known if they can admit compact quotients. Worse:
in view of LeBrun 1991 [854] there is an infinite-dimensional moduli space of
complete metrics on R4n with holonomy group equal to Sp (1)Sp (n). They
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are obtained by deforming the hyperbolic quaternionic space HypnH . The clas-
sification of negatively curved compact case is simple: one knows the arith-
metic compact symmetric space forms of HypnH found by Borel and described
in §§6.6.3, and we saw there that there are no other ones thanks to Gromov
and Schoen. There is no guess for the final answer, and the reason for this
will be seen in the proof sketched below.

If you turn now to the positive case, one does not know of any nonsymmet-
ric examples, but at least there are partial results, pointing in that direction.
First in dimension 8 only HP2 is quaternionic Kähler by Poon & Salamon
1991 [1038]. And by LeBrun & Salamon 1994 [857] one knows that in a given
dimension 4n there can exist at most a finite number (up to isometry) of
quaternionic Kähler manifolds; also see Herrera & Herrera 2001 [708].

Fig. 13.5. The twistor construction of Bérard Bergery and Salamon
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13.5.2.1 The Bérard Bergery/Salamon Twistor Space of Quater-
nionic Kähler Manifolds A basic tool was invented independently in 1979-
80 by Bérard Bergery and Salamon (see the references in LeBrun & Salamon
1994 [857]) to study quaternionic Kähler manifolds. This is a typical example
of the twistor idea (which is only mentioned in §§§14.2.3.3), so we will ex-
plain it in detail. One constructs a (4n+ 2)-dimensional space Z(M) fibered
over M with fiber S2. For the standard HP

n this Z(M) is nothing but the
canonical generalized Hopf fibration

CP2n+1 → HPn.

The idea is this: remember that the “false Kähler” I, J,K are not well defined,
but the complete set of possible choices of them is, i.e. the uI + vJ + wK
(with u2 + v2 + w2 = 1). We attach to every point m ∈ M the sphere S2

of the above (u, v, w). On this fiber space Z(M) → M there is a complex
structure defined by the picture above. The desired rotation of angle π/2
on the total tangent space to Z(M) at the point {m;u, v, w} is obtained by
combining the canonical rotation of π/2 on the tangent space to S2 (orient
the spheres, and this takes care of the vertical part) with the action which
on the horizontal part takes the lift of the π/2 rotation precisely associated
to uI + vJ + wK. One proves then that this almost complex structure is
integrable and so defines a complex structure. The subtle point is to define
a nice metric structure on Z(M) for which the above complex structure
will make it a Kähler manifold. This can be done only in the positive case:
heuristically because the computations shows that to define a nice metric by
lifting one needs positive Ricci curvature downstairs. The conclusion is:

Lemma 401 When M is a positive scalar curvature quaternionic Kähler
manifold, Z(M) inherits canonically a Kähler–Einstein metric.

As one might guess, this is a Riemannian submersion with totally geodesic
fibers. All the details are in Besse’s book.

The rich quaternionic geometry moreover is encoded in Z(M) and one
knows many things more about Z(M). We have at our disposal the arsenal
of Kähler geometry. This is how the above finiteness result is proven. The
negative scalar curvature case is untouched by this technique. One can still
define a metric of Kähler type for the above complex structure on Z(M)
(which does not need positivity) but the signature of the metric will have to
be (4n, 2). Then the geometry of such Kähler objects could be of help, but it
seems that there has not been much study of them.

13.5.2.2 The Konishi Twistor Space of a Quaternionic Kähler Man-
ifold To a quaternionic manifold one can attach canonically another compact
twistor type bundle; this was done a long time ago in Konishi 1974/1975 [829].
This time the fiber is three dimensional; it is the group SO (3). The construc-
tion is analogous to the above, but instead of the sphere made up of the unit
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linear combinations of {I, J,K}, one considers the group SO (3) acting on
them. This time the twistor space S(M) → M is of dimension 4n + 3. If
M is a positive scalar curvature quaternionic Kähler manifold, one can still
define on S(M) a canonical Riemannian metric making S(M) → M a Rie-
mannian submersion, with totally geodesic fibers. Moreover SO (3) acts not
only on the fibers but by isometries. This time the special structure on S(M)
inherited from M is called a 3-Sasakian structure, and SO (3) acts on it by
global isometries. We will not define explicitly Sasakian structures; they are
some kind of odd-dimensional analogue of Kähler manifolds. The standard
reference on them is Yano & Kon 1984 [1291], but also see Boyer, Galicki &
Mann 1994 [253]. An example: the unit tangent bundle to the tangent bundle
to any Riemannian manifold, or the unit tangent bundle itself when the man-
ifold downstairs is Kähler. The 3-Sasakian manifolds are those on which one
has more than one Sasakian structure. Here these “three” isometries replace,
in a somewhat weaker sense, the three Kähler structures of the hyperkähler
manifolds of the next section. In fact an indirect definition of a 3-Sasakian
manifold is to say that the warped product

gU = dr2 + r2 gS

on R+ × S is hyperkähler. These 3-Sasakian manifolds are Einstein and are
used these days to construct new examples of Einstein manifolds which are
“strongly inhomogeneous,” see Boyer, Galicki & Mann 1996 [254]. As for the
twistor space Z(M) above, in the negative scalar curvature case one finds on
S(M) only a Konishi structure of signature (3, 4n).

13.5.2.3 Other Twistor Spaces Swann 1991 [1171] constructed a third
twistor space U(M) → M attached to quaternionic Kähler manifolds, with
fiber H∗. The fiber is not mysterious—it is basically defined by the quater-
nionic frames of the basis, quotiented by Sp (1)Sp (n) . One has the diagram
given in figure 13.6.

4n +2 4n +3

4n +4

4n

U

M

L S,

l

H*/Z2

CP1

C*/Z2

RP3
the dimensions 
are in

Fig. 13.6. The relations between the twistor spaces of Bérard Bergery/Salamon,
Konishi and Swann
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In the diagram, the upper left arrow is an inclusion as a level set, for any
given r as above. The hyperkähler manifold U(M) is not compact, so most
of the machinery of Kähler geometry is not available. As examples show, 3-
Sasakian manifolds are much more numerous than quaternionic Kähler ones;
in some sense they are weaker structures. For example there are 3-Sasakian
manifolds with an arbitrary second Betti number; see Boyer & Galicki 1999
[250].

Note 13.5.2.1 (Historical mistake) In Berger 1953 [148], the differential
forms of respective degrees 3 and 4 determining G2, Spin (7) and Sp (1)Sp (n)
holonomy groups were claimed “not to exist.” �

13.5.3 Ricci Flat Kähler and Hyper-Kähler Manifolds

Before Yau’s 1978 solution of Calabi’s conjecture, no compact manifold with
holonomy SU (n) was known. Today our knowledge of these manifold is highly
advanced. Theorem 280 on page 555 tells us that there are as many SU (n)
holonomy manifolds as there are Kähler manifolds with vanishing first Chern
class, and thousands of algebraic varieties have vanishing first Chern class.
More generally, since Hirzebruch 1966 [717], one knows how to compute quite
explicitly the various Betti numbers bp,q (M,R) (see §13.6), and the Chern
classes of algebraic (and quite a few other) manifolds. The story of complete
noncompact manifolds with SU (n) holonomy is completely different: in Le-
Brun 1991 [853], for every complex dimension n a complete Ricci–flat Kähler
and nonflat metric with holonomy SU (n) is constructed on Cn.

13.5.3.1 Hyperkähler Manifolds The second group we want to look
at now is Sp (n) ⊂ SO (4n). Manifolds with such a holonomy group are
called hyperkähler. On such a manifold, we have three different Kähler struc-
tures I, J,K defined globally, unlike in the quaternionic Kähler structures of
§§13.5.2. These I, J,K are parallel:

∇I = ∇J = ∇K = 0

and enjoy the relations

I2 = J2 = K2 = −1
IJ = K

and the circular permutations of these. In fact there is a two-parameter family
of such I, J,K tensors, namely the aI + bJ + cK with a2 + b2 + c2 = 1.
Practically they can simply be defined as Kähler manifolds with more than
one Kähler structure. The totality of the Kähler structures is necessarily
as described above. In fact they really admit a quaternionic structure. An
equivalent definition is to ask for a Kähler manifold with a holomorphic
parallel exterior 2-form. This 2-form σ is defined by
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σ(x, y) = g(J(x), y) +
√
−1g(I(J(x)), y)

and is holomorphic with respect to the complex structure I. One can also say
that one has a complex symplectic structure.

Hyperkähler manifolds are today encountered also in mathematical physics—
in particular in the theory of “mirror manifolds”: see Voisin 1996 [1223]. Re-
cent references for them are Salamon 1996 [1088], Besse 1987 [183], Biquard
& Gauduchon 1996 [194], the books Greene & Yau 1997 [589], Cox & Katz
1999 [408] and Verbitsky 1998 [1211].

Paradoxically it seems that there are more hyperkähler manifolds than
quaternionic Kähler manifolds, which is surprising since Sp (1)Sp (n) is much
smaller that SU (2n).3 The first complete (noncompact) example appeared
in Calabi 1979 [303]. Compact ones can be built using the solution of Calabi’s
conjecture, and quite deep algebraic geometry: see Beauville 1983 [122], and
the holonomy classification result. The basic starting point is this. Assume
first that a Kähler manifold has vanishing first Chern class, but also admits
a holomorphic 2-form θ of maximal rank. Using the solution of the Calabi
conjecture (see theorem 280 on page 555), one first changes the initial Kähler
metric into one which is Ricci flat. Then the term Curv2 (σ, σ) (see §15.6) in
the Bochner formula boils down to Ricci (σ∗, σ∗) . This was already known
to Bochner. It implies that ∇σ = 0, so that the form σ is the second Kähler
structure we are looking for. The job to be done now is to find algebraic
(or more general) manifolds which admit a holomorphic exterior 2-form of
maximal rank. There are some examples, but they are quite subtle (it is not
enough to know that b2,0 (M,C) �= 0). For their description see 14.B of Besse
1987 [183] or the original Beauville 1983 [122].

Note 13.5.3.1 The naive reader should be warned against thinking that
hyperkähler manifolds are the quaternionic analogue of complex manifolds
and enjoy coordinates like holomorphic coordinates (“quaternionorphic?”),
quaternionic derivatives, etc. This can, sadly enough, happen only in the flat
case (then the holonomy is zero and not Sp (n)). Fueter had a premonition of
that before the 1940’s. The main fact is due to Ehresmann: if the derivative
f ′(x) of a function

f : Hn → Hp

is quaternionic linear at every point x then it is necessarily an affine function.
The proof is elementary: the Hessian (second derivative) must be a quadratic
form, say Q(u, v), but then plug in noncommuting quaternions α, β ∈ H and
you get

Q(αu, βv) = αQ(u, βv)
= αβQ(u, v)

3 But the story is not finished.
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but also, by symmetry

= βαQ(u, v)

This forcesQ(u, v) = 0, by the assumption that α, β don’t commute. However
Joyce 1997 [773] managed to develop a theory of “quaternionic functions”
on hyperkähler manifolds. A strange but essential aspect of his theory is
that the products of quaternionic functions need not be quaternionic; the
algebraic side of the story is surprisingly rich and complicated, but appealing.
References to quaternionic geometry can be found in modern language in
Salamon 1982 [1086] or in Besse 1987 [183] page 410; also see Sommese 1974
[1153], Batson 1992 [117] and Boucksom 2001 [232]. �

13.6 Kähler Manifolds

Kähler manifolds were defined in §13.2. Kähler manifolds are the subject of
a vast field of research and we will have to be extremely brief. We know of no
recent survey. A classic is the book Weil 1958 [1245] and a much respected
text is Wells 1980 [1253]. Although motivated by algebraic geometry, Griffiths
& Harris 1994 [599] is invaluable for Kähler geometry. Also see chapter 2 of
Besse 1987 [183]. Moreover Besse’s book contains a great deal of information
on Kähler manifolds, in particular a detailed study of the homogeneous ones.
The book Amoros, Burger, Corlette, Kotschik & Toledo 1996 [35] is entirely
concerned with the fundamental groups of Kähler manifolds (also see Toledo
1997 [1193]) but can be used indirectly, with its references, as a survey or
a partial survey of the “Riemann–Kähler” domain. For more general com-
plex geometry one can consult the three books Bedford, d’Angelo, Greene &
Krantz 1991 [124].

An analysis of Kähler’s historical contribution can be found in Bour-
guignon 1996 [241]. Of course part of motivation of Riemannian geometers
to study Kähler geometry was to be able to add complex analytic techniques
in order to attack many problems which are too difficult to be solved in the
context of general Riemannian manifolds. However this is not simply a mat-
ter of picking the easiest place to work for simplicity’s sake, since Kähler
manifolds appear entirely naturally in algebraic geometry, so that they are a
particularly significant family of Riemannian manifolds. Indeed, Kähler man-
ifolds have recently become extremely important in particle physics and may
ultimately play a large role in quantum field theory; see e.g. Voisin 1996
[1223], the references there, and Fröhlich, Granjean, & Recknagel 1998–1999
[523, 524, 525]. One should be careful to remember that Kähler manifolds
are almost never to be considered as “complexifications” of “real” manifolds.
However they are wonderful to work on, since we have a holomorphic calculus
for them.
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13.6.1 Symplectic Structures on Kähler Manifolds

The parallelism of the complex structure J implies immediately the curvature
relation

R (Jx, Jy) = R (x, y)

as endomorphisms. Note that a Kähler manifold is then canonically a sym-
plectic manifold, so that all of symplectic geometry becomes available. A
symplectic structure consists in a even-dimensional manifold M2n endowed
with a closed exterior 2-form ω of maximal rank, i.e. the n-th power ωn is
everywhere nonzero. Recent books on the topic are: McDuff & Salamon 1998
[909], Hofer & Zehnder 1994 [724] and also see Audin & Lafontaine 1994 [88].
For contact structures see the book Blair 2002 [202].

13.6.2 Imitating Complex Algebraic Geometry on Kähler
Manifolds

Compact Kähler manifolds look like complex algebraic manifolds. There is a
good reason for that: a celebrated theorem of Kodaira asserts that this is the
case under the sole condition that, via the de Rham theorem, the cohomology
class of the Kähler form belongs to the rational cohomology (equivalently has
rational periods). For a proof see Griffiths & Harris 1994 [599] or Wells 1980
[1253].

Beware also that the Riemann–Cartan normal coordinates can never be
complex, except in the flat case. Also note the heredity: a complex subman-
ifold of a Kähler manifold is also Kähler.

Another strong point is that the Kähler notion is hereditary, not only for
(complex) submanifolds but also for many algebraic geometry operations, in
particular blowing-up. Note also that ω and its exterior powers ωk calibrate,
see the definition on page 693.

Gromov’s complaint about Kähler geometry is that the above definition
is not very geometric: Gromov 1992 [630]. A geometrical tool, rarely used, is
the diastasis. Invented in Calabi 1953 [298], it is some kind of adapted metric
(in fact it should be viewed more as a potential) but in general defined only
locally. Everything concerning it can be found in Hulin 1996 [749] and its
bibliography. In this text the diastasis is used to study Einstein manifolds
(see more on page 555).

Concerning curvature, besides the sectional curvature, two other notions
are natural for Kähler manifolds. First, the holomorphic curvature, namely
sectional curvature of the real 2-planes which are complex lines. Explicitly
they are the numbers K(x, Jx) (where ‖x‖ = 1). Metrics of constant holo-
morphic curvature are locally isometric to Cn,CP

n or HypnC . This was first
stated in Bochner 1947 [211], see Igusa 1954 [755] or Hawley 1953 [685] for a
detailed proof. A weaker notion is that of bisectional curvature:

B(x, y) = R(x, Jx, y, Jy) = K(x, y) +K(x, Jy)
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for x, y an orthonormal pair of tangent vectors. A very strong result is that
of Siu & Yau 1980 [1147] and independently Mori 1979 [940]:

Theorem 402 Positive bisectional curvature implies that the underlying
compact complex manifold is biholomorphic to CPn.

This can be seen as an analogue of the Micallef & Moore theorem 336 on
page 615 characterizing spheres by the positivity of the curvature operator.
Moreover the nonnegative case is settled:

Theorem 403 (Mok 1988 [933]) Nonnegative bisectional curvature on a
compact complex manifold implies biholomorphy with CP

n or isometry with
a Hermitian symmetric space, up to products and coverings.

This is used in theorem 339 on page 617.
For complex manifolds the theory of exterior forms is richer. They enjoy

(at least the “pure ones” do) a type (p, q) which refers to how they are written
in complex coordinates zi, z̄i : the “total” degree is p + q. For example the
Kähler form ω, as well as the Ricci transformed form ρ, are of type (1, 1).
But one has more: namely that the exterior differentiation can also be split
into two pieces ∂ and ∂̄. The holomorphic forms are those killed by ∂̄, hence
of type (0, q). If moreover the manifold is Kähler then the (total) Laplacian
1
2Δ coincides with both the partial Laplacians coming from ∂ and ∂̄. Via the
Hodge–de Rham theorem and the exterior product with ω (which is of course
harmonic), this yields a lot of information. Among that information, let us
first mention the growing of Betti numbers up to the middle dimension:

bp+2 (M,C) ≥ bp (M,C) .

This comes from the fact that because ∇ω = 0, if any differential form α is
harmonic then so is the product α ∧ ω (in general of course the product of
harmonic forms is not harmonic). Another simple example is that positive
Ricci curvature forbids the existence of a holomorphic form of any degree.
This is a direct consequence of the results in §15.6, because for any (p, 0)
form η, the term Curvp (η, η) boils down to only Ricci curvature. The book
Hirzeburch 1966 [717] gives enough material to theoretically compute all of
the bp,q (M,C) of algebraic manifolds; one can also read Griffiths & Harris
1978 [599].

Second, the Sullivan theory mentioned in §§14.2.1 is much stronger. It is
proven in Deligne, Griffiths, Morgan & Sullivan 1975 [438] that the homo-
topy type of a compact Kähler manifold, over the real numbers, is a formal
consequence of the real homology ring. It is also easy to imagine now that for
Kähler manifolds, the Bochner vanishing technique will yield a lot of strong
results under various assertions on curvature. This is indeed the case and is
used heavily for various bundles over Kähler manifolds, especially complex
line bundles. There is an immense literature; see the classic Hirzeburch 1966
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[717] and Griffiths & Harris 1978 [599]. And thereafter, among others, con-
sider Siu & Yau 1980 [1147] and Sampson 1986 [1092]. Also see the recent
Buchdal 2000 [272].

Reconsidering the spectrum of a Riemannian manifold, can one read off
whether a manifold is Kähler from its spectrum? We are far from being able
to do this. Using the asymptotic expansion there are some special results
in Gilkey 1973 [561]. Then Gromov 1992 [630] is more ambitious. There are
good results for the first eigenvalue λ1: see Lichnerowicz 1958 [865] where
there is lower bound for λ1 depending only on a positive Ricci lower bound
and in Bourguignon, Li & Yau 1994 [245] an upper bound with the volume
for algebraic manifolds.

The power of Kähler manifolds comes in part from their canonical sym-
plectic geometry. We hardly touched this very important—though quite
recent—topic, as well as that of contact structures ; see the book Blair 2002
[202]. The unit bundle is a contact manifold in a canonical manner (see sec-
tion 10.5 on page 498). Many people think that symplectic and contact geom-
etry will be the most important topics in geometry in the next few decades
(see Gromov 1999 [633]). McDuff 2000 [908] is a very recent expository text
on these topics.
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14.1 Noncompact Manifolds

We have already mentioned extensions of various results for compact man-
ifolds to complete manifolds. It is clear that one should restrict oneself to
only certain sorts of noncompact Riemannian manifolds to have a hope of
obtaining results. Let us mention in particular the possibilities of examining
manifolds with finite volume, those with prescribed asymptotic behaviour
at infinity, for example quadratic decay,1 quadratic curvature decay, volume
behaviour, Euclidean asymptoticity, etc.

14.1.1 Noncompact Manifolds of Nonnegative Ricci Curvature

A typical example if that of manifolds with nonnegative Ricci curvature. In
the case of nonnegative sectional curvature, we saw in §§§12.3.1.3 a perfect
structure theorem (splitting and soul) of Cheeger–Gromoll and the bounded
topology result of Gromov–Abresch. Note that these results are valid with-
out any extra condition on the geometry (bounded or behaviour at infinity).
But if one asks the same question for nonnegative Ricci curvature, the split-
ting theorem is still valid, but there is no structure theorem and there is no
bounded topology result, as seen in examples. This implies that results on
nonnegative Ricci curvature on noncompact manifolds should use an extra
hypothesis, typically some kind of growth. The results could be of a different
nature. Correspondingly, for negative curvature, and its various structures on
the sphere at infinity (see 12.3.4.3 on page 633), it seems that an important
structure at infinity to be defined (even if not unique in general) is the fol-
lowing. For a given Riemannian manifold (M, g), consider the sequence of the
(pointed) manifolds (M,p, r−1

i g) when the “radii” ri go to infinity. The con-
vergence theorems 385 on page 656 extend easily to the category of pointed
manifolds. Petersen 1997 [1018] is a book on this subject. In particular one
can extract a subsequence converging toward “some” limit “cone” (a cone at
infinity, denoted M∞ by abuse of notation). This cone need not be unique
and also might depend on p. In various instances, one can prove that M∞
is a volume cone, or better a metric cone, and sometimes even a Euclidean
space. Cheeger & Colding 1997 [337] is a nice example of results among
many recent ones. Exemplary is the conjecture of Anderson and Cheeger to
the effect that if a cone at infinity is isometric to Rd and the Ricci curvature
nonnegative, then the manifold itself is isometric to Rd; this conjecture was
proven in Colding 1996 [386]. Also see Cheeger & Colding 1997,1997,1998
[337, 338, 339].

We insist that noncompact manifolds are in many respects more impor-
tant than compact ones. This is why our partial survey should be completed
1 Quadratic decay means that the curvature decreases as one goes to infinity, at

least as r−2 where r is the distance to an arbitrary chosen point; there are
variations on this definition.
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by the reader in some way or another. The reader could discover more in
the references given. Noncompact manifolds appear already among surfaces,
especially space forms, where the eigenvalue behaviour with respect to the
value 1/4 is even more delicate than for compact surfaces; see for example
Luo, Rudnick, & Sarnak 1995 [884].

We saw in §§12.3.2 and §§12.3.4 that noncompact manifolds appear nat-
urally in the analysis of compact manifolds of bounded Ricci curvature, of
negative or of nonpositive curvature, when one looks at their universal cov-
erings. But they are also used heavily in different instances, as in collapsing
with unbounded diameter or more generally, when one drops the diameter
bound in various situations (see §§12.4.3 and references there). See also the
very geometric Babenko 1992 [91].

14.1.2 Finite Volume

A natural type of noncompact manifold to study is that of finite volume. Here
many results we met above extend, with more or less challenge, depending
of the question. To give even a short list of references is impossible. What
follows is very biased. Note just to start with the naturality of the topic, that
the famous modular domain SL (2,R) /SL (2,Z) is not compact but is of fi-
nite volume for its canonical hyperbolic metric (but also has singularities):
see Luo, Rudnick & Sarnak 1995 [884]. We also mention the problem of ex-
tending the integral Chern formulas from equation 15.14 on page 743 to finite
volume manifolds. This turned out surprisingly to be an extremely difficult
subject, even for surfaces, where the investigation was initiated in Cohn-
Vossen 1935,1936 [382, 383] for the problem of extending the Gauß–Bonnet
formula. However a lot of work remains to be done for surfaces. We refer to
Shioya 1992 [1136] and the intermediate references there, and just mention
that many topics introduced in §§12.3.4 (for negatively curved manifolds)
play a role here. The investigation of such formulas in higher dimensions,
involving the Euler characteristic χ and also the characteristic (Pontryagin)
numbers, was begun in Shioya 1992 [1136]. Noncompact manifolds can have
irrational characteristic numbers. More results are to be found recently in
Rong 1995 [1065]; also see the survey Lück 1996 [883].

Finite volume is an especially strong condition in the negative curvature
realm, where most results valid for compact manifolds extend with often not
too much pain to finite volume manifolds. For space forms and Mostow’s rigid-
ity see Farrell & Jones 1989 [507]. For the general case see Ballmann, Gromov
& Schroeder 1985 [106] and of course Eberlein, Hamenstädt & Schroeder 1990
[472].

14.1.3 Bounded Geometry

Another condition is that of bounded geometry. It occurs naturally for cover-
ings of compact manifolds and homogeneous spaces. The question is studied
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in Semmes 1996 [1122] in relation with the quite recent notion of complexity.
Bounded geometry occurs when, for example, the curvature verifies |K| < 1
everywhere. The comparison theorem 73 on page 281 shows that this is really
equivalent to the local geometry being bounded.

14.1.4 Harmonic Functions

It is an interesting question when a complete Riemannian manifold admits
a nonconstant harmonic function (Δf = 0) or even more a positive spec-
trum. This possibility is directly linked with various curvature properties. The
founding text is Yau 1975 [1292] where positive Ricci curvature was shown
to be enough to forbid nonconstant harmonic functions (this is a “Liouville
theorem”). Results continue to appear. We refer only to recent ones and their
bibliographys: Colding & Minicozzi II 1998 [388] and Yu 1997 [1300]. Also
see Benjamini & Cao 1996 [130] for relations with sectional curvature.

14.1.5 Structure at Infinity

In the noncompact realm various results address the implications of condi-
tions on the structure at infinity, like to be asymptotically Euclidean (with
some fixed asymptotic order). See among others Shen 1996 [1128] and refer-
ences there. There are also gap results, which forbid various compact metrics
to be glued with completely flat ones outside, etc. See the introduction of
Lohkamp 1996 [874] and Greene & Wu 1990 [595], as well as what was seen
in §§12.3.4. Many results can be found in Eberlein, Hamenstädt & Schroeder
1990 [472], like for example asymptotically harmonic manifolds. A deep result
is Cheeger & Tian 1994 [357]; this result is used in the results of Cheeger &
Colding in §§12.3.2.

14.1.6 Chopping

There are many techniques in noncompact Riemannian geometry. Besides
using the sphere at infinity in various ways, we mention the very geometrical
chopping technique of Cheeger & Gromov 1989 [349]. This is an exhaustion
technique where, when one goes to infinity, the boundaries of the successive
compact pieces keep a bounded second fundamental form and have controlled
volume.

14.1.7 Positive Mass

The technique used for proving the “positive mass conjecture” in Schoen
& Yau 1981 [1110] is also very interesting (see the expository Kazdan 1982
[800]). They employed geometric measure theory (see §§14.7.2) and looked
at minimal hypersurfaces in the manifolds, studying what they become when
they go to infinity. For other viewpoints see the references in Cao 1996 [307].
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14.1.8 Cohomology and Homology Theories

On compact manifolds essentially all homology and cohomology theories co-
incide. On noncompact manifolds, the possible cohomology and homology
theories are much more subtle. A good notion for Riemannian geometry is
that of L2 Betti numbers. There are surveys: Pansu 1996/97 [999] and Lück
1996 [883]. We just mention that the Riemannian geometer motivated princi-
pally by compact manifolds should contemplate L2 cohomology with awe. A
striking example is in Gromov 1991 [626], where L2 Betti numbers are used
to solve the Hopf conjecture 1 on page 570 for Kähler manifolds:

Theorem 404 (Gromov 1991 [626]) A compact Kähler manifold M2n of
negative curvature has Euler characteristic of sign equal to (−1)n.

Deep results concerning holonomy groups and volumes of balls appear in
Tapp 1999 [1182].

14.2 Bundles over Riemannian Manifolds

We introduce bundles in the order of their Riemannian geometric character.
First, the canonical or almost canonical ones (including spinors), then those
obtained by twisting canonical ones, then Yang–Mills fields. But before the
most natural ones are those of exterior differentials forms met for the first
time in §§4.2.2. For spinors, see Gilkey 1995 [564] and Berline, Getzler &
Vergne 1992 [179] for the index theorem in a very general context and for
more on spinors Lawson & Michelsohn 1989 [850]. Of basic importance are
characteristic classes for various bundles over general differentiable manifolds,
so one should look at their relations with Riemannian geometry; see §15.7.

14.2.1 Differential Forms and Related Bundles

Exterior differential forms exist on any differentiable manifold, with their
degreees extending from 0 to the dimension d of the manifold. The corre-
sponding vector bundles are denoted by Λp (T ∗M) , while their spaces of
sections are denoted by Ωp (M) . And the basic link between these spaces of
sections is the exterior derivative

d : Ωp (M) → Ωp+1 (M)

with dd = 0. Equipped with d, the collection of Ω∗ (M) is called the differen-
tial complex of M. The closed forms are the ω with dω = 0. This is leading,
as seen in §§4.2.2, to the de Rham theorem 32 on page 186 via Stokes for-
mula 34 on page 188. Although not a Riemannian story, one should know that
while de Rham’s theorem only yielded the real Betti numbers, more can now
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be extracted purely from the exterior differential complex, as was discovered
in Sullivan 1977 [1166], which yields for example some topological finiteness
results (see §§12.4.1). What more can a Riemannian geometer ask for? Of
course for interesting relations between the metric and exterior forms.

14.2.1.1 The Hodge Star A basic fact is the existence (for which one
needs the manifold to be oriented) of the Hodge star operator

∗ : Ωp (M) → Ωd−p (M) .

It is involutive or antiinvolutive:

∗2 = (−1)d(p+1)+1.

Given a differential form ω, the form ∗ω is defined by

∗ω (xp+1, . . . , xd) = ω (x1, . . . , xp)

for any positively oriented orthonormal basis {x1, . . . , xd} . For example ∗1
is the volume form, namely the d-form which takes the value +1 on any
positively oriented orthonormal set of tangent vectors. The existence of the
volume form is equivalent to orientability.

14.2.1.2 A Variational Problem for Differential Forms and the
Laplace Operator It is natural to look at the canonical norms ‖ω‖ (see
§15.2) and think of the de Rham theorem, to look at the minimum of the L2

norm ∫
M

‖ω(m)‖2

for a closed form ω running through a fixed cohomology class of Hp
dR (M) =

Hp (M,R) (see §§4.2.2) So we can vary ω into ω + dα and compute∫
M

‖ω + dα‖2 =
∫
M

‖ω‖2 + 2
∫
M

〈ω, dα〉 +
∫
M

‖dα‖2
.

A general theoretical fact is that there is an adjoint operator d∗ called the
adjoint of d, such that ∫

M

〈dσ, β〉 =
∫
M

〈σ, d∗β〉

for any pairs of forms σ, β. So that if ω not only satisfies dω = 0 but also
satisfies d∗ω = 0 then ω will be an absolute minimum. The miracle is that
this adjoint d∗ in our Riemannian manifold is nothing but

d∗ = (−1)d(p+1) ∗ d∗

for the Hodge star operation introduced above. There is no need for an ori-
entation since one uses ∗ twice. It is not difficult to transform the paired
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conditions dω = 0 (closedness) and d∗ω = 0 (called co-closedness)into a
single one. This is done by considering the Laplacian

Δ = dd∗ + d∗d = (d+ d∗)2 .

Suppose that the manifold is compact. Then∫
M

〈Δω,ω〉 =
∫
M

‖dω‖2 +
∫
M

‖d∗ω‖2

so that Δω = 0 is equivalent to dω = 0 and d∗ω = 0. Of course, for func-
tions, which are the forms of degree 0, this Laplacian coincides with that of
chapter 9. By definition harmonic forms ω are those with Δω = 0. The main
result is

Theorem 405 (Hodge–de Rham) There is precisely one harmonic form
in any de Rham cohomology class. Thus the set of harmonic forms of degree
p is isomorphic to Hp

dR (M), and is a real vector space of dimension equal to
the real Betti number bp (M,R).

Uniqueness of a harmonic form in each de Rham cohomology class is trivial
by the above, but the existence requires hard analysis, and is a typical case
of the theory of elliptic operators. The proof does not figure in most Rieman-
nian geometry books, see the classic Warner 1971 [1243] or the recent Jost
2002 [768] for the structure of the proof. It will be important that, contrary
to the case of functions, the computation of Δω when p > 1 leads to curva-
ture: see §15.6. But, in exchange, as the revenge of Riemannian geometers,
Bochner’s approach to the Laplacian will give us tools for relating curvature
and topology. See also §9.14 for other types of topological outcomes. Let us
also mention the

Theorem 406 (Hodge decomposition theorem) Any form can be writ-
ten as a sum

α+ dβ + d∗γ

where α is harmonic. The forms α, dβ, and d∗γ are uniquely determined,
although obviously β and γ are not.

Two outcomes of this were mentioned in the spectral analysis in §9.14.

Note 14.2.1.1 (Intrinsically harmonic forms) Concerning harmonic forms
one might wonder about the “inverse problem:” if harmonic forms are special
or not among closed differential forms. This is a tricky question, attacked first
for 1-forms and solved in Calabi 1969 [302]. For higher degrees see Farber,
Katz & Levine 1998 [503]. �
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14.2.1.3 Calibration One might also wonder about the fact that exterior
forms are not good for computing volumes when one restricts them to sub-
manifolds. For example, the lengths of curves in the plane are not measured
by integrating a differential form in the plane (but only by “lifting” the curve
into the unit tangent bundle). So except for the global point of view of har-
monic forms, it seems hopeless to do more geometry with exterior forms. But
there are exceptions; the first was discovered in Wirtinger 1936 [1273]. In a
Kähler manifold, the Kähler form ω enjoys the following property: for any
orthonormal pair of vectors x, y one has

ω(x, y) ≤ 1

with equality only for complex lines, i.e. y =
√
−1x and this works also

mutatis mutandis for the exterior powers ωp which match the volume forms
precisely on complex p-planes. As we will shortly explain, because ω is closed,
applying Stokes formula implies immediately that any complex submanifold
of a Kähler manifold has an absolute minimal volume in its homology class
(this is much stronger than to be only a minimal submanifold and is called
stability).

S
m x

y

Jx

y
x

Jx

m

S

TmS = IRx + IR.Jx
ω(x,y) = 1

TmS ⊂ IRx + IR.Jx
ω(x,y) < 1

Fig. 14.1. The Wirtinger inequality: (a) TmS = Rx ⊕ R
√−1x ⇒ ω(x, Jx) = 1

(b) TmS �= Rx + R
√−1x ⇒ ω(x, y) < 1

Let us prove the Wirtinger inequality for surfaces (2-dimensional sub-
manifolds) in a complex manifold. We recall first the independence under
homology: ∫

S

ω =
∫
S′
ω

from Stokes’ theorem because dω = 0 for the Kähler form. Now the basic
trick is that ω(x, y) ≤ 1 implies
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S

ω ≤
∫
S

dA = Area(S)

with equality if and only if the tangent planes of the surface S are stable
under

√
−1, i.e. S is a complex curve (which is of course a particular type of

real surface) in our complex manifold. Wirtinger used his result for various
applications, for example to compute explicitly the volume of any algebraic
submanifold of given degree in CPn. The above inequality can hold for various
differential forms of degree p on some Riemannian manifold:

Definition 407 A p-form ω calibrates (or is a calibration) if it is closed
and

ω (x1, . . . , xp) ≤ 1

for every orthonormal p-tuple of vectors x1, . . . , xp.

The definition comes from Harvey & Lawson 1982 [682]. The straightforward
property of a calibrating p-form ω, generalizing Wirtinger’s argument, is that
if a submanifold Np has volume equal to

∫
N
ω then it is an absolute minimum

in its homology class, in particular a stable minimal submanifold. For this it
is necessary and sufficient that ω takes the value 1 on each tangent space to
Np. Calibration was used in Berger 1972 [153] to prove the systolic inequality
for the standard metric of KP

n for K = H and K = Ca (for K = C this is
Wirtinger’s inequality). For the quaternionic case the calibrating form is the
form called ω in §§13.5.2. In Harvey & Lawson 1982 [682] a general theory of
calibrations is formulated. In particular some generalizations of Wirtinger’s
inequality are presented, in the sense that calibration is also linked with some
PDE the same way complex submanifolds can be defined as holomorphic,
namely by a first order operator (the Cauchy–Riemann equation ∂̄ = 0).
In general, even if one has a calibrating differential form ω, the problem of
finding submanifolds it calibrates, i.e. submanifolds N on which ω = dVN ,
is a highly overdetermined system of partial differential equations, and for
most calibrations ω it has no solutions. Recently calibration was used to
prove systolic softness (freedom) in Babenko & Katz 1998 [93] (see §6.5) and
in Besson, Courtois & Gallot 1995 [189] in a Hilbert manifold framework. See
also the pseudo-holomorphic curves in §§14.7.2.

In particle physics, calibrated cycles (not necessarily submanifolds—one
allows some sort of singularities, and the precise nature of them is still rather
vague) have played a surprising role allowing physicists to break some but
not too much supersymmetry from string theory and M -theory.

14.2.1.4 Harmonic Analysis of Other Tensors There is no reason to
stick with exterior forms and not to look at other tensors. Lichnerowicz in-
troduced the theory of the canonical and special Laplacian in Lichnerowicz
1961 [866]. Particularly important is his Laplacian for symmetric bilinear
differential forms, as they can be interpreted as infinitesimal variations of
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a Riemannian metric. For Hodge–de Rham type theorems concerning these
Laplacians, see section 12.C of Besse 1987 [183] where it is used to study
deformations of Riemannian structures, i.e. metrics up to isometries (diffeo-
morphisms). Lichnerowicz’s Laplacians are natural, in the sense explained in
§15.6.

14.2.2 Spinors

When it exists, the spinor bundle is “almost canonical.” For all that follows
and more on spin geometry see Lawson & Michelsohn 1989 [850], and for
some parts add Gilkey 1995 [564], Berline, Getzler & Vergne 1992 [179] and
Friedrich 2000 [522]. To keep this book of reasonable size, we are going to
ignore a wealth of detail. The basic idea is: Riemannian geometry has a
Euclidean structure on every tangent space, so that, if moreover the space is
oriented, the special orthogonal group SO (d) is “the basic group.” Besides
the fundamental representation on Rd, the special orthogonal group has a
basic one on the exterior algebra and, by tensor products, one can build
all the other ones. Apparently, the Riemannian geometer should not look
further than to those. But the Lie group SO (d) is not simply connected and
its (nontrivial, twosheeted when d > 2) universal covering group Spin (d) has
an extra representation in a “canonical” complex vector space, the space of
spinors of the initial Euclidean space.

14.2.2.1 Algebra of Spinors First let us point out some purely algebraic
facts. The canonical quadratic form on Rd gives birth to the Clifford algebra
Cliff(d), of dimension 2d. This algebra is canonically isomorphic as a vector
space to the exterior algebra Λ∗ (Rd) . There is a simple link between Spin (d)
and Cliff(d) to the effect that one finally obtains two things in a canonical
way. First, a complex vector space S/ of dimension 2�d/2� (where �x� denotes
the greatest integer less than a given real number x.) This space shows up
when one tries to write Cliff(d) as an endomorphism algebra End (S/ ) and
is called the (complex) spinor space of Rd. Second, because Spin (d) can be
realized as a subgroup of the group made up by the unit elements of the
algebra Cliff(d), one finds a representation of Spin (d) on the space S/ . The
theory is complicated by the fact that this representation is irreducible only
when d is odd but splits into nonisomorphic representations denoted S/+ and
S/− of half the dimension when d is even.

There are also real spinors, but the situation is more complicated with
them and is to be considered modulo 8. It is a basic fact that this game
cannot be played without having fixed a quadratic form, because the universal
cover of the special linear group SL (d,R) does not admit any faithful finite
dimensional represention except the ones in the exterior algebra, i.e. those of
SL (d,R) itself.



14.2 Bundles over Riemannian Manifolds 695

14.2.2.2 Spinors on Riemannian Manifolds Since all of the above con-
structions depend only on oriented Euclidean geometry, namely the positive
definite quadratic form on Rd, we now carry out this two step construction
for any oriented Riemannian manifold M. The (principal) bundle of oriented
frames PSO(d)M has SO (d) as structure group, so one first tries to define a
universal double covering of this bundle, asking moreover of course for com-
patibility with the group covering Spin (d) → SO (d) . This is not always
possible and a necessary and sufficient condition for this is the vanishing of
the second Stiefel–Whitney class w2(M) (see Haefliger 1956 [677]). Up to
isomorphism, the spin structures so obtained are classified by H1 (M,Z2).
For example, the spin structure is unique on a simply connected manifold.
However one usually uses an ambiguous notation, namely PSpin(d)M, to de-
note any spin bundle covering PSO(d)M. Attached to any spin structure on
the manifold, (see §§14.2.3) the representation of Spin (d) on S/ automatically
produces a (complex) vector bundle denoted by S/ (M) and called the (or “a”)
spinor bundle on M. A section of this spinor bundle is what is called a spinor
field on M. Still using general facts about bundles (see §§14.2.3) the above
construction and the Levi-Civita connection on PSO(d)M yield a canonical
connection ∇ on S/ (M).

The third point, a major one, is that using ∇ one can define on S/ (M) a
canonical differential operator of degree one, called the Dirac operator and
denoted by D/ . In even dimensions it exchanges the spinors which are sections
of S/+ with those which are sections of S/−. Now for D/ 2 there is a Bochner–
Weitzenböck formula which is

D/ 2 = ∇∗∇ +
1
4

scalar

(the Lichnerowicz formula) and which was already employed extensively in
§§12.3.3. In comparison with formulas for Δ involving the collection of the
Curvp (R) remainder terms (see theorem 338 on page 616 and §15.6) this
looks a priori like a disaster. But it is just the opposite: with much less
information on the curvature, one still gets information on the topology with
the Hodge theorem for D/ , namely for harmonic spinors σ, i.e. those satisfying
D/ s = 0.

14.2.2.3 History of Spinors The history of spinors is fascinating. It
started with Élie Cartan in Cartan 1913 [311] where he completely classi-
fied the complex irreducible representations of simple Lie groups. Besides
the expected orthogonal and exterior representations, he found an extra one
bringing a new space to life. Moreover he prophetically indicates how this
representation can generate all others. Then, completely independently, first
(in a very primitive form) they appeared in Pauli 1927 [1006], and finally with
a clear grasp of their relation to group theory in Dirac 1928 [450], spinors
appeared on physical grounds (hence their name) and Dirac defined the Dirac
operator; this not for manifolds but just for Minkowski space R3,1. The link
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between the physicists’ Lorentzian spinors and the Euclidean ones was un-
covered by Cartan in 1937, but he concluded his book Cartan 1937 [318]
by noting the “impossibility” of building a satisfying theory along the lines
physicists and geometers were comfortable with: this is so because coordinate
changes with general Riemannian metrics on manifolds are only linear (not
orthogonal) and we saw above that the universal cover of the special linear
group has no finite dimensional represention besides those coming from the
genuine linear group. The construction of spinor bundles and of the Dirac
operator on them are hard for us to precisely date—it seems that they were
more or less folklore. But the year 1963 is of historical importance, being the
year when at the same time there appeared (1) the index theorem, which
among others yielded the fact that the index for the Dirac operator is the
Hirzebruch Â genus (hence an integer) and (2) the Lichnerowicz scalar curva-
ture formula above. For this history and more on spinors see the introductions
of Lawson & Michelsohn 1989 [850] and of Berline, Getzler & Vergne 1992
[179], as well as the postface by Jean-Pierre Bourguignon in Chevalley 1997
[372].

14.2.2.4 Applying Spinors We saw the fundamental application of spinors
in §§12.3.3. The basic idea behind the Lichnerowicz result is that, when
one defines much more general spin-type-bundles, one can often prove that
1
4 scalar is the dominant term. Other applications of spinors are: (1) some
proofs of the index theorem and (2) construction of certain special holonomy
groups, see §§13.5.1.

14.2.2.5 Warning: Beware of Harmonic Spinors As opposed to the
case of the Laplacian and harmonic differential forms, the kernel of the Dirac
operatorD/ depends on the metric chosen on a given manifold. The dimension
of this kernel (the dimension of the space of harmonic spinors) can change,
as was first discovered in Hitchin 1974 [719]. Worse: any spin manifold can
carry a metric with some nonzero harmonic spinor (at least in dimensions
4n+3, and perhaps in all dimensions); see Bär 1996 [116]. However, harmonic
spinors are conformal invariants: see Hitchin 1974 [719]. The dependence
on the metric is not easy to control because, when one varies the metric,
the bundle also changes. Bourguignon & Gauduchon 1992 [243] present a
detailed computation for everything in this context, in particular the first
variation of the Dirac operator and of its eigenvalues (see references therein
for intermediate results).

14.2.2.6 The Half Pontryagin Class For spin manifolds, the first Pon-
tryagin class p1(M) (see §15.7) is always the double of some class, denoted
then by 1

2 p1(M). This class was used in §§12.3.2 as the only known restriction
to positive Ricci curvature (besides of course the scalar curvature obstruc-
tion).
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14.2.2.7 Reconstructing the Metric from the Dirac Operator Fi-
nally, for the very geometrically minded reader, we mention that in Connes
1994 [400] one finds a formula giving the distance between any two points
using the Dirac operator, which has the advantage that it carries over to
noncommutative geometry.

14.2.2.8 Spinc Structures Not much more complicated to define are the
Spinc structures which exist on many more manifolds than have spin struc-
tures. In particular they exist on any 4-dimensional manifold, see §14.4 for
references to very significant recent applications. Beware of the notation:
Spinc (d) is not the complex group Spin (n,C) but “only”

Spinc (d) =
(
Spin (d) × S1

)
/Z2.

14.2.3 Various Other Bundles

The theory of bundles can be found in most books of differential geometry and
in detail in Kobayashi & Nomizu 1963-1969 [827, 827]. From the perspective
of topology, the classics are Steenrod 1951 [1156] and Husemoller 1975 [751].
Bundles Eare differentiable manifolds equipped with a map E → B onto a
base manifold B and a typical fibre F, such that the base B is covered with
charts and the preimages in E of those charts are diffeomorphic to products
with F. On their intersections, these bundle charts should be smooth on the
fibers and most often preserve some given structure. For principal bundles
the fiber is acted on simply and transitively by a group, and changes of charts
have to be group automorphisms. For vector bundles they should of course
be linear maps. When given a principal bundle together with an action of
the group on some object (e.g. being a representation in a vector space), one
can canonically deduce from it an associated bundle. Such a construction was
employed above in order to construct the spinor bundle.

For bundles one has a notion of connection, and then of curvature, of
parallel transport and of holonomy. The concept of a connection is the same
as the one explained in §15.2, namely one wants to be able to compare (in-
finitesimally) two fibers and to develop some kind of differential calculus.
Of course, the connection one uses should preserve in a reasonable sense
the various structures the bundle carries. In particular, Riemannian vector
bundles appear when one is given a positive quadratic form on every fiber
(with smooth dependence on the base point). Vector bundles have character-
istic classes and Chern formulas. Books are Hirzeburch 1966 [717], Berline,
Getzler & Vergne 1992 [179], and Gilkey 1995 [564].

14.2.3.1 Secondary Characteristic Classes We will see in §15.7 that
there are no other integral formulas involving curvature besides those of
Chern. In Chern & Simons 1974 [370] new subtle invariants were introduced.
They take place in various bundles, and are not “downstairs” Riemannian
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objects. Although typically topologically trivial their connections are not
and parallel transport along those connections yields those new invariants.
In Cheeger & Simons 1985 [354] they were put downstairs on the manifold
where they live as “differential characters.” These new invariants became
more and more important—in particular recently in mathematical physics
and in number theory; see Gillet & Soulé 1992 [567]. Also look at the books
Berline, Getzler & Vergne 1992 [179] and Gilkey 1995 [564] section 3.11.

14.2.3.2 Yang–Mills Theory Yang-Mills fields were “born” in the late
seventies by demand of theoretical physicists. A book appeared as soon as
Atiyah 1979 [75]. But since then the topic has grown enormously and is now
a field of research in itself, with many subtopics. Yang–Mills theory can be
roughly outlined as follows. On a given compact Riemannian manifold, most
often a “standard” one like the sphere, one picks up some interesting vec-
tor bundle over it, smoothly chooses some Hermitian or Euclidean metric on
its fibers. Then one looks for the “least twisted” connection preserving this
metric, measuring “twist” by the integral of the squared curvature of this
connection. This is a problem of the calculus of variations and leads to a
condition on the curvature of bundle which looks like harmonicity of the cur-
vature. There is a rich harvest of Yang–Mills theory because what one looks
for is like looking for harmonic forms, except that the harmonicity condition
is on the curvature. There are results like the Hodge–de Rham theorem 406
on page 691. Its natural differential geometry setting is essential in particle
physics (gauge theory). Surveys and recent references are: Donaldson & Kro-
nheimer 1990 [457], Donaldson 1996 [456] and Andersen, Dupont, Pedersen
& Swann 1997 [36]. Intermediate references were Freed & Uhlenbeck 1991
[520], and Bourguignon & Lawson 1982 [244].

We just mention here that there is a drastic difference between Yang–
Mills fields on various bundles and the condition for the manifold itself to be
Einstein (see §11.4). In the Yang–Mills game one keeps the metric downstairs
fixed and varies the connection in the bundle, while the Einstein condition
couples the Riemannian struture of the basis with the tangent bundle con-
nection. To do both at the same time is a completely different game.

14.2.3.3 Twistor Theory Twistor theory belongs more to Riemannian ge-
ometry than does Yang–Mills theory, even if there are strong links between
them. The twistor bundles are various bundles with compact fibers. They
are constructed from a Riemannian manifold using its metric and some given
additional structure e.g. a complex structure, special holonomy, etc. In di-
mension 4 every Riemannian manifold has a canonical twistor space above it,
with fiber S2. One example has been explained in some detail in §§13.5.2 for
quaternionic-Kähler manifolds. The main point is that twistor spaces have
a richer structure that their base spaces, e.g. they may be Kähler. In many
cases they have pure geometric applications. One is the classification of mini-
mal surfaces in standard spheres of high dimension carried out in Calabi 1967
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[301]. They are also useful for finding holonomy groups of some types (see
§§13.5.2), and to construct Einstein manifolds; see for example Hitchin 1995
[720]. Besides a brief appearance in Lawson & Michelsohn 1989 [850], they
also appear in the book Besse 1987 [183], and its second edition yet to come.
An intermediate reference is Atiyah, Hitchin & Singer 1978 [80].

14.2.3.4 K-theory General vector bundles are of course only differential
geometry at the beginning. If the base manifold is Riemannian, we find also
a measure and a canonical connection on the tangent bundle. Vector bun-
dles are interesting because of something called K-theory. This is an algebra
made of all complex vector bundles over some given manifold, bringing in
an algebraic tool to study differentiable manifolds, the maps between them,
etc. For example one of the important facts about the Dirac operator is that
it represents the fundamental class in K-theory. For real vector bundles one
had to use the more subtle KO-theory.

The quantization of K-theory using Riemannian geometry is just begin-
ning in Gromov 1996 [631], also see definition 357 on page 629 and theo-
rem 358 on page 630.

For general Riemannian real vector bundles, the idea of Atiyah and Singer
was to extend to any such bundle the spinor construction of §§14.2.2 (which
was sketched for the complex case). The topological construction is the same
as for the tangent bundle. One can consider both the complex and the real
case. Moreover associated to Riemannian connections there is a canonical
Dirac operator and a generalized Lichnerowicz formula which is again sur-
prisingly simple, even for twisted bundles; see II.§8 of Lawson & Michelsohn
1989 [850]. For various vanishing theorems as found in §§12.3.3 an important
fact is that the scalar curvature of the base manifold appears separately from
the curvature term of the vector bundle under consideration. Finally these
generalized Dirac operators became essential in understanding more clearly
the index theorem below. This was through various contributions of Atiyah
& Bott, McKean & Singer, Patodi & Gilkey; see the introduction of Berline,
Getzler & Vergne 1992 [179]. This book is precisely devoted to the index
approach with generalized spinors and Dirac operators.

14.2.3.5 The Atiyah–Singer Index Theorem If one now very broadly
generalizes the Laplacian acting on functions and on exterior forms, by con-
sidering any elliptic operator on some vector bundle, there is a very deep and
universal result, the Atiyah–Singer index theorem which was a great event in
1963. Gelfand and Vekua had conjectured the topological invariance of the
index. See Atiyah & Singer 1963 [84] for historical references and intermediate
results. The index of an elliptic operator is the dimension of its kernel minus
the dimension of the kernel of its adjoint (its cokernel). The theorem is that
this integer, for an elliptic differential operator on a compact manifold M,
is equal to a number computed only with two pieces of topological data: (1)
the Todd class of M, which is expressible in terms of its Pontryagin classes,
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(2) an invariant computed with the symbol of the elliptic operator consid-
ered as acting on the various Chern classes of the vector bundles on which
the operator is defined. In the case of differential forms one just recovers the
Euler characteristic via the Hodge–de Rham theorem. Applications of the
index theorem are numerous (and far from finished), e.g. yielding integrality
of various invariants which a priori were only known to be real numbers. In
the world of pure Riemannian geometry, we saw above in §§12.3.3 when we
studied scalar curvature. References are Gilkey 1995 [564], Gilkey 2000 [565],
Berline, Getzler & Vergne 1992 [179].

14.2.3.6 Supersymmetry and Supergeometry Starting in 1982 with
Witten, and with Quillen and Bismut in 1986, most of the above various no-
tions for bundles were reconsider at a super level, e.g. superspace, supercon-
nection, supersymmetry, etc. In particular in Bismut’s work, the Levi-Civita
superconnection is fundamental for bringing the “super” concepts into Rie-
mannian geometry. Since then super objects have arisen including connec-
tions, Laplacians and Dirac operators, asymptotic expansions of the heat
kernel, and index theorems. The book Berline, Getzler & Vergne 1992 [179]
is the ideal reference for all of this. For the holomorphic side, see Bismut,
Gillet & Soulé 1988 [198, 199, 200].

14.3 Harmonic Maps Between Riemannian Manifolds

It was realized a long time ago that geodesics not only minimize length

L =
∫

‖γ′(t)‖ dt

but also (if they are parameterized with constant speed) minimize the energy

E =
∫

‖γ′(t)‖2
dt.

The quadratic character, as opposed to the absolute value, makes the com-
putation of the variational derivatives much easier. Moreover this energy can
be interpreted as follows: it concerns a map γ from an interval of the real
line into the Riemannian manifold and is defined using only the Riemannian
structure of the manifold and the interval.

More generally, to a map φ : M → N between two Riemannian manifolds
(M, g) and (N, h) one can attach an energy E(φ) which is defined as follows:
the map φ induces on M a pullback quadratic form φ∗(h). One then take the
trace of φ∗(h) with respect to g.

Definition 408 The energy of a map φ : M → N between Riemannian
manifolds (M, g) and (N, h) is
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E(φ) =
1
2

∫
M

trg φ∗(h) dVM

for the canonical measure of (M, g). The map φ is said to be harmonic if
its energy E(φ) is critical, i.e. the derivative of the energy vanishes for all
variations of φ.

This very general notion was introduced in the founding paper Eells & Samp-
son 1964 [481]. The theory of harmonic maps from surfaces is quite special
because harmonic maps are directly related to minimal surfaces thanks to
the conformal representation. But in higher dimensions there is in general no
direct connection between minimal submanifolds and harmonic maps, except
in some special cases.

Since the Eells & Sampson paper, the subject of harmonic maps has had
a rich history, both in answering the natural questions as well as in advancing
applications. The reader will find references, in particular to surveys, in the
book Eells & Ratto 1993 [480]. At its date of publication, the book Eells &
Lemaire 1988 [479] was very systematic, informative and complete. Various
regularity results are important. In some cases harmonic maps are defined
in a more general context than purely Riemannian manifolds; see the books
Jost 2002 [768], Helein 1996 [478] and for applications to Riemann surfaces
Jost 2002 [767].

Harmonic maps are a basic tool in contemporary Riemannian geometry
as very well illustrated in the Eells & Lemaire report. For example consider
(1) their application to space forms in §§6.6.3, where the notion had to be
extended to manifolds with singularities, (2) theorem 336 on page 615 for
manifolds with positive curvature operator, (3) in Jost & Yau 1990 [770]
for nonpositive curvature manifolds (also see §§§12.3.4.5, and the book Jost
1997 [766]). Harmonic maps are essential for studying Kähler manifolds, in
particular their fundamental groups, see Amoros, Burger, Corlette, Kotschik
& Toledo 1996 [35] and the references in §13.6.

14.4 Low Dimensional Riemannian Geometry

While Riemannian geometry in dimension 2 is wonderful, we have seen that
the dimensions 3 and 4 have to be treated with care. For example, many
finiteness theorems mentioned in §§12.4.1 hold only in dimension 5 or more.
A contrario in some instances one has very strong results in dimensions 3 and
4.

One of the high hopes of Riemannian geometers in low dimension is to use
Riemannian tools to solve topology and differential topology problems which
are still haunting topologists. Recent reports are Donaldson 1996 [456], the
books Donaldson & Kronheimer 1990 [457] and Morgan 1996 [939]. They
present in particular the basic tools: Yang–Mills theory, twistors, anti-self-
duality in dimension 4 and from Seiberg & Witten 1994 [1118] the Spinc
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theory; see §§§14.2.2.8. A classic for the study of 3-dimensional manifolds is
Scott 1983 [1116].

For the “best metric” approach based on functionals and their critical
points, and the link with the geometrization program of Thurston, see An-
derson 1997 [48].

Finally we recall here the two results of Hamilton, using the Ricci flow,
for the Ricci curvature in dimension 3 (see theorem 279 on page 553 and
§§12.3.2) and for the curvature operator in dimension 4 (see theorem 337 on
page 616).

14.5 Some Generalizations of Riemannian Geometry

The book Berestovskij & Nikolaev 1993 [147] is a systematic treatment of
some of the following topics.

14.5.1 Boundaries

A first generalization is that of Riemannian manifolds with boundary.2 Ex-
cept for the η-invariant and in Besicovitch’s results from the note 7.2.3.4
on page 376 (where there are “corners” as well as boundary) we never men-
tioned boundaries. For the general case one can see Alexander, Berg & Bishop
1990 [20] and the references there. For relations with positive scalar curva-
ture curvature see Lawson & Michelsohn 1989 [850]. For the cut locus see
Alexander, Berg & Bishop 1993 [19] and Alexander & Bishop 1998 [21]. For
Einstein manifolds with boundary, see a nice rigidity theorem in Schlenker
1998 [1104].

We mention one interesting and practical problem in this area. Assuming
some kind of convexity on the boundary ∂M of a Riemannian manifold M,
one can define a distance d (p, q) between points of ∂M. To which extent
does this distance function determine the interior metric g (up to isometry
of the interior). Thinking for a while of earthquakes, tomography, X-rays
and scanners one sees the practical importance of such a problem. In an
indirect way these ideas were also met in §§12.3.4 and in the “gap” results
in §14.1. References are Otal 1990 [986], Michel 1994 [919], Croke 1991 [420],
Arconstanzo 1994 [60], and Bourdon 1996 [235]. Also see the Besicovitch
results in note 7.2.3.4 on page 376.

Returning to the subject of generalizations of Riemannian geometry, the
subject has expanded very rapidly recently and results are flowing now so
quickly that we will need to be very concise. Some cases appeared before
sporadically; today strong incentives are coming from understanding Rie-
mannian geometry more deeply in various instances, e.g that of §§§12.4.3.1,
2 Obvious definition: one demands that at the boundary the manifold is smoothly

equivalent to one side of an hyperplane in Rd, so that the boundary is smooth.
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Fig. 14.2. (a) Corners (b) A conical point (c) The metric on the boundary ∂M
of a Riemannian manifold M

namely looking at limits of sequences of Riemannian manifolds. Interest-
ing generalizations of Riemannian geometry can be of different types since of
course to look at general metric spaces would be too general to obtain reason-
ably serious results. For example one could define objects playing the roles
of tangent vectors, angles, curvature, etc. We will try to guide the reader
through this new realm by suitable recent references and of course survey
type ones when they exist. Of general type we know only of Berestovskii &
Nikolaev 1993 [147].

14.5.2 Orbifolds

Orbifolds were introduced in Satake 1956 [1097] and in Baily 1957 [96] in alge-
braic geometry, and they were revived in Riemannian geometry by Thurston
1978 [1189]. Essentially they are quotients of Riemannian manifolds by isome-
tries when one permits fixed points with moreover the isotropy group having
to be finite. This is typical in the case of space forms. But they came about
in more subtle situations, for example as limit spaces of some subsets of
Riemannian manifolds with Ricci curvature bounded from below as well as
when working on Einstein manifolds, e.g. theorem 379 on page 650; also see
Anderson & Cheeger 1991,1992 [49, 50], Anderson 1992 [43], Anderson 1994
[45] and see also Ballmann & Brin 1995 [104]. For orbifolds and quaternionic
holonomy see Galicki & Lawson 1988 [538]; for orbifolds in the Kähler realm
see Tian 1990 [1190].

14.5.3 Conical Singularities

Spaces with an isolated conical singularity look quite simple, but for appli-
cations it is important to see what is happening to the spectrum (see chap-
ter 6). More (and less) generally one can imagining studying Riemannian
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manifolds by approximating them by PL (piecewise linear) ones, metrically
the pieces are all flat and “the curvature is concentrated (distributionally)” at
the vertices, the edges, etc. These PL-manifolds are the very natural locally
Euclidean version of general Riemannian manifolds but with singularities.
What is happening to the curvature and to various formulas is the object
of Cheeger, Müller, & Schrader 1984 [350] and Cheeger, Müller, & Schrader
1986 [351], see Lafontaine 1985/86 [843] for an expository text. This is in
fact a very subtle subject. We saw one case in §§§7.1.2.3 for the isoperimetric
profile of nonpositive curved manifolds.

14.5.4 Spectra of Singular Spaces

Cheeger carried out an extensive study of the spectral behaviour of singular
spaces in a long series of papers; we refer to Cheeger 1983 [333] and its
bibliography. This work came out of the proof in Cheeger 1979 [332] of the
Ray–Singer conjecture for the Reidemeister torsion (see the very end of §9.14).
One of its byproducts was in analysis, namely results on the diffraction of
waves meeting obstacles. Another one was an explicit solution of the heat
equation on standard spheres; for both see Cheeger & Taylor 1982 [355, 356].
A good transition to the next topic is found in Kuwae, Machigashira & Shioya
2000–2001 [841, 842].

14.5.5 Alexandrov Spaces

Alexandrov spaces are a wonderful class of metric spaces, because they enjoy
two simultaneous properties. First they appear naturally in the boundary
of the space of all Riemannian manifolds whose curvature is bounded from
below. Second they share many properties with (smooth) Riemannian man-
ifolds. There are many texts of more or less survey type: Perelman 1995
[1010], Berestovskii & Nikolaev 1993 [147], Reshetnyak 1993 [1055], Burago,
Gromov & Perelman 1992 [282], Otsu & Shioya 1994 [989] and Yamaguchi
1992 [1283]; also see Kuwae, Machigashira & Shioya 2001 [842] for the Lapla-
cian on Alexandrov spaces. We now give an extremely brief account.

These spaces appeared first in 1948 in the work of A. D. Alexandrov
on convex surfaces, but in 1957 Alexandrov made a more systematic study.
Then came the founding paper Burago, Gromov & Perelman 1992 [282].
In §§12.4.3 we wanted to look at the boundary of suitable subsets of the
set of all Riemannian manifolds (compactness and convergence results). The
description was possible (to some extent) for bounded curvature, say −1 ≤
K ≤ 1. But if all we knew was K ≥ k we had only a finiteness theorem and
no description of collapsing. The solution lies in the theory of Alexandrov
spaces with curvature bounded below.

On the one hand Alexandrov spaces of curvature bounded below are de-
fined very simply. They are locally compact metric spaces which are length
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spaces, namely the metric coincides with the infimum of the length of curves
joining the two given points. Note here a question of terminology. In Gromov
1981 [616] the wording was length space, while in Gromov 1987 [622] a length
space is called a geodesic space if moreover any pair of points can be joined by
at least one shortest path. Busemann 1955 [290] wrote of these as “intrinsic”
metrics. Here such a length space is called Alexandrov with curvature at least
k if it enjoys (besides completeness of course) everywhere locally a Toponogov
comparison theorem (see theorem 73 on page 281) with the standard space
form of constant curvature equal to k. One can then prove a global Topono-
gov theorem but also much more. Even with such a mild condition one has
a notion of angles, a notion of a tangent cone which is itself an Alexandrov
space of curvature at least zero, and can be defined in many equivalent ways.
The points where this cone is not Euclidean are the singular points and the
set of such points is of Hausdorff codimension at least 2, so that our spaces
are almost everywhere locally Riemannian manifolds. Note that the singular
set can be everywhere dense; just think of a suitable limit of convex polyhe-
dra. It is important for generalizations of Riemannian results in the spirit of
chapter 12 on page 569 that the notion of critical point for distance functions
(see definition 305 on page 590) is still applicable and regions without critical
points can be deformed into one another.

On the other hand, the definition of curvature being at least k is purely
metric within the metric space (Met, dG−H) which was introduced in theo-
rem 380 on page 653. Therefore, limit points of Riemannian manifolds with
sectional curvature at least k are automatically Alexandrov spaces with cur-
vature at least k. Hence the results above constitute the answer to our main
query and any further results on Alexandrov spaces will provide progress in
the study of the boundary of the set of Riemannian manifolds with sectional
curvature bounded from below. The following recent references show how
active the topic is: Grove 1992 [645] extends some results of the first part
of chapter 12. Shiohama & Tanaka 1992 [1135] studies cut loci and distance
spheres. Yamaguchi 1992 [1283] generalizes the collapsing structure result of
§§§12.4.3.1. Various results generalizing those in chapter 12 can be found in
Petersen 1997 [1017], for example the bound for Betti numbers (see theo-
rem 326 on page 607) of nonnegatively curved manifolds (see the references
there).

In Cheeger & Colding 1997,1998 [337, 338, 339], many of the above re-
sults are generalized to “limit spaces with Ricci curvature bounded below.”
These spaces occur of course as limit spaces, in the Gromov–Hausdorff sense,
of Riemannian manifolds with the same Ricci condition. For various gener-
alized spaces, see Lohkamp 1998 [877]. Recall that Kontsevich is currently
developing a picture of the space of Riemannian manifolds with nonnegative
Ricci curvature.
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14.5.6 CAT Spaces

In the opposite direction, one can look for a large class, but not too large,
of spaces generalizing Riemannian manifolds of negative curvature bounded
from above. A good notion is that of hyperbolic space, which was introduced
and studied in Gromov 1987 [622] (not to be confused with hyperbolic space
forms which are only a very very special case). For the spirit of the subject
see §§12.3.4. After the founding paper Gromov 1987 [622] the topic became
an entire world. We will just mention references: Gromov 1993 [629], Ghys &
de la Harpe 1990 [558] and the book Bridson & Haefliger 1998 [258].

14.5.6.1 The CAT (k) Condition Here the analogous condition of Alexan-
drov spaces of curvature bounded below for an upper bound of the curvature
is the CAT (k) condition. Suppose for simplicity that we work in simply
connected metric spaces. The CAT (0) condition is that one has, for every
triple of points, the triangle inequality discovered by Cartan and rediscov-
ered by Preissmann (see §§6.3.3). For CAT (k), it is the same condition but
the comparison is no longer with Euclidean space but with hyperbolic space
of constant curvature k. The CAT initials stand for Cartan, Alexandrov, To-
ponogov. One of the difficulties in these CAT (k) space is that they can have
branch points since they can even be graphs. Think also of a one sheet hy-
perboloid converging toward a cone and look at the origin. A contrario one
sheet of the two sheet hyperboloid associated with the same asymptotic cone
will converge with a conical point (of positive curvature), a nice Alexandrov
space.

Some examples of CAT (k) spaces are found among the PL-manifolds
(piecewise linear i.e. Euclidean), although not all PL-manifolds are CAT (k).
For PL-surfaces the CAT (0) condition is what you expect: at every vertex
the sum of the angles of the triangles meeting there has to be at least 2π.
For higher dimensional spaces, is not easy to explicitly describe the CAT (k)
condition. The general CAT (k) condition goes the reverse way from the
Alexandrov case. What happens to the curvature and to various formulas
was mentioned above, see also Bourdon 1996 [235].

14.5.7 Carnot–Carathéodory Spaces

Other recent newcomers in generalizing Riemannian geometry are the Carnot–
Carathéodory metric spaces. For them one can say in a caricatural sense that
they have very strong singularities at every point. They are the subject of
the book Belläıche & Risler 1996 [126]. A particularly informative passage
is the huge portion of this book consisting in the pages 85-323 written by
Gromov. A Carnot–Carathéodory space is a manifold M with some vector
subspace Vm ⊂ TmM of constant dimension smoothly chosen in each tan-
gent space, and moreover on those subspaces one puts a Euclidean structure.
Call a curve in M an admissible curve if its tangent line at every point m
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always belongs to Vm. The dimension of Vm is called the rank. The metric
is then defined by taking the distance between two points to be the infimum
of the lengths of admissible curves. Hence the other name for the topic: sub-
Riemannian geometry. This distance can be infinite (and always will be if
the rank is one) but it is always finite when the field of planes V is wild
enough, that is to say “completely unintegrable.” The game here is the op-
posite of the Frobenius theorem. Carnot–Carathéodory spaces are used in
control theory since in this setting only certain velocites are permitted due
to various restrictions imposed by practical situations. In street traffic the
geodesics are what you have to do to park and unpark in a narrow slot. See
the recent El Alaoui, Gauthier & Kupka 1996 [487] and the introductory
text Pelletier & Valère Bouche 1992 [1007]. For the naive reader or someone
most at home with partial differential equations, Bryant & Hsu 1993 [270] is
extremely informative.

14.5.7.1 Example: the Heisenberg Group The simplest example is the
field of planes (of rank 2) in E3 which are simply the kernels of the differential
1-form dz + xdy. The plane at a point (x0, y0, z0) satisfies the equation

z + x0y = 0.

This field of planes is not integrable and yields a metric as defined above. It is
interesting to view in group theoretical language, namely as the Lie algebra
of the Heisenberg group H, the simplest nilpotent group, made up of the real
matrices ⎛⎝1 a b

0 1 c
0 0 1

⎞⎠ .

This Lie group has for its Lie algebra the vector space R3 with the Lie bracket
relations

[x, z] = [y, z] = 0 and [x, y] = z.

The field of planes above is the same as the set of left translates of the x, y
plane.

parking your car
in a narrow slot

Fig. 14.3. Parking your car in a narrow slot; you can not pick your velocity in any
direction other than the one it points in. You control the direction and magnitude of
acceleration. The geometry on the unit tangent bundle is slightly more complicated
than but similar to Carnot–Carathéodory geometry
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14.5.8 Finsler Geometry

As very well explained in Spivak 1970 [1155] where he analyses Riemann’s
dissertation, Riemann in fact generalized Euclidean geometry by introducing
Finsler manifolds. Those are differentiable manifolds M where at every point
m ∈M is given some Banach structure, i.e. a convex body symmetric around
the origin of the tangent space TmM ; think of the convex body as the “unit
sphere.” With this in place, lengths and hence a metric can be defined, as in
Riemannian geometry. Riemann writes the prophetic sentence:

We will now stick to the case of ellipsoids [quadratic forms] be-
cause if not the computations would become very complicated.

B. Riemann

One can also relax the symmetry condition, e.g. in the Katok type examples
mentioned in theorem 221 on page 489.

ellipsoids versus convex
bodies
a non-ellipsoidal convex
body always has some
privilegiated directions

Fig. 14.4. Ellipsoids versus convex bodies. A non-ellipsoidal convex body always
has some priviledged directions

There are few geometrical objects as natural as Finsler manifolds, e.g. in
classical mechanics they arise whenever the kinetic energy is not quadratic.
However Finsler geometry’s destiny is not that of Riemannian geometry. It
is clear I am biaised concerning the subject but I think that, before very
recently, there were very few deep results in Finsler geometry which were not
essentially Riemannian. Or, when it makes sense, Riemannian and not true
for Finsler metrics. Up to very recently we knew two of them: Leon Green’s
theorem 257 on page 520 and the Burago–Ivanov theorem 265 on page 525.
One counterexample was found in Busemann 1955 [290] where Finsler tori
are constructed without conjugate points and not flat. The other was in
Skorniakov 1955 [1148] where it is proven that any system of curves on RP2

satisfying the axioms of projective geometry (with reasonable smoothness)
is the system of geodesics of some Finsler (non-Riemannian, usually, thanks
to Desargues’ theorem) metric; Green’s theorem figures in theorem 258 on
page 520. The paper Vérovic 1996 [1213] is quite interesting; it is proved there
that the result of Besson, Courtois & Gallot 1995 [189] (see theorem 251 on
page 510) can be true or false for Finsler manifolds, depending on the choice
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of different notions of measure in their unit bundle. In the other direction,
most of the results in the “filling paper” Gromov 1983 [618] are valid for
Finsler metrics.

Here is a personal comment. Finsler spaces look more general than Rie-
mannian metrics. They are in some sense. But in another sense they are more
special. In an affine (finite dimensional) real vector space a generic (symmet-
ric) convex body has priviliged directions (points) e.g. those where the affine
curvature is critical, etc. But an ellipsoid is isotropic, since all of the direc-
tions (the points) are equivalent. This is one reason for the importance of
Riemannian geometry.

There are of course many places to find information on Finsler manifolds.
Three good recent references are Bao, Chern & Shen 1995 [114], Álvarez Paiva
1991 [27] and Socié-Méthou 2000 [1152]. The note of Foulon 1997 [518] is a
perfect blitz introduction to the modern point of view. We mention the fact
that Finsler manifolds have a curvature, but the meaning of constancy of this
curvature is not clear today. The result of the preceding note is again a rigidity
result for compact negative curvature manifold. The positive case remains
mysterious, but Bryant 1995 [268] sheds some light on it. Alvarez, Gelfand &
Smirnov 1997 [28] characterize Finsler metrics for which the geodesics are the
straight lines (Hilbert’s fourth problem). Finally we note the use of a Finsler
limit metric in the proof of theorem 265 on page 525 to the effect that only
flat metrics on a torus can be without conjugate points.

14.5.9 Riemannian Foliations

The study of Riemannian foliations is also a topic in itself as is the study of
totally geodesic foliations of Riemannian manifolds. Some books are Tondeur
1988 [1194] and Godbillon 1991 [571]. For the relation with scalar curvature
see 1 7

8 of Gromov 1996 [631]. Look to Connes 1994 [400] for a new viewpoint
on foliations.

14.5.10 Pseudo-Riemannian Manifolds

Lorentzian manifolds are at first glance similar to Riemannian ones. They
are 4-dimensional manifolds equipped with a definite quadratic form in
each tangent space, but of signature (+,+,+,−). More generally a pseudo-
Riemannian manifold may be of any dimensional and with definite quadratic
form of any signature in each tangent space. At the beginning they have many
things in common with Riemannian manifolds. This is definitely misleading,
as was remarked by the physicist C. N. Yang, with the help of a beauti-
ful picture: Yang 1980 [1285]. The picture can also be seen on page 11 of
Besse 1987 [183]. The golden triangle is mainly what is common to both
subjects. After that, both the questions and the results diverge. Lorentzian
“geometry” derives its inspiration mainly from general relativity. Some books
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on Lorentzian geometry are: Beem, Ehrlich and Easley 1996 [125], Hawking
& Ellis 1973 [684], O’Neill 1983 [976], Sachs & Wu 1977 [1082]. A special
mention should be given to d’Ambra 1988 [425] (also see d’Ambra & Gro-
mov 1991 [426]) where it is proven that the isometry group of a compact
and simply connected Lorentzian manifold is itself compact (for the present,
analyticity is needed but this looks like only a small technical point). For sur-
faces, Weinstein 1996 [1250] studies a Lorentzian conformal concept which
is analogous to the concept of Riemann surface as opposed to that of a sur-
face with a Riemannian metric. Of Riemannian flavor is Christodoulou &
Klainerman 1993 [379]. See the expository Bourguignon 1991 [240]. Recently
pseudo-Riemannian geometry appeared in various contexts, see for example
Benoist, Foulon & Labourie 1992 [131] and Kühnel & Rademacher 1995 [837].

14.5.11 Infinite Dimensional Riemannian Geometry

Infinite dimensional Riemannian geometry is still very young. The book Lang
1972 [845] was the first to treat Riemannian geometry systematically in an
infinite dimensional setting. Then appeared Klingenberg 1982 [815] and now
the third edition Lang 1995 [847], and we suggest strongly that the reader
look at it. The most systematic treatment of infinite dimensional Riemannian
manifolds available today is Lang 1999 [848]. See also Bourbaki 1971 [234]
and Gil-Medrano & Michor 1991 [560]. We mention only a few directions.

The first is to use suitable embeddings of Riemannian manifolds into the
standard Hilbert space. This can be done for example by using suitably nor-
malized eigenfunctions of the Laplacian; see Besson, Courtois & Gallot 1991
[188] and Bérard, Besson & Gallot 1994 [140] for the setting and applications
to finiteness results.

One can also embed any Riemannian manifold M in the Banach space
of continuous functions C0(M) by the “trivial” map made of the various
distance functions, namely

m→ d (m, ·) .
This childish map turned out to be essential in the systolic inequality of
Gromov 1983 [618]; see theorem 137 on page 369.

The second most natural project is to define a notion of infinite dimen-
sional Riemannan manifolds, starting with some infinite dimensional differen-
tiable manifold M (whatever that means) and then endowing every tangent
space TmM with some Hilbert space structure. This seems easy. As we see
it, this is in fact difficult, at least at the state of the art, for the following
reason: from a simple Hilbert space structure one gets in general incomplete
metric spaces. With more complicated ones (typically in the Sobolev range)
one has completeness but then the geodesics seem to have no good and/or
useful geometrical properties; the geodesic equation is too complicated. In
Ebin 1970,1972 [474, 475] such a structure is used to solve some fluid me-
chanics equations. The text Gil-Medrano & Michor 1991 [560] addresses the
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question of making a manifold with the set of all Riemannian metrics on a
given manifold.

In appendix 2 of Arnol′d 1996 [66] the group of diffeomorphisms of a man-
ifold is given an infinite dimensional Riemannian structure which is proven
to be always of negative curvature.

For path space Riemannian geometry see Stroock 1996 [1164]. For infinite
dimensional Kähler manifolds, see Huckleberry & Wurzbacher 2001 [748].

14.5.12 Noncommutative Geometry

Finally special attention should be given to Connes 1994 [400]: this is the
beginning of a complete program to put most (perhaps all) geometries into
a very general frame. The frame is that of algebras of operators and the
approach is called “noncommutative geometry.” In this frame, according to
various extra suitable axioms one can recover almost any kind of geometry,
including of course Riemannian ones, from families of operators. The next
step in the program will be to generalize every concept one could wish, e.g.
curvature. For the metric itself this is done and we saw in §§§14.2.2.7 that one
can compute the distance with operators on spinors. See also the note 11.4.1.1
on page 551 for the Hilbert functional in this context.

14.6 Gromov’s mm Spaces

Gromov’s mm spaces are, in our opinion, the geometry of the future, redefin-
ing what we mean by a geometric space, to unify the subjects of probability
and metric geometry.

We will sketch here, separately from the preceding section, the new ge-
ometric spaces discovered in chapter 3 1

2 of Gromov 1999 [633]. We do this
because of their importance now and in the future. We refer of course to Gro-
mov’s book for more, but we will try to describe in some detail the contents
of this chapter and its spirit. We first quote the author:

We humbly hope that the general ambiance of X can provide a
friendly environment for treating asymptotics of many interesting
spaces of configurations and maps.

Misha Gromov 1999 [633]

What is the X in question? The actual metric geometries, even with all their
variety, seem not able to provide a basis for research programmes like: (1)
studying all the possible configurations of a living organism and its trajec-
tories as a function of time (its “life”); (2) estimating as a function of time
the mean diameter of planar nonselfintersecting Brownian motion; improve,
both in depth and in rigour, classical results or “facts” of statistical mechan-
ics; (3) construct a geometric theory of probability, i.e. establish a law of



712 14 Some Other Important Topics

large numbers for suitable geometric spaces. A part of this story is known,
either formally in the frame of probability theory, or more or less heuristically
in statistical mechanics. Still it remains a major task to lay the foundations
of an axiomatic theory large enough to treat in one shot all of the above
problems, as well as many other unsolved ones.

Here is the answer proposed in the 3 1
2 chapter, which we explain now

briefly. One should realize, to understand this program, that the notion of
measure is more important than that of metric. In Riemannian geometry, the
measure came canonically from the metric, and we used this fact at length
in this book, e.g. in the whole of chapter 7, and typically in theorem 318
on page 599. Now, the same way that Riemann dissociated the Euclidean
metric from the vector space structure to replace it by a manifold, Gromov
has dissociated measure and metric. The new geometry he created is that
of mm spaces (where mm stands for metric and measure). An mm space is,
by definition, a triple (X,μ, d) where first the measure μ should make (X,μ)
a Lebesgue–Rochlin space, that is to say that (X,μ) is measure-isomorphic
to a real segment [0,m[ with a countable set of atoms (points of positive
measure). We will only use spaces of finite total measure m. And one only
asks that the metric d on (X,μ, d) be a measurable function on X×X. Let us
denote by X the set of all mm spaces. For a systematic exposition of analysis
on metric spaces, which consists in studying metrics constructed to assist in
solving problems of analysis, see the book Heinonen 2001 [697].

Although it is our principal desire to calculate probabilities, it seems that
there cannot exist on X a reasonable measure, but at least there is canonical
distance, called by us here dΓ . This distance is defined only for two spaces
of the same total mass. As compared to dG−H(see theorem 380 on page 653)
this distance is not very geometric; at any rate it is very hard to visualize it.
It is defined as follows: having two mm spaces (X,μ, d) and (X ′, μ′, d′) one
considers all of the measure isomorphisms (which exist by definition)

φ : X → [0,m[, φ′ : X ′ → [0,m[.

On the square [0,m[2 one transfers d and d′ (and keeps the same notation
for them):

d, d′ : [0,m[2→ R.

One then introduces the “almost-distance” ε(φ, φ′) between d and d′, defined
as the smallest ε such that the set of all t ∈ [0,m[2 with |φ(t) − φ′(t)| < ε
is of measure smaller than ε. Then dΓ (X,X ′) is the infimum, for all of the
possible parametrizations φ, φ′ of X,X ′, of the above ε(φ, φ′). It is not easy
to verify that dΓ (X,X ′) = 0 implies that X and X ′ are isomorphic as mm
spaces. But it is very pleasant that the proof introduces for mm spaces the
following notion which generalizes that of sectional curvature for Riemannian
manifolds.

The definition is as follows: for evey integer r one considers the set Mr

of all r × r symmetric matrices. On every Mr there is a natural measure,
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namely the μ-mass of all r-tuples of points of (X, d, μ) whose mutual dis-
tances are precisely given by the elements of the matrix under consideration.
The set of these measures, as r runs through the integers, suffices to recon-
struct the metric d. This is equivalent to a classical problem of “moments” of
functions. A brief reflexion might convince the reader from this, for example
after thinking of the extreme case of constant curvature, that there are uni-
versal relations for the mutual distances of (d + 2)-tuples in Hypd or Sd, or
for Euclidean space Rd (see section 9.7 of Berger 1994 [167] and Berger 1981
[161].

The fact that dΓ is a much better notion, for measure theoretic applica-
tions, than dG−H is seen in figures 14.5: in dG−H one sees convergence toward
a sphere with an interval added (“hair”), but for the dΓ convergence, only
the sphere remains. And of course a physicist, or any person concerned with
statistical measurements, will not see the hair.

...
dG-H

dG

Fig. 14.5. Comparing Gromov and Gromov–Hausdorff limits

The second notion introduced by Gromov is that of observable diameter
ObsDiam(X, k)(more precisely k-observable with a power of resolution nor-
malized to be equal to 1). By definition ObsDiam (X, k) is the smallest ε such
that, for any numerical function f which is 1-Lipschitz on (X, d, μ), there is
in R a subset A with the property that diam(A) < ε together with

μ
(
f−1(A)

)
≥ μ(X) − k.

This comes from the desire in physics to define the “visible diameter” of X
with regard to various measurements of X. Now, says Gromov, let us just
take k = 1010 once and for all for simplicity’s sake, and that is what we
will do now. The notation is now simply ObsDiam(X) . The geometric law
of large numbers which Gromov is after consists in studying the asymptotic
behavior of ObsDiam(X) when the dimension of X tends to infinity. Here is
a selection of his results from the 3 1

2 chapter. First:
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Theorem 409

ObsDiam
(
Sd
)

= O

(
1√
d

)
,

although the usual diameter is always equal to π. This is nothing but a
reformulation in the present language of a result of Lévy 1951 [861], obtained
in fact as early as in 1919. But the new result is that

ObsDiam
(
Xd

)
= O

(
1√
d

)
for the class of Riemannian manifolds Xd with Ricci > d − 1 (remember
that the Ricci curvature of the standard sphere is equal to d − 1). Gromov
says that “there is in Paul Lévy everything for this result.” One uses for this
phenomenon the word concentration. Concentration is preserved by dΓ . To
realize the depth of this, one finds in the 3 1

2 chapter examples where there
are points of zero Ricci curvature and for which the result fails—there is no
longer concentration. These examples consist simply in convex surfaces of
revolution with flat points.

Theorem 410 (Gromov’s “strong law of large numbers”) For any given
compact Riemannian manifold X, write

∏nX for the n-fold Cartesian prod-
uct of X with itself. Then

ObsDiam

(
n∏
X

)
= O(1).

Notice that the diameter of
∏n

X is of order O (
√
n) . For a law of large

numbers, but where the emphasis is on general functions (Gromov here works
with Lipschitz ones) see Talagrand 1995 [1180].

As a first contribution to algebraic geometry in infinite dimension, one has,
for any complex algebraic manifold X ⊂ CP

n of degree d and of codimension
k

ObsDiam (X) ≤
(

logn
n

)1/2d

when n tends to infinity with k and d fixed. This is the hardest result proved
in the 3 1

2 chapter. In short one replaces the positivity of the Ricci curva-
ture by algebraicity. The proof is very long and intricate. It belongs to what
Gromov calls “the muddy waters of metric algebraic geometry.” If the reader
is surprised by this statement, if he doubts that these waters are “muddy,”
he is advised to consider that one still does not know the behaviour, with
respect to their degree, of the intrinsic diameter of the algebraic surfaces of
CP3. For curves the answer is in Bogomolov 1994 [215] and not at all obvi-
ous: for algebraic curves in CP

2 the diameter is bounded when the degree is
given but there are algebraic curves with arbitrary large diameter. In CP

n
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algebraic submanifolds of bounded degree have bounded diameter: we have
all of the tools for that, since they are minimal submanifolds by the results
from §§§14.2.1.3. Hence every ball within the injectivity radius has a volume
which is not too small and the total volume is given by the degree as seen
again in §§§14.2.1.3.

Gromov also makes a deep study of concentration in the “fibers.” This is
the beginning of a study analogous to that of collapsing in §§§12.4.3.1.

Gromov shows that cubes are very mysterious. On one hand, by the above

ObsDiam

(
n∏

[0, 1]

)
= O(1),

but if one considers the “void” cube
∏n {0, 1}, then

ObsDiam

(
n∏

{0, 1}
)

= O
(
n1/4

)
.

“Holes are expensive.” For the simplex of dimension n, one has an observable
diameter of O(1/n). This is a reformulation of a “classical fact” of statistical
mechanics.

Many other accomplishments appeared in the 3 1
2 chapter. An important

one consists in defining another metric on X . This new metric looks extremely
complicated to the present author, but it has the basic property that if a
sequence of metric spaces Xk verify

ObsDiam (Xk) → 0 as k → ∞

(e.g. spheres), then the sequence converges for this metric toward a point.
This is definitely not the case for dΓ .

Finally Gromov defines a spectrum for any mm space (remember that
the spectrum is a robust invariant). The construction copies the construction
of §9.4 and §§1.8.3. It will be enough to show how to define λ1(X), the first
eigenvalue of (X, d, μ). The idea is to use Dirichlet’s principle, i.e. to minimize
the quotient ∫

X ‖∇f‖2
dμ∫

X f
2 dμ

on the functions of zero integral. This makes sense since we have a measure.
It remains only to define ‖∇f‖ . But just take the Lipschitz constant of f.
This makes sense in any metric space. We end with the beautiful inequality
between λ1(X) and the observable diameter (even though the proof is simple):

ObsDiam(X, k) ≤ log k−1/2
√
λ1(X).
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14.7 Submanifolds

We are concerned that this topic deserves an entire book, and we are sorry not
to discuss it at greater length here. Among other motivations, Riemannian
geometry arose is trying to generalize the geometry of surfaces in E3. There
is no reason not to consider the geometry of submanifolds inside a given Rie-
mannian manifold. Because Euclidean geometry is hereditary for subspaces,
it follows that Riemannian geometry is also hereditary for submanifolds (but
of course the metric is not the induced one in the rough metric sense; that
works only for totally geodesic submanifolds), see §§6.1.5. This is one rea-
son more why Riemannian geometry is important. We do not know of any
systematic survey for this topic, even in the special and much studied case
of submanifolds of euclidean spaces, except for Chen 2000 [358]. Few books
give the general equations for a submanifold of any codimension in a Rieman-
nian manifold (the so-called Gauß and Codazzi–Mainardi equations). Among
them: chapter VII of Kobayashi & Nomizu 1963-1969 [827, 828], chapter XX
(see section 20.14.8) of Dieudonné 1969 [446] and chapter 7 of Spivak 1979
[1155] present the foundations of the theory of submanifolds in a Riemannian
manifold. But there is a huge collection of local and of global results. Recent
surveys are Hsiang, Palais & Terng 1988 [741], Terng 1990 [1184], Terng &
Thorbergsson 1995 [1185], Thorbergsson 2000 [1186], Palais & Terng 1988
[993], see also Willmore 1993 [1272]. In particular, isoparametric hypersur-
faces deserve a special mention as relating different topics. The founding text
is Cartan 1939 [317]. For isoparametric submanifolds in an infinite dimen-
sional setting, see Heintze & Liu 1999 [700].

14.7.1 Higher Dimensions

An important remark is in order, which was well known around the turn
of the century and was already explained in §§§4.4.3.5. Surfaces in E3 are
important not only for historical reasons but because of this. When d ≥ 4 take
a generic hypersurface in Ed. Then the sectional curvature (hence the inner
metric isometry type) determines the second fundamental form. Classically
this implies congruence (this is a purely local statement). The proof is: in a
basis which diagonalizes the second fundamental form, the Gauss equations
imply that

K (ei, ej) = hihj

where the hi are the principal curvatures (this is exactly the generalization of
the theorema egregium from §§3.1.1). And now, if I know the three products
ab, bc and ca, then I know a, b, c as long as none is 0. Thus the metric of a
generic hypersurface determines its second fundamental form. The general-
ized Gauß–Codazzi equations show that together the metric and the second
fundamental form determine completely the embedding (see any of the books
quoted at the begining of this section). In some sense, there is no “congruence
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versus isometry” problem left. Of course the above philosophy applies also to
hypersurfaces in general Riemannian manifolds Md for d ≥ 4.

Things are completely different when d = 3. The Gauss curvature (hence
the isometry type) yields only the product of the two principal curvatures.
Then there is room for a fascinating game, not finished yet. Let us look
for example at rigidity: two compact strictly convex hypersurfaces which are
abstractly isometric are congruent (matched up by a global isometry of the
whole Ed). For d > 3 it follows from the above remark, but when d = 3
the result remains but the proof is much more sophisticated and is due to
Cohn-Vossen and Herglotz. For references and more see Berger & Gostiaux
1988 [175], section 11.4 and Klingenberg 1978 [813] 6.2.8.

This being realized, there remain many topics in the field, especially global
questions and we already mention some of them above. Integral geometry is
very interesting, but works only (with one exception to be mentioned shortly)
in Euclidean spaces and space forms. See the survey Schneider & Wieacker
1993 [1107] and add the classic Santalo 1976 [1093], in particular for Chern’s
kinematic formula. In Riemannian manifolds, integral geometry works for
hypersurfaces and geodesics starting from them. This is basic for Croke’s
local isoembolic inequality theorem 149 on page 380 and the isoperimetric
inequality for nonpositive curvature manifolds in §§§7.1.2.3: see Croke 1980
[411] and Croke 1984 [416].

14.7.2 Geometric Measure Theory and Pseudoholomorphic
Curves

Submanifolds enjoying various strong geometric properties are fundamental
to many investigations. Two seem to be particularly important today. First
the dramatic appearance of geometric measure theory (also known as GMT )
with its harvest of results provided Riemannian geometers with almost all
of the existence theorems they could dream of for proving the existence of
minimal (or constant mean curvature) objects. This was used above, in the
Schoen–Yau approach to positive scalar curvature in theorem 355 on page 627
and for the isoperimetric profile in §§7.1.2 and the classical isoperimetric
inequality in §§1.6.8. The theory of “GMT” is an extremely difficult subject.
In the founding book Federer 1969 [511] as well as in many other articles on
the subject, it very hard to find one’s way through in a reasonable time. We
suggest reading first Morgan 2000 [937] and then Simon 1983 [1138].

The second application of weird submanifolds appeared in the pioneering
paper Gromov 1985 [619]. A recent survey book is Audin & Lafontaine 1994
[88]. Although those pseudoholomorphic curves are mainly used in symplectic
geometry, one meets them also in Riemannian geometry; see for example the
article of Labourie in the preceeding book and Gromov 1992 [632]. For a
two-page sketch, see section 3 of Berger 1998 [169].
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We cannot give comprehensive references for this chapter, especially for
the generalities. They appear in every book on differential geometry and
Riemannian geometry. Only in some special instances will we give references.

15.1 Vector Fields and Tensors

We are on a differentiable manifold M , and it is smooth, i.e. C∞. In §§4.2.1
we constructed its tangent bundle TM, which is to be seen as a bundle
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π : TM →M

over M. A vector field X on M is a (differentiable, as many times as needed,
which is always understood) section of TM i.e. a map X : M → TM such
that πX(m) = m for any point m ∈ M. This is the modern sophisticated
way to say that X is a differentiable choice of a vector X(m) tangent to
M at each point m, with m running through M and the map m → X(m)
differentiable. Vector fields can be defined in a short by the way they act on
numerical functions f, g : M → R: they should verify the axiom

X(fg) = X(f)g + fX(g)

for the product of functions. The operation means, geometrically, differenti-
ating the function f in the direction of X.

We recall from §§4.2.1 the basic fact that without a Riemannian metric
there is no second order calculus. A map on functions like f → X(Y (f)) is
not a vector field. The reason is that tangent spaces at M at different points
cannot be identified. A Riemannian metric will provide an identification for
nearby points. However an essential fact is that f �→ X(Y (f)) − Y (X(f))
verifies trivially the above axiom, so that it is a vector field. It is called the
bracket (or Lie bracket) of X and Y and denoted by [X,Y ]. For three vector
fields X,Y, Z one verifies trivially the Jacobi circular permutation property:

[X, [Y, Z]] + [Y, [Z,X ]] + [Z, [X,Y ]] = 0.

The bracket has a basic geometric interpretation: to compute [X,Y ] (m0) ,
one follows for a small time ε the integral curve of X, and then, from the
attained point, the integral curve of Y, and then in reverse time again the
integral curve of X, then of Y. The point you end up at, mε, does not coincide
with the original point m0 in general, but the curve described by the pointmε

parameterized by ε has velocity zero at ε = 0, and acceleration [X,Y ] (m0) .
When [X,Y ] = 0 one says that X and Y commute. The bracket is the defect
of commuting; in coordinate systems {xi} the vector fields ∂

∂xi
commute with

one another. Brackets are also a way to know when a distribution of k dimen-
sional subspaces of the tangent space can be integrated into a submanifold;
this is the celebrated Frobenius theorem, proven in any introductory book on
differential geometry.

To every real vector space V of dimension d one attachs canonically many
new vector spaces, the tensor products of type (r, s). The simplest to define
are those of type (0, s). They are nothing but the multilinear forms (valued
in the real numbers) over V. And those of type (1, 0) are just V itself. Those
of type (r, 0) will be linear combinations of simple tensor products of vectors,
like

x1 ⊗ · · · ⊗ xr.

A quadratic form is a tensor of type (0, 2), which is moreover symmetric.
The tensors of type (r, 0) are just the duals of those of type (0, r), and those
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[x,y](m) = 0 [X,Y](m) ≠ 0

m m

Fig. 15.1. (a) [X, Y ](m) = 0 (b) [X, Y ](m) �= 0

of type (r, s) are the tensor products of those of type (r, 0) with those of
type (0, s). The most simple mixed type one is (1, 1). Its elements are the
endomorphisms of V. A notation can be

⊗r,s
V . It is convenient notation to

consider tensors of type (r, s) as multilinear maps valued in the r-th tensor
power of V.

The canonicity of the extension
⊗r,s enables us to define, for our mani-

fold M, the bundle
⊗r,s

TM whose fibers are the
⊗r,s

TmM when m runs
through M. A tensor of type (r, s) on M is just a section of

⊗r,s
TM. In the

(0, s), and when moreover one restricts oneself to exterior multilinear forms
(i.e. antisymmetric ones), we introduced these as differential forms in §§4.2.2
and denoted the spaces of them by Ωs (M) . The curvature tensor below will
be defined as of type (1, 3) but often changed into a tensor of type (0, 4). For
the curvature tensor, (1, 3) can be interpreted as an exterior 2-form valued
in the endomorphisms of TM since 3 = 1 + 2.

To check that some object is a tensor one can either employ some concep-
tual trick like canonicity, or (the hard way) check that it behaves as it should
under coordinate changes. For theoretical purposes as below, the following
global trick was discovered in the fifties. We state it only for forms. To check
that some multilinear form

α (X1, . . . , Xk)

is really a tensor, i.e. that it depends only on the values X1(m), . . . , Xk(m)
at the point m (and not, for instance, on derivatives), it is enough to check
that

α (X1, . . . , fXi, . . . , Xk) = fα (X1, . . . , Xi, . . . , Xk) (15.1)

for every index i and every real valued smooth function f on the manifold.
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This simple definition works only in the C∞ case. If one is not in such a
situation, one should proceed directly. For example check that the bracket,
although antisymmetric, is not a differential 2-form.

15.2 Tensors Dual via the Metric: Index Aerobics

We are now on a Riemannian manifold M. We ask for neither completeness
nor compactness, unless explicitly stated. The first thing to do is to carry over
to all tensors the Euclidean structure coming from the tangent bundle. It is
classical that a Euclidean structure extends canonically to any tensor power.
On any of these tensor spaces will denote the scalar product (the quadratic
form) by 〈, 〉 and by ‖‖2 the squared norm.

Next we define the canonical musical duality.1 It starts with the duality
between a vector v and 1-form v∗: the form v∗ is defined by

v∗(x) = g(v, x)

for every vector x (where g is the metric) and the vector α∗ constructed from
a 1-form α is determined by the condition

α(v) = g (α∗, v)

for every vector v. This duality extends to any Euclidean tensor of type (r, s)
and tranforms it at your will into one of type (r+ k, s− k). And this extends
pointwise trivially to

⊗r,s
TM. We will use this freely. The most important

example is the gradient of a function:

∇f = (df)∗

i.e.
g (∇f, x) = df(x)

for any vector x. Recall that for vector fields X

df(X) = X(f)

by the very definition. The musical operators preserve the norms.
A third operation can be carried out in a Riemannian manifold, which

is taking the trace with respect to the metric g of a tensor of type (r, s) to
obtain a tensor of type (r − 1, s− 1). In classical literature, this is called the
contraction of upper and lower indices. The place where the trace takes place
has to be made precise. We do it here for the first two places of a tensor of
type (0, s) called α:

1 These dualities are called musical because they are often written with symbols
like � : V → V ∗ and � : V ∗ → V .
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trg α (x3, . . . , xs) =
d∑
i=1

α (xi, xi, x3, . . . , xs)

for any orthonormal basis {xi} . We use the simplest case to define the Lapla-
cian of a numerical function f: we take the trace

Δf = − trg∇2f

(with a minus sign) of the (0, 2) tensor ∇2f = ∇df , which is sometimes called
the Hessian of f and sometimes written Hess f .

15.3 The Connection, Covariant Derivative and
Curvature

We embark now on describing the golden triangle of Riemannian geometry,
which is made of three elements: the curvature (via the connection), the par-
allel transport and the absolute calculus (i.e. an intrinsic differential calculus
of all orders). This triangle was first understood by Levi-Civita and Ricci at
the start of the XXth century. The basic lemma, which is the key to every-
thing, is the existence and the uniqueness of a canonical connection, called
the Levi-Civita connection, on any Riemannian manifold. It is important to
realize that this lemma is a miracle. Many people have tried to understand
it, with more or less sophisticated concepts, but we consider that it remains
a miracle.

Ricci/Levi-Civita connection
absolute differential calculus
e.g. ∇XY derive vector fields

define df, ∇df = Hess f,

∇3f,∇kω of any exterior form��

������������� ��

������������������

parallel transport:
compare tangent spaces

along a curve



 �� the curvature tensor

Fig. 15.2. The golden triangle

Let us be more precise. We would like to be able to develop on a Rieman-
nian manifold a differential calculus of all orders. In affine spaces the tangent
spaces at various points can be all identified with a single vector space by
translations and that is enough. But this is not possible a priori in a smooth
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manifold since there is no way to compare tangent spaces at different points.
Levi-Civita’s discovery was that such a comparison is possible infinitesimally
in a unique way, if one demands that the Euclidean structures of the tan-
gent spaces be preserved and moreover the second differential of a function
be symmetric, see §15.5. The precise notion of such a connection was seen
in various ways, mostly in coordinates. Élie Cartan used moving frames to
describe it. The notion of connection was introduced in various settings by
Élie Cartan, and then Charles Ehresmann put it in the most general frame in
Ehresmann 1951 [482]; for more history see note 2 in volume I of Kobayashi
& Nomizu 1963-1969 [827, 828]. One can also use the notion of horizontal
space in the tangent bundle to the tangent bundle.

Since Koszul’s work, the best way of writing the canonical connection (as
well as for connections in various bundles with ad hoc modifications) is to
define it as an operation ∇XY on pairs of vector fields. Koszul introduced
this concept in it 1951. It was used soon in Nomizu 1954 [969] and finally
presented in a systematic expository way in Koszul 1960 [831]. Geometrically
we want this to enable us to compare infinitesimally closed tangent vectors.
This means that we will estimate by ∇XY the defect in the direction X of
the vector field Y to be invariant (parallel). See figure 15.3.

Y
x

Y(t)

computing DxY

Fig. 15.3. Computing ∇XY

Definition 411 A linear connection in a differentiable manifold M is a bi-
linear map DXY from pairs of vector fields X,Y into vector fields which is
linear in X and a derivation on Y. Namely, if f is any real valued function,
then

DfXY = fDXY

but
DXfY = X(f)Y + fDXY.

The torsion of D is

TD(X,Y ) = DXY −DYX − [X,Y ].

(The reader can check that this is a tensor.) It is said to be torsion-free if
moreover
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DXY −DYX = [X,Y ]

for every pair X,Y of smooth vector fields.

The axiom DfXY = fDXY ensures for us that, as above, DXY (m) depends
only on the vector X(m). But for Y one has to know more, for example it is
enough to know the restriction of Y to a curve starting from m with velocity
X(m). For example, for any curve γ the notation γ′′ = ∇γ′γ′ makes sense,
and is called the acceleration of the curve. It is characteristic of Riemannian
manifolds that curves in them have acceleration, something which does not
exist in a general differentiable manifold. If for example the speed of γ is
constant, i.e. ‖γ′‖ = 1, then the acceleration γ′′ is always orthogonal to γ′.
A crucial fact is that geodesics are exactly the curves whose acceleration
vanishes (see equation 4.25 on page 220)

∇γ′γ′ = 0,

and the speed is automatically constant, since

γ′ ‖γ′‖2 = 2 〈∇γ′γ′, γ′〉 = 0.

Note that ∇XY is not a tensor of type (1, 2). But

Z → ∇ZY

is a tensor of type (1, 1).
With a little extra work we can make sense out of applying any connection

D to formDXY whenX and Y are vector fields tangent to a manifoldM , but
defined only along a curve C (or other immersed submanifold). The resulting
DXY is also only defined along that curve. Given an oriented curve C on a
Riemannian manifold M , and a connection D, we have the obvious choice
of vector field defined along C, the unit tangent field; call it ∂s (using unit
speed parameter s). Then we can define the covariant derivative of a vector
field Y defined along a curve C, written Ẏ , or dY

ds , again forming a vector
field defined along C.

On a Riemannian manifold (M, g) a connection will be of interest only if
it preserves the metric g:

X (g(Y, Z)) = g (DXY, Z) + g (Y,DXZ) .

This condition is not enough to determine D, but here comes the miracle:

Theorem 412 (The Fundamental Theorem of Riemannian Geometry (Levi-Civita))
There is one and only one torsion-free connection ∇ preserving g and it is
called the Levi-Civita connection or simply, the connection of (M, g).

The trick is only to write the three conditions of preservation for three
vector fields X,Y, Z and perfom the combination
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Xg(Y, Z) + Y g(Z,X) − Zg(X,Y ).

Using the vanishing torsion condition yields immediately the value of g(∇Y, Z)
is a function of explicit expressions in only g,X, Y, Z. This being true for any
Z yields the value of ∇XY. In the flat case, i.e. when we are in a Euclidean
vector space, the value ∇XY (m) is just the derivation with respect to the
vector X(m). This makes sense since Y belongs to a fixed vector space. Let
us see what remains, for general Riemannian manifolds, of the rule of com-
mutation of derivatives in the classical calculus in vector spaces. So we look
at the possible defect of ∇X∇Y −∇Y∇X from its Euclidean value ∇[X,Y ]. If
the reader does the computation to see the behaviour when X is changed into
fX, then the reader will be soon convinced that this expression is a tensor.
Then one checks, using the criterion above, that:

Proposition 413 The expression

∇X∇Y −∇Y∇X −∇[X,Y ]

is in fact a tensor, of type (1, 3), the curvature tensor of (M, g).

By definition, the tensor R(X,Y )Z is given by

R(X,Y )Z = ∇Y∇XZ −∇X∇Y Z −∇[Y,X]Z.

Then one can speak of R(x, y)z for tangent vectors x, y, z and note that
R(x, y)z is itself a vector. The curvature tensor is identically zero for flat
manifolds, and we saw the converse: §§4.4.1 and §§6.3.2. We have put a neg-
ative sign (say we exchange X and Y ) in order that the curvature of a sphere
be positive, or equivalently that the sign be the right one to get back Gauß
curvature K (be aware that many authors use a different choice of sign here).
The curvature is then a good measure of the defect from being locally Eu-
clidean. Now we use duality to get from R a (0, 4) tensor

R(x, y, z, t) = g (R (x, y, z, y)) .

The symmetries of this (0, 4) tensor claimed in equation 4.28 on page 223
are:

R(x, y, z, t) = R(z, t, x, y) = −R(x, y, t, z)
R(x, y, z, t) = −R(y, x, z, t) (15.2)
R(x, y, z, t) +R(y, z, x, t) +R(z, x, y, t) = 0 First Bianchi identity

and they stem out of the definition by direct computations. The last one is just
a little combinatorics as seen in §§4.4.1. We recall that proposition 413 as it
stands is not enough to prove the second variation formula of equation 6.7 on
page 264. One needs some extra computation in coordinates or more general
stuff about induced connections which we do not really need for applications.
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15.4 Parallel Transport

The marvelous thing, even if trivial, is that the connection can be inte-
grated along any curve (but not on a surface in general). Take a curve
γ : [0, 1] →M and consider some vector x0 ∈ Tγ(0)M. For a family of vectors{
x(t) ∈ Tγ(t)M

}
the equation

∇γ′(t)x(t) = 0

is a first order linear ordinary differential equation. It therefore has a unique
solution such that x(0) = x0:

Definition 414 The solution x(1) is called the vector parallel transported
from x0 along the curve γ. Parallel transport is a Euclidean isomorphism

γ0→1 : Tγ(0)M → Tγ(1)M.

For example, if one identifies all of the Tγ(t)M with Tγ(0)M by that parallel
transport, then for a vector field X along the curve γ the vector ∇γ′(t)X is
in fact nothing but

dX

dt
= X ′(t).

This is the language we used systematically in the book in various places,
starting in proposition 61 on page 264. For the geometric “construction”
of the parallel transport, see the figures near proposition 61 on page 264.
Another interpretation is given just below.

Note that parallel transport inside flat manifolds, at least locally, is trivial.
Since it is the vector space parallelism, along a closed loop, it will be the
identity. But in general, if γ is a loop, i.e. if γ(0) = γ(1), then the Euclidean
isomorphism γ0→1 belongs to the orthogonal group O

(
Tγ(0)M

)
but is not

the identity.
We note here that, although the proof of the first variation formula equa-

tion 6.3 on page 247 is straightforward with the above language, the proof
of the second variation formula 6.7 on page 264 and that of the Jacobi field
equation 6.11 on page 271 are always lengthy and technical. See most books
on Riemannian geometry. The difficulty is that one uses proposition 413 on
the facing page directly only when the surface of variation is embedded. A
typical difficulty arises when some of the curves of the variation have a fixed
point, i.e. don’t vary.

Note 15.4.0.1 (The horizontal language and the canonical metric on TM)
For a geometer it is nice to interpret the connection in the tangent bundle
π : TM →M . We pick up a vector v ∈ TM and set m = π(v) ∈M. Now look
at the tangent space Tv(TM); here, for any manifold, we have a canonical
subspace, namely the space tangent to the fiber TmM. It is convenient to
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say that Tv (TmM) is the vertical space of Tv(TM) and to write it Vert(v).
The connection provides us with a canonical complement of Vert(v), called
the horizontal space at v and denoted by Horiz(v). An element w ∈ Horiz(v)
is the initial speed vector w at v of the curve in TM made up of tangent
vectors in M which are parallel transported from v along a curve in M with
some initial speed vector x ∈ TmM. Then of course x is equal to the image
of w under the differential of π. Conversely, if one is given such a horizontal
distribution in TM, the parallel transport along a curve c downstairs in M
consists in integrating the horizontal vector field so obtained in the surface
π−1(c). The direct sum is

Tv(TM) = Horiz(v) ⊕ Vert(v).

�

Y

Y(t)

TM

M

TvTm

TmM

m
v

v

vert (v)

horiz (v)

M

Y

c

DxY

v horiz (v)

Y(0)

x
Y(t)

parallet transport
seen as horizontal lifting

DxY as a vertical
part of the lift
of Y in TM

Fig. 15.4. Parallel transport seen as horizontal lifting

Now suppose that we are in a Riemannian manifold. Since the differential
dπ of the projection, as restricted to Horiz(v), is a vector space isomorphism
one can define a Riemannian metric on TM as the direct Euclidean sum
of gm, the Euclidean structure on TmM, with the Euclidean structure on
Horiz(v) obtained from gm lifted by dπ on Horiz(v). This yields the canonical
Riemannian metric on TM. For the unit tangent bundle UM one will get an
induced metric. This metric played a basic role in chapter 10, one of the main
points being that the geodesic flow leaves invariant its canonical measure.
This submersion

(TM, gcan) → (M, g)
is a particular case of a Riemannian submersion, see §15.8 or §§4.3.6.
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15.4.1 Curvature from Parallel Transport

The first arrow in the golden triangle tells us that the curvature is the in-
finitesimal defect from the identity map of parallel transport along small
loops. More precisely, consider two commuting vector fields X and Y . We
will look near a point m in a Riemannian manifold M (see §15.1) at the
small parallelograms P (ε) generated by X and Y . Because the vector fields
commute, the parallelograms close up at m. If ε∗ ∈ O (TmM) denotes parallel
transport along the parallelogram P (ε), the derivative

d

dε
ε∗

∣∣∣∣
ε=0

makes sense—it belongs to the Lie algebra of O (TmM) (its tangent space
at the identity element) and is an endomorphism of TmM. Recall that the
Riemann curvature tensor R is in Λ2 (End (TmM)).

d

dε
ε∗

∣∣∣∣
ε=0

= R (X (m) , Y (m)) (15.3)

or
d

dε
ε∗z

∣∣∣∣
ε=0

= R (X (m) , Y (m)) z

where x = X(m), y = Y (m) and we pick any z ∈ TmM.

p

Id

y

t

-t

t

-t

r(λt)

YH

XH

Y
X

x

Fig. 15.5. Parallel transport of commuting vector fields

This can be summarized by saying that the curvature measures exactly
the defect of the horizontal distribution in TM to be integrable. This was used
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in chapter 13. We mention now some natural questions, even if not (at least
today) fundamental. The first would be to look for a global formula based on
note 15.4.0.1, some kind of an integral of the curvature which will yield γ∗
for any loop γ, not only infinitesimal ones, but in the spirit of the definition
of holonomy groups in §13.1. To our knowledge such a formula exists only in
Nijenhuis 1953/1954 [965, 966]. It can be seen as a very geometric explicit
realization of the Ambrose–Singer theorem 396 on page 669.

The second question is the Ambrose problem. It stems out of Élie Car-
tan’s philosophy seen in §§6.3.1. Cartan proved that a Riemannian metric
is determined locally by the knowledge of an exponential map at a given
point p and the knowledge of the curvature tensor along the corresponding
geodesics. The Ambrose problem asks for a global version of this. For such a
result one needs to go up to the cut locus. We saw at the end of §§6.5.4 that
this problem has been solved sucessfully only for surfaces.

15.5 Absolute (Ricci) Calculus and Commutation
Formulas: Index Gymnastics

We will now introduce the third vertex of the golden triangle, namely the
Ricci (absolute) calculus. It consists in being able to define, thanks to the
canonical connection, a differential calculus of any order which is intrinsic.
In particular any tensor T will admit a derivative of any order k, which
will be a tensor of type (r, s + k), denoted by ∇kT , and called the k-th
covariant derivative of T . The definition is trivial for a linear algebra minded
reader. The connection provided us with a first covariant derivative for vector
fields X , which is a tensor of type (1, 1) written Z �→ DZX. One denotes
it by simply ∇X. An important example in computations, as soon as one
encounters groups of isometries, is that of a Killing vector field. This is the
vector field on the manifold made up by the derivative at the origin of a
one-parameter group of isometries. Such a field X is Killing if and only if its
covariant derivative is antisymmmetric:

g (∇xξ, y) + g (x,∇yξ) = 0

for any vectors x and y. We did not meet Killing fields before, because the
idea of this book is to skip all computations, but they appear in most, if not
all, of the various examples we quoted of manifolds with various remarkable
properties.

We have just to extend this notion of covariant derivative to any tensor of
type (r, 0) since tensor products of vector fields generate them, and thereafter
to multilinear forms by duality, etc. We write the explicit formula only for
tensors of type (0, s) and leave to the reader to check that for any tensor α
of degree (0, s) the formula
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Z �→ ∇Z (α (X1, . . . , Xs)) = Z (α (X1, . . . , Xs))−
∑
i

α (X1, . . . ,∇ZXi, . . . , Xs)

(15.4)
defines a tensor of degree (0, s + 1), which one can denote by ∇α and write
also as ∇α (X1, . . . , Xs;Z) .

Then one of course define for any k the k-th derivative ∇kα, and manage
to do the same for any tensor T , e.g. for the curvature tensor ∇R will be a
tensor of type (1, 4). A direct computation yields the second Bianchi identity
for the curvature tensor: For any x, y, z tangent vectors

∇xR(y, z) + ∇yR(z, x) + ∇zR(x, y) = 0 (15.5)

which is needed in some problems seen above.
We will now fulfill our promise for the second absolute derivative of a

function to be symmetric. Let f be any real valued function and let us look
at ∇2f(X,Y ) −∇2f(Y,X). Using only the definitions we get

∇2f(X,Y ) −∇2f(Y,X) = Y (X(f)) − df (∇YX) −X(Y (f)) + df (∇XY )
= [Y,X ](f)− df (∇XY −∇YX)
= 0.

by the torsion-freedom of the Levi-Civita connection in definition 411 on
page 724. Note that the above symmetry is in fact equivalent to this torsion
freedom.

Note 15.5.0.1 (Riemannian invariants) Many people think that the cur-
vature and its derivatives are the only Riemannian invariants. This is true
and classical when looking at the strong condition of algebraic invariants
which stem from the connection, see page 165 of Schouten 1954 [1111] and
the references there. In fact the proof easily follows from Epstein 1975 [490].
But things are dramatically different if one asks only for tensors which are
invariant under isometries (called “natural”). There is no hope to get any
kind of classification of natural tensors as explained in Epstein 1975 [490].
For more see Muñoz Masqué & Valdés 1996 [951]. �

We can now complete one missing arrow in the golden triangle: to go from
parallel transport to Ricci calculus, i.e. to compute ∇T with parallel trans-
port. Pick any curve γ, any basis {Xi}i=di=1 of Tγ(0)M and parallel transport it
into {Xi(t)} along γ. Then all of the ∇γ′(t)Xi(t) vanish by construction and
equation 15.4 tells us that the desired covariant derivative of a (0, s) form α
is nothing but the ordinary derivative

d

dt
α (X1(t), . . . , Xs(t))

∣∣∣∣
t=0

= ∇α (X1, . . . , Xs, γ
′(0)) .

Only the third arrow remains: the relation between the curvature and the
absolute calculus. One can discover it by looking at the third derivative ∇3f
of a function. A direct computation yields:
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∇3f(x, y, z) −∇3f(x, z, y) = df(R(y, z)x)

so that the curvature can be extracted for the tensors ∇3f for various func-
tions. The commutativity of derivatives stops at the third order. In fact it
fails always for any tensor which is not simply a function, i.e. not of order
(0, 0). But the Ricci commutation formulas enable us to compute the defect
of symmetry of ∇X∇Y T −∇Y∇XT for any tensor. We give the formula for
(0, s) tensors:

(∇X∇Y α−∇Y∇Xα) (X1, . . . , Xs) =
∑
i

α (X1, . . . , R(X,Y )Xi, . . . , Xs) .

(15.6)
As applied to a closed 1-form and in a global (compact) context, this is
the basis of the Bochner technique, as we are going to see post haste. The
computations above are straightforward.

15.6 Hodge and the Laplacian, Bochner’s Technique

We will work here exclusively on compact manifolds. Because of its impor-
tance and the importance of its many generalizations, still not exhausted, we
will explain in detail the groundbreaking work of Bochner 1946 [210], even
if we have already mentioned it briefly in theorem 346 on page 622, theo-
rem 338 on page 616, and in §§§12.3.3.5. Suppose we want to prove that a
harmonic function f on a Riemannian manifold is constant, without a clever
application of the maximum principle. We could compute Δ

(
f2
)

as for the
second derivative of a square:

−1
2
Δ
(
f2
)

= ‖df‖2 − fΔf = ‖df‖2

since Δf = 0. We integrate this result using the definition of Δ, to the effect
that the integral of the Laplacian of any function vanishes. We are left with∫

M

‖df‖2 = 0

so that f is constant.
We now want to do something similar but for exterior forms, ignoring for

the moment the Laplacian for them which we introduced in §14.2. Since for
a function the Laplacian was

− trg∇2f,

we define the rough Laplacian of a form ω (and the same works for a tensor
of any type) by

Δω = − trg∇2ω
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for the second covariant derivative of ω. Then we compute the Laplacian of
the squared norm of ω :

−1
2
Δ
(
‖ω‖2

)
= ‖∇ω‖2 − 〈Δω,ω〉

and integration will yield, for a rough harmonic form Δω = 0 the conclusion
that

∇ω = 0,

i.e. ω is a parallel form. But we know from chapter 13 that such parallel
transported forms exist almost never, so that our computation leads nowhere
in general. We turn to the Hodge–de Rham theorem 405 on page 691 with
the Laplacian defined there, with great hopes since these harmonic forms
reflect some of the topology of the manifold. But this time Δω is no longer
equal to − trg∇2ω. At various places in the computation we have to employ
equation 15.6 on the preceding page because we are no longer working with
mere functions. Remember that the canonical connection has precisely the
property that second derivatives commute for functions. The computation
for differential forms was done by Bochner, first for 1-forms in Bochner 1946
[210], the result being:

−1
2
Δ
(
|ω|2

)
= |Dω|2 − 〈Δω,ω〉 + Ricci (ω∗, ω∗) . (15.7)

Now integration over the compact manifold implies immediately that Ricci >
0, forbids any nonzero harmonic form ω (with Δω = 0), and moreover
Ricci ≥ 0 permits only parallel transported ones, hence implies a reduc-
tion of the holonomy group of the manifold: theorem 345 on page 621 via
Hodge–de Rham. It is interesting to note that Bochner was not sure at that
time of the solidity of the Hodge theorem, which was only solidly established
by de Rham later on, so that his phrasing is quite interesting to look at. This
is called the Bochner vanishing technique.

Applications of equation 15.7 do not stop here. Let us mention four. The
two first consist in taking in equation 15.7 for our form ω the differential of
a real-valued function: ω = df, so that we have the formula used in equa-
tion 6.20 on page 289 for comparing triangle geometry when Ricci curvature
is lower bounded and if one uses the Hessian terminology for ∇df = ∇2f :

−1
2
Δ
(
‖df‖2

)
= ‖Hess f‖2 − 〈df,Δdf〉 + Ricci (df, df) (15.8)

One can use (local) harmonic functions, as was done in §§6.4.2. Let us
note that ∇(df) = d(∇f) and take for f an eigenfunction of the Lapla-
cian: Δf = λf on an compact manifold. Then one obtains theorem 181 on
page 433: if Ricci ≥ d− 1 then λ1 ≥ d. The third application was already in
Bochner’s paper of 1946: if the Ricci curvature is negative (and the manifold
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is compact) then there are no Killing vector fields X (infinitesimal isome-
tries). One integrates equation 15.8 on the preceding page over the manifold.
The integral of a Laplacian vanishes, and a little computation on Killing
fields (see for this and the next theorem Petersen 1997 [1018]) shows that the
formula boils down to∫

M

‖∇X‖2 −
∫
M

Ricci(X,X) ≥ 0.

This takes care moreover of the case Ricci ≤ 0. The last application is theo-
rem 323 on page 604: on a compact manifold of even dimension with positive
sectional curvature, a Killing field has to vanish somewhere. The proof here
is not by integration, but looking (with the help of equation 15.8 on the
preceding page and the computations just mentioned for Killing fields) at a
point where ‖∇X‖ is a minimum.

15.6.1 Bochner’s Technique for Higher Degree Differential Forms

For the theory of higher degree exterior forms, it is enough to say that the
defect between the rough and the good Laplacians is expressed as

Δw −Δw = Curvp (R;ω, ω)

where Curvp (R;ω, ω) is a very complicated expression, namely a quadratic
form in ω with coefficients linear in the curvature tensor. A short way is to
write this is

Δ = dd∗ + d∗d = ∇∗∇ + Curv (R) .

For historians we note that it was remarked in de Rham 1954 [1056] page
131 that the above formula for Δ with Curvp (R) was already in fact in
Weitzenböck 1923 [1252] so that Bochner 1948 [212] rediscovered it; note
that Weitzenböck had no global application.

Thereafter people tried to see what results one can get for other degrees
of differential forms; see among others Lichnerowicz 1952 [864] and Bochner
& Yano 1952 [213]. But it was finally in Meyer 1971 [915] that is was made
clear that it is the curvature operator which completely governs the term
Curvp (R): see theorem 338 on page 616. A very lucid exposition of this fact
is in Lawson & Michelsohn 1989 [850] theorem 8.6. In §§14.2.2 we encountered
a Bochner type formula for spinors on a spin manifold. But now, looking at
§§14.2.3, it is clear that there is also a Bochner type formula for any Rieman-
nian bundle and its Laplacian Δ. The main point is to find the nontrivial
difference term Δ − ∇∗∇. In the above examples only the curvature of the
base Riemannian manifold entered. There is no reason that this will be the
case in general. What sort of vanishing result could be obtained? The game
is to consider suitable bundles and suitable Laplacians. Let us mention some
cases. The Bochner vanishing technique is so important that there exist three
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surveys concerning it: Wu 1988 [1278], Bérard 1988 [136], Bourguignon 1990
[239].

First, for the canonical tensor bundles over the manifold, there a natu-
ral Laplacian which was discovered in Lichnerowicz 1961 [866] with a term
Δ−∇∗∇ involving only the curvature tensor. It turned out to be especially
useful for symmetric 2-tensors, because they represent the variations of Rie-
mannian metrics; see chapter 12 of Besse 1987 [183]. There is also the complex
Laplacian for Kähler manifolds; see §13.6, and it is used a lot in algebraic
geometry. In §§§12.3.3.5 we mentioned the use of bundles twisted in some
clever way using the spin-bundle in order to study the scalar curvature, the
point being that in the Δ − ∇∗∇ term the scalar curvature of the basis is
dominant.

There are also special Bochner type formulae when the holonomy group
is special (rare, see chapter 13). This is the key for proving the arithmeticity
of some space forms, see §§6.6.3 for more and for references.

15.7 Generalizing Gauß–Bonnet, Characteristic Classes
and Chern’s Formulas

In the late 1920’s Hopf wondered about extending the so-called Gauß–Bonnet
theorem 28 on page 155 which says that for a compact surface M and its
curvature K the Euler–Poincaré characteristic is given by

χ(M) =
1
2π

∫
M

K.

Consequently ifK has a given sign then χ has the same sign. Hopf asked about
higher dimensions: when the sectional curvature of M has a given sign, does
the Euler–Poincaré characteristic (see §§§4.1.4.2) χ(M) have the expected
sign? We said in §12.1 that Hopf managed to prove it in the very special
case of space forms (see §§6.6.2) in Hopf 1925 [727] and for hypersurfaces of
Euclidean spaces in Hopf 1926 [728]. For hypersurfaces, Hopf’s proof consisted
in proving equation 3.19 on page 158:

χ(M) =
1
2

deg(N) (15.9)

where N : M → Sd is the generalized Gauß map of the hypersurface Md in
Ed+1. Hopf was probably guessing that in the general case it would follow
from a generalization of the Gauß–Bonnet formula to higher dimensions. We
will see that this is wrong starting in dimension 6. A generalized Gauß–
Bonnet formula was indeed obtained in Allendoerfer & Weil 1943 [24]. We
comment now a little about this generalization of Gauß–Bonnet, which is not
treated in most Riemannian geometry books. Exceptions are: Spivak 1970
[1155] whose chapter 7 is entirely devoted to this, Gray 1990 [583] which has
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the proof with tubes (which was the intermediate proof of Allendoerfer, using
Hermann Weyls’s tube formula and historical remarks), but chapter XII of
Kobayashi & Nomizu 1963-1969 [827, 828] covers the whole present section.
For the history of characteristic classes, see Dieudonné 1989 [448].

15.7.1 Chern’s Proof of Gauß–Bonnet for Surfaces

In Chern 1944 [363] Riemannian geometers were provided with a very con-
ceptual proof of the Allendoerfer–Weil formula. Chern’s proof was so nice and
also so profound that we will give it in detail. Moreover it gives a conceptual
explanation of the local Gauß–Bonnet formula 18 on page 125. We can con-
sider the oriented case, because the characteristic of the oriented two-sheet
covering is just twice the characteristic of the nonorientable manifold it cov-
ers. A vector field X on a surface M, with isolated zeros mi for i = 1, . . . , k
yields a 1-1 map q = X/‖X‖ : M\ {mi} → UM into the unit tangent bundle.
Now on UM there is a canonical 1-form α where α(x) is simply the cosine of
the angle of x with the positive unit tangent vector to the fiber (an oriented
circle here). The miracle is that the differential dα of α (in UM) is nothing
but the inverse image π∗K dA of the 2-form obtained by multiplying the vol-
ume 2-form dA by the Gauß curvature K. Assume first that M is the torus
T 2 and pick any unit vector field X ; then∫

M

K dA =
∫
q(M)

π∗K dA

=
∫
q(M)

dα

= 0

= χ
(
T 2

)
by Stokes’ theorem since q(M) has no boundary. Now in the general case take
very small disks Di around the zeros xi of our vector field, and set D = ∩iDi

and consider M ′ = M\D , a surface with boundary. Apply Stokes’ theorem
to q(M ′) ⊂ UM and note that the boundary of q(M ′) is the union of the
inverse image circles q (Di) .∫

M ′
K dA =

∫
q(M ′)

π∗K dA

=
∫
q(M ′)

dα

=
∫
∂q(M ′)

α

=
∑
i

∫
q(∂Di)

α.
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Fig. 15.6. Chern’s proof of the Gauß–Bonnet theorem

Now, by the very definition of the form α, the integral∫
q(∂Di)

α

tells us how much the vector field X turns around its zero xi. This is by
definition the index of X at the point xi denoted by Index (X,xi) . One can
think of it as the Gauß map for plane curves, i.e the number of times that
the circle S1 is covered by the normalized vector field considered as a map
from S1 to S1. This is in fact true only at the limit, when the radii of the
disks go to zero (one need not take a limit in the flat case, but then K = 0).
Finally, when all the radii go to zero,∫

M ′
K dA→

∫
M

K dA

and ∑
i

∫
q(∂Di)

α→
∑
i

Index (X,xi) .

But by a theorem of Hopf (formula 15.12 on page 739), the latter sum is
equal to the Euler–Poincaré characteristic χ(M). q.e.d.

15.7.2 The Proof of Allendoerfer and Weil

Chern 1944 [363] extends this kind of proof to any (even) dimension. The for-
mula of Allendoerfer and Weil was proven as follows. We are on a Riemannian
manifold of dimension d = 2n. We again work in the oriented case, as per the
remark above. The invariant K formed with the curvature which generalizes
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the determinant of the second fundamental form of a hypersurface in EN (see
§12.1) can be defined explicitly as follows in any orthonormal oriented basis
{ei} . We define exterior 2-forms Ωi,j by

Ωi,j(x, y) = R (ei, ej, x, y)

(for every pair of tangent vectors x, y). Then K is defined by a sum of exterior
products as

K =
1
d!

∑
i1...id

εi1...idΩi1i2 ∧ · · · ∧Ωid−1id

where the sum runs through all permutations i1, . . . , id of the numbers
{1, ..., d} and εi1,...,id denotes the sign of this permutation. And finally we
have:

χ(M) =
2

Vol (Sd)

∫
M

K. (15.10)

(By construction, K is a d-form.)
Even on unorientable manifolds, one gets an intrinsic scalar K equal to

K = K (e1, . . . , ed) .

It is independent of orientation in the same way as for example for surfaces
Ω1,2 (e1, e2) (e1, e2) = K because exchanging e1 and e2 will introduce a neg-
ative sign twice. The reader might like to contemplate how to express it with
the

Rijkh = R (ei, ej , ek, eh) ,

namely:

K =
1
d!

∑
i1...idj1...jd

εi1...idεj1...jdRi1i2j1j2 · · ·Rid−1idjd−1jd (15.11)

where the summation is over all possible choices of two permutations i and
j of {1, . . . , d} .

In Allendoerfer 1940 [23] this formula is proven for submanifolds of Eu-
clidean space. The Nash embedding theorem 46 on page 238 was not known
at that time. Allendoerfer’s proof goes as follows: let Md be a compact sub-
manifold of EN . The generalized Gauß map this time goes from the normal
unit bundle νM to SN−1, where νM is the set of all vectors in RN which are
orthogonal to TM. For a hypersuface, say oriented, νM is identified with M
itself. Now Hopf’s formula 15.9 on page 735 is valid again for this generalized
Gauß map:

Theorem 415 For N : UM → SN−1 again χ(M) = 1
2degree(N) .
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S2

normal map
M

UM seen as a tube

Fig. 15.7. The Gauß map of a submanifold of Euclidean space

As in §3.4 if we still denote by dσ the canonical volume form of the
standard sphere SN−1, we still have

deg(N) =

∫
UM

N∗(dσ)∫
SN−1 dσ

.

It remains only to show that

N∗(dσ) = KdVM .

This is done by Allendoerfer by using the formula discovered in Weyl 1939
[1256] for computing the volume of a tube generated by a submanifold of
EN . For tubes and relations with this formula, see the book Gray 1990 [583]
enterely devoted to tubes or see Berger & Gostiaux 1988 [175], chapter 6.

The definitive proof of Allendoerfer & Weil 1943 [24] was not too very
conceptual and used triangulations, local isometric real analytic embedability
and approximations, still using embedding and Weyl’s tube formula. We note
here that Allendoerfer & Weil have a formula for manifolds with boundary,
generalizing exactly the Gauß-Bonnet formula 18 on page 125.

15.7.3 Chern’s Proof in all Even Dimensions

The above shows that it is extremely desirable to have a proof of the for-
mula 15.10 on the preceding page obtained really by working on the manifold
itself. The proof of Chern uses again Hopf’s formula (see equation 15.9 on
page 735):

χ(M) =
∑
x

indexx(ξ) (15.12)

where ξ is a vector field on M with a finite number of singular points x.
We use the same notations as above, take again small balls around sin-

gularities, etc. For the even dimensional d = 2n manifold, one considers on
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the unit tangent bundle π : UM → M the differential form which replaces
the α above, that is to say the volume (2n − 1)-form, noted again by α, of
the spheres UmM. But, as soon as d ≥ 4 then its differential dα is no longer
the pullback π∗K dVM (where dVM is again the volume form of M) of some
2n-form on M2n. What Chern does is to prove that there are forms φi for
i = 1, . . . , n− 1 such that first

π∗K dVM = d

(
α+

∑
i

φi

)
.

Second, the integrals of the various φi vanish when the balls get very small.
This concludes the proof. Having obtained such a clever method to compute
the Euler–Poincaré characteristic of a Riemannian manifold as a function of
the curvature, Chern thought about doing the same for the other invariants of
differentiable manifolds M which were known in his time, namely the Stiefel–
Whitney classes wi ∈ Hi (M,Z2) . But these classes live in the Z2 cohomology
of M, and hence are not accessible through differential forms via de Rham’s
theorem. One way to define these classes is to use a suitable embedding of the
manifold f : Md → Grass (d, k + d) into a Grassmann manifold (see §§4.1.3)
where the integer k has to be taken large enough. Then such a map is the
exact generalization of the Gauß–Rodrigues map for surfaces in E3, where
the image of a point of M in the Grassmann manifold is the tangent plane
TmM. The manifold Grass (d, d+ k) has some cohomology classes over Z2

and the classes wi are their pullbacks. Moreover, this is the place to say that
Whitney in fact extended Stiefel classes from the case of the tangent bundle
to any vector bundle over any compact manifold.

15.7.4 Chern Classes of Vector Bundles

But Chern, reading Ehresmann’s work, learned that the complex Grassmann
manifolds GrassC (d, d+ k) have analogous classes, but this time these classes
are over the integers, hence also defined over the real numbers. In the pioneer-
ing paper Chern 1946 [364] he did two things: he first defined characteristics
classes for any complex vector bundle V over a manifold. They are now called
the Chern classes

ci(V ) ∈ H2i (M,Z) for i = 1, . . . , rkC V.

Second he proved that those classes can be represented, via the de Rham
theorem, by closed exterior differential forms Chi of (real) degree 2i which
depend only (and in a canonical way) on the curvature of any linear con-
nection on V (see §§14.2.3). If the curvature is presented here as an exterior
2-form Ω which is valued in endomorphisms of the bundle V then Chi is a
linear combination of exterior powers of Ω. It is very simple: one computes
the determinant
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det
(
λI − 1

2π
Ω

)
=
∑
i

Chi λi.

A lucid exposition is chapter XII of Kobayashi & Nomizu 1963-1969 [827,
828]; for the topological aspects see Milnor & Stasheff 1974 [925] and
Husemoller 1994 [751]. Besse has a few pages on them in 2.E. But we should
now come back to earth, since we want real objects, not complex ones, at
least in general. And also we want to see the connection with the Euler–
Poincaré characteristic. We now briefly explain this. But before we get on to
that, there is one exception if M is a complex manifold, e.g. Kähler. Then
the Chern classes ci(M) of M are the Chern classes of this tangent bundle,
which is here a complex vector bundle. Especially important for us is the first
one c1(M) for Kähler manifolds, since it is essentially the Ricci curvature:
see §§11.4.4. In general the form Chi is, by the above, a universal polynomial
Chi(R) of degree i in the curvature tensor.

15.7.5 Pontryagin Classes

If M has no complex structure, e.g. is of odd dimension, the trick is to
complexify its tangent bundle to TM ⊗R C and to look at the classes
ci (TM ⊗R C) . It turns out that they vanish for all odd values of i. The
Pontryagin classes pi(M) are by definition

pi(M) = (−1)ic2i (TM ⊗R C) ∈ H4i (M,Z)

and from Chern’s formulas they are represented via de Rham theorem by
exterior forms pi(R) of degree 4i as a differential form and a universal poly-
nomial in R of degree 2i. In all the above universal means that the objects
depends only on the dimension, as for example the coefficients in the curva-
ture tensor of the Chi and the pi. For a determinant expression in Ω just
take

det
(
λI − 1

2π
Ω

)
.

15.7.6 The Euler Class

This does not take us back to the Euler–Poincaré characteristic. Even when
the dimension d = 4n is a multiple of 4 the characteristic has “nothing to
do” with the Pontryagin class pn(M). The trick is that it is “its square root.”
More precisely, the determinant det(Ω) can be expressed as the square of the
expression ∑

i1,...,id

εi1,...,idΩi1i2 ∧ · · · ∧Ωid−1id .

This expression is called the Pfaffian of Ω. In multilinear algebra it is nothing
but the well known fact that the determinant of an antisymmetric matrix of
even order is always a square (in a universal manner in the coefficients).
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15.7.7 The Absence of Other Characteristic Classes

It is important to know that there are no other such universal Riemannian
integral formulas yielding topological invariants. A heuristic but insufficient
reason is that the coefficients of the polynomial

det
(
λI − 1

2π
Ω

)
are the only invariants of the unitary group for the complex case, and the
same for

det
(
λI − 1

2π
Ω

)
in the real case, except for the Pfaffian. But we might look for a universal
polynomial in the curvature tensor and its covariant derivatives, which will
have the property that it yields cohomology classes (via de Rham’s theorem)
independent of the metric on the manifold. This was a query of Gelfand,
proved finally in Gilkey 1974 [563] (see also Abrahamov 1951 [1]). See Gilkey
1995 [564] for an up-to-date text. Very recently it was discovered that on
Kähler manifolds there are in fact new invariants stemming out of the cur-
vature, the Rozansky–Witten invariants, see Kontsevich 1999 [830].

15.7.8 Applying Characteristic Classes

Equipped with Chern and Pontryagin classes and the Allendoefer–Weil for-
mula, can we do a lot in the realm of “curvature and topology?” That is to
say, to fulfill Hopf’s hope in §12.1. The answer is that one can do no more
than the various applications we met above in the book. For the characteristic
essentially nothing can be done beyond dimension 4. In dimension 2 Gauß-
Bonnet solves everything. In dimension 4 the formula 15.10 on page 738 takes
the nice form:

K = 8π2χ(M) = ‖R‖2 −
∥∥∥∥Ricci− scalar

4
g

∥∥∥∥2

. (15.13)

We used it in equation 11.6 on page 546 and in note 12.3.1.1 on page 607
with good results. The curvature formula for the first Pontryagin class is also
used heavily in §§11.4.6. But we also saw that, starting in dimension 6, the
expression of K (of degree 3 or more in the curvature tensor) is not linked
with the sign of the curvature, as proven in Bourguignon & Polombo 1981
[246].

15.7.9 Characteristic Numbers

To use the above formulas expressing Chern and Pontryagin classes in term of
the curvature, one introduces the notion of characteristic numbers of a man-
ifold. The first one is the Euler characteristic, valid for any even dimension.
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For other ones we have to stick to the case of dimension d = 4k a multiple of
4. Take any sequence of integers i1, . . . , is such that

i1 + · · · + is = k

and consider, for any metric on M , the integral

char (M, i1, . . . , is) =
∫
M

pi1 · · ·pis (15.14)

This makes sense because we have performed the exterior product of toal
degree 4n equal to the dimension of the manifold. For the topologist this
means nothing but evaluating the cup product of Pontryagin classes over the
fundamental class [M ] of M :

char (M, i1, . . . , is) = pi1 ∪ · · · ∪ pis ([M ]) .

Such a real number (in fact an integer) is called a characteristic number. We
will also add the Euler-Poincaré characteristic to this collection of numbers.
Now the universality (in the dimension) of the Chern formulas for Pontryagin
classes yields the basic remark of Cheeger seen in theorem 272 on page 543
and used in Cheeger’s finiteness theorem 372 on page 642:

Theorem 416 If the curvature on a compact manifold M verifies |K| ≤ 1
and if the manifold has some nonzero characteristic number then Vol(M) >
c(d) where c(d) > 0 depends only on the dimension d of M.

Note that for Kähler manifolds one can add more characteristic numbers
with the help of Chern classes. But except for these “nonzero” general re-
sults, the “integral Chern formulas” are useless, or at least disappointing for
the Riemannian geometer who wishes to use only pointwise estimates of the
curvature tensor. See more on this in Bourguignon & Polombo 1981 [246],
with its revealing title.

For a person less concerned with Riemannian geometry, the above remarks
do not prevent Chern classes being considered basic in differential geometry.
Recall that they are defined for any bundle, not only the tangent bundle: see
Chern 1946 [364]. They are today a building tool in algebraic geometry and
in the study of the heat kernel. But what also counts is the fact that there is
an integral formula which is polynomial and universal in the curvature. See
Berline, Getzler & Vergne 1992 [179], Gilkey 1995 [564].

A basic fact discovered in the first edition (in 1956) of Hirzeburch 1995
[717]:

Theorem 417 (Hirzebruch 1956 [717]) A suitable combination of Pon-
tryagin classes yields the signature σ(M) of a 4n dimensional manifold.
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By definition the signature is the linear algebra signature of the quadratic
form which is defined by the cup product

H2n (M,Z) ⊗H2n (M,Z) → Z

of cohomology 2n-classes, i.e. the difference

σ(M) = b+2n (M,R) − b−2n (M,R)

between the number of positive and the number of negative squares. Hirze-
bruch calls the signature the index, because for him the signature is the
much more informative pair b+2n (M,R) , b−2n (M,R) . Hence this important
fact: there is an integral formula for the signature given by the integral over
the manifold of a universal polynomial in the curvature. See Gilkey 1995
[564] and Berline, Getzler & Vergne 1992 [179]. Also see §§14.2.3 for secondary
characteristic classes and the η invariant. The signature is particularly impor-
tant in dimension 4, since (if the manifold is simply connected) with the sig-
nature and the Euler characteristic one can recover b+2n (M,R) , b−2n (M,R) :

σ(M) = b+2n (M,R)−b−2n (M,R) , and 2−χ(M) = b+2n (M,R)+b−2n (M,R) .

Also, in dimension 4, one has simply

σ(M) =
1
3

p1(M).

The integral formulas for both σ and χ were essential ingredients in §§11.4.6.

15.8 Two Examples of Riemannian Manifolds and
Calculation of their Curvatures

15.8.1 Homogeneous Spaces

Consider a homogeneous space G/H where G is a Lie group and H is a
compact subgroup, and take a Lie algebra decomposition

g = h ⊕ m

with
[h,m] ⊂ m

(see the end of §§4.3.4 if needed). Since H is compact, there is a quadratic
form on m invariant under the action of H, which by translations by G yields
a G invariant metric g on the coset space G/H. We give now the formulas
for the curvature that we promised in §§4.4.3 and which are extremely useful
when one looks for examples of homogeneous spaces with various demands
on the curvature. The proof of these formulas, first obtained in Nomizu 1954
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[969], are not simple. One can find them in full generality in Sakai 1996 [1085]
and Besse 1987 [183]. One has first to compute the canonical connection and
then relate it in a workable way with the Lie algebra brackets. The final result
is as follows. The notations are: for the Riemannian metric, but preferably
read on m as a Euclidean structure, one will use the 〈, 〉 notation. And for
vectors in g the index vm for the corresponding component in m in the above
direct sum. Then this Euclidean metric on m determines uniquely, thanks to
the Lie bracket, a map U : m × m → m by the condition

2 〈U(x, y), z〉 = 〈[z, x]m, y〉 + 〈x, [z, y]m〉 .

The sectional curvature K(x, y) is

K(x, y) = −3
4
‖[x, y]m‖

2 − 1
2
〈[x, [x, y]]m , y〉 −

1
2
〈[y, [y, x]]m , x〉(15.15)

+ ‖U(x, y)‖2 − 〈U(x, x), U(y, y)〉

for x, y ∈ m.
A nice case is when G is compact. On compact groups, bi-invariant metrics

(i.e. invariant by both left and right translations) exist, and are the most
natural ones. The decomposition g = h ⊕ m is orthogonal and U ≡ 0. The
corresponding homogeneous spaces are called normal. Finally,

K(x, y) =
1
4
‖[x, y]h‖2 + ‖[x, y]m‖2 (15.16)

as mentioned in section 11.4.2.2 on page 552, where a geometric proof was
provided, not for the exact value, but for the positivity. For symmetric spaces
one has [x, y]m = 0, but the sign of the curvature varies. We saw in section
11.4.2.2 that the curvature coincides essentially with the Lie algebra bracket
up to sign.

15.8.2 Riemannian Submersions

Riemannian submersions were defined in §§4.3.6 and are maps

p : M → N

between Riemannian manifolds, with the requirement that around every point
n in N there is a neigborhood U such that p−1(U) is diffeomorphic to a
product of manifolds: fiber multiplied by base. Now at every pointm ∈ p−1(n)
we have the vertical tangent space which is the tangent space VmM at m to
the fiber p−1(n). But the Riemannian metric provides us with a horizontal
tangent space, namely the orthogonal complement HmM of V mM in TmM.
Now the differential dp of p restricted to HmM is a vector space isomorphism
between HmM and TnN by construction. But both HmM and TnN are
Euclidean by our data. We say that p : M → N is a Riemannian submersion
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when for every n, and every m ∈ p−1(n), this vector space isomorphism is a
Euclidean isomorphism. We recall some facts seen in §§4.4.3.

The first interesting point for the geometer is the existence of horizontal
geodesics in M which project down to geodesics in N. Let v be any horizontal
vector in TM and dp(v) its projection in TN. Then the horizontal lift γ∗ of
the geodesic γ of N whith initial velocity dp(v) is the geodesic in M with
initial velocity v. The proof is as follows: pick any two nearby points m and
m′ in γ∗. Then there is a unique shortest curve between them, and it has to
be part of γ∗. In fact the projection p can only decrease lengths, and strictly,
except for completely horizontal curves on which it preserves lengths. Any
curve from m to m′ will have length larger than or equal to the distance in
N between p(m) and p (m′).

Using this approach one obtains for the sectional curvatures the equa-
tion 4.40 on page 231 which reads K(P ) ≥ K (P ∗) where P is a tangent
plane to N and P ∗ any of its horizontal lifts. This is a direct application of
the formula 4.31 on page 226 expressing the curvature as the defect to 2πε
of the length of a small circle of radius ε. So that Riemannian submersions
can only decrease the curvature.

But this is not an explicit formula like equation 15.16 on the page before
for normal homogeneous spaces. To obtain some explicit formula, we need a
general set of formulas for Riemannian submersions. Moreover we have very
often mentioned the construction of examples using these formulas of O’Neill,
which crucial to construct examples in Riemannian geometry. We will now
give only some of those formulas, but will give the starting point to compute
anything you want concerning Riemannian submersions. All of those formulas
were found in O’Neill 1966 [975]. Book references are: chapter 9 of Besse 1987
[183] and Sakai 1996 [1085].

To get some feeling for submersions, it is good to realize that Riemannian
products M × N → M are the ideal Riemannian submersions, the fibers
N are all totally geodesic (see §§6.1.5) and the horizontal distribution is
everywhere integrable since its leaves are the M × {n} . The idea is now to
introduce two tensors T and A both of type (2, 1). The letters H and V
will denote respectively the horizontal and the vertical part of vectors. The
tensor T expresses the “defect” of the vertical fibers to be totally geodesic.
Its general value is:

TEF = H
(
∇V (E)V (F )

)
+ V

(
∇V (E)H(F )

)
and one checks directly that it is a tensor (i.e. does not depends on the
way the vectors E and F are extended into vector fields in order to be able
to define the various covariant derivatives appearing in the formula). The
tensor A expresses the defect of the horizontal distribution to be integrable.
Its general value is:

AEF = H
(
∇H(E)V (F )

)
+ V

(
∇H(E)H(F )

)
.
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From now on U and V will be vertical vectors and X and Y horizontal ones.
The above interpretation is now justified because:

– TUV is the second fundamental form of the fibers (and is symmetric)
– for two horizontal vector fields

AXY =
1
2
V ([X,Y ]).

N

(M,g)

(N,h)
N

M

N

the defect of horizontal
distribution to be integrable

the defect of the fibers
 to be totally geodesic

Fig. 15.8. (a) The defect of the fibers to be totally geodesic (b) The defect of the
horizontal distribution to be integrable

Here are now the formulas for the three types of sectional curvatures.
Both {U, V } and {X,Y } are orthonormal:

KM (U, V ) = Kfiber(U, V ) + ‖TUV ‖2 − g (TUU, TV V ) (15.17)

KM (X,U) = g ((DXT )UU,X) − ‖TUX‖2 + ‖AXU‖2 (15.18)

KM (X,Y ) = KN (X,Y ) − 3 ‖AXY ‖2 (15.19)

The last formula expresses quantitatively equation 4.40 on page 231. The
above formulas are of course much simpler when one works in the special
case of warped products. We met those in §§4.3.6: a warped product of two
Riemannian manifolds (M, g) and (N, h) is like a Riemannian product except
that one modifies the product metric on M × N by a real-valued function
f : M → R, that is to say that, for v vertical and w horizontal one sets

‖v, w‖2 = ‖v‖2
M + f‖w‖2

N .

Then the formula above involves only, besides of course the curvatures of
both (M, g) and (N, h), only the function f, its differential df and its Hessian
∇2f ; see Besse 1987 [183].
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24. Carl B. Allendoerfer and André Weil, The Gauss-Bonnet theorem for Rie-
mannian polyhedra, Trans. Amer. Math. Soc. 53 (1943), 101–129. MR 4,169e

25. Norman L. Alling and Newcomb Greenleaf, Foundations of the theory of
Klein surfaces, Springer-Verlag, Berlin, 1971, Lecture Notes in Mathematics,
Vol. 219. MR 48 #11488

26. Simon Aloff and Nolan R. Wallach, An infinite family of distinct 7-manifolds
admitting positively curved Riemannian structures, Bull. Amer. Math. Soc.
81 (1975), 93–97. MR 51 #6851
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plectic geometry, Birkhäuser Verlag, Basel, 1994. MR 95i:58005

89. Basile Audoly, Courbes rigidifiant les surfaces, C. R. Acad. Sci. Paris Sér. I
Math. 328 (1999), no. 4, 313–316. MR 99m:53003
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Flächen, Math. Z. 161 (1978), no. 1, 41–46. MR 81g:58008

103. , Lectures on spaces of nonpositive curvature, Birkhäuser Verlag,
Basel, 1995, With an appendix by Misha Brin. MR 97a:53053

104. Werner Ballmann and Michael Brin, Orbihedra of nonpositive curvature, Inst.
Hautes Études Sci. Publ. Math. (1995), no. 82, 169–209 (1996). MR 97i:53049

105. Werner Ballmann and Patrick Eberlein, Fundamental groups of manifolds
of nonpositive curvature, J. Differential Geom. 25 (1987), no. 1, 1–22. MR
88b:53047

106. Werner Ballmann, Mikhael Gromov, and Viktor Schroeder, Manifolds of
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119. , Inégalités isosystoliques conformes pour la bouteille de Klein, Geom.
Dedicata 27 (1988), no. 3, 349–355. MR 89k:53012

120. , L’aire systolique conforme des groupes cristallographiques du plan,
Ann. Inst. Fourier (Grenoble) 43 (1993), no. 3, 815–842. MR 95a:53054
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158. , Géométrie. Vol. 5, CEDIC, Paris, 1977, La sphère pour elle-même,
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170. , Rencontres avec un géomètre, 2ème partie, Gaz. Math. (1998),

no. 77, 29–53.
171. , Riemannian geometry during the second half of the twentieth cen-

tury, Jahresber. Deutsch. Math.-Verein. 100 (1998), no. 2, 45–208. MR
99h:53001

172. , Riemannian geometry during the second half of the twentieth cen-
tury, University lecture series, vol. 17, American Mathematical Society, Prov-
idence, RI, 2000, Enlarged from the 1998 original. MR 1 729 907
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bites coadjointes de type symétrique d’un groupe de Lie complexe semi-simple,
C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), no. 12, 1259–1264. MR
97k:53040

195. G. D. Birkhoff, Dynamical systems with two degrees of freedom, Trans. Amer.
Math. Soc. 18 (1917), 199–300.

196. Richard L. Bishop, A relation between volume, mean curvature and diameter,
Notices Amer. Math. Soc. 10 (1963), 364.

197. Richard L. Bishop and Richard J. Crittenden, Geometry of manifolds, Aca-
demic Press, New York, 1964, Pure and Applied Mathematics, Vol. XV. MR
29 #6401

198. Jean-Michel Bismut, Henri Gillet, and Christophe Soulé, Analytic torsion and
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216. Christoph Böhm, Inhomogeneous Einstein metrics on low-dimensional
spheres and other low-dimensional spaces, Invent. Math. 134 (1998), no. 1,
145–176. MR 99i:53046

217. Neda Bokan, Peter B. Gilkey, and Rade Živaljević, An inhomogeneous elliptic
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249. Werner Boy, Über die Curvatura integra und die Topologie geschlossener
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périodiques. I, II, Compositio Math. 27 (1973), 83–106; ibid. 27 (1973), 159–
184. MR 50 #1293

390. , Quasi-modes sur les variétés Riemanniennes, Invent. Math. 43
(1977), no. 1, 15–52. MR 58 #18615
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(Luminy, 1992), Soc. Math. France, Paris, 1996, pp. 233–252. MR 98e:58169



770 References

397. Yves Colin de Verdière, Isidoro Gitler, and Dirk Vertigan, Réseaux électriques
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deuxième édition de 1915. MR 53 #80
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Krümmung auf Sphären, Math. Ann. 164 (1966), 353–371.

601. , Spaces of nonnegative curvature, in Greene and Yau [597], Proceed-
ings of the AMS Summer Research Institute on Differential Geometry held
at the University of California, Los Angeles, California, July 8–28, 1990,
pp. 337–356. MR 94b:53073



References 781

602. Detlef Gromoll and Karsten Grove, On metrics on S2 all of whose geodesics
are closed, Invent. Math. 65 (1981/82), no. 1, 175–177. MR 82m:58021

603. , A generalization of Berger’s rigidity theorem for positively curved
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864. André Lichnerowicz, Courbure, nombres de Betti, et espaces symétriques,
Proceedings of the International Congress of Mathematicians, Cambridge,
Mass., 1950, vol. 2 (Providence, R. I.), Amer. Math. Soc., 1952, pp. 216–223.
MR 13,492f
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Soc. Math. France 122 (1994), no. 3, 435–442. MR 95i:53044

920. V. D. Milman, Dvoretzky’s theorem—thirty years later, Geom. Funct. Anal.
2 (1992), no. 4, 455–479. MR 93i:46002

921. John W. Milnor, Morse theory, Princeton University Press, Princeton, N.J.,
1963, Based on lecture notes by M. Spivak and R. Wells. Annals of Mathe-
matics Studies, No. 51. MR 29 #634

922. , Eigenvalues of the Laplace operator on certain manifolds, Proc. Nat.
Acad. Sci. U.S.A. 51 (1964), 542. MR 28 #5403

923. , Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358–426. MR
33 #4922

924. , A note on curvature and fundamental group, J. Differential Geome-
try 2 (1968), 1–7. MR 38 #636

925. John W. Milnor and James D. Stasheff, Characteristic classes, Princeton
University Press, Princeton, N. J., 1974, Annals of Mathematics Studies,
No. 76. MR 55 #13428

926. Tilla Klotz Milnor, Efimov’s theorem about complete immersed surfaces of
negative curvature, Advances in Math. 8 (1972), 474–543. MR 46 #835



References 797

927. Maung Min-Oo and Ernst A. Ruh, Comparison theorems for compact sym-
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tualités Scientifiques et Industrielles, No. 1222b. MR 49 #11552

1057. , Differentiable manifolds, Springer-Verlag, Berlin, 1984, Forms, cur-
rents, harmonic forms, Translated from the French by F. R. Smith, With an
introduction by Shiing-Shen Chern. MR 85m:58005
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Berücksichtigung der Anwendungsgebiete, Bd X. MR 16,521e

1112. Dorothee Schueth, Continuous families of isospectral metrics on simply
connected manifolds, Ann. of Math. (2) 149 (1999), no. 1, 287–308. MR
2000c:58063
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Lobachevskĭı spaces of large dimension, Trudy Moskov. Mat. Obshch. 47
(1984), 68–102, 246. MR 86i:22020
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tories in polygons: generation mechanisms, Uspekhi Mat. Nauk 47 (1992),
no. 3(285), 9–74, 207. MR 93h:58088

1225. A. W. Wadsley, Geodesic foliations by circles, J. Differential Geometry 10
(1975), no. 4, 541–549. MR 53 #4092

1226. Hidekiyo Wakakuwa, Holonomy groups, Department of Mathematics,
Okayama University, Okayama, 1971, Publications of the Study Group of
Geometry, Vol. 6. MR 44 #3240

1227. Arnold Walfisz, Gitterpunkte in mehrdimensionalen Kugeln, Państwowe
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vature. II, Ann. Sci. École Norm. Sup. (4) 25 (1992), no. 2, 179–199. MR
93m:53037

1288. , Rigidity of Einstein 4-manfolds with positive curvature, Inven. Math.
142 (2000), 435–450.

1289. Paul C. Yang and Shing-Tung Yau, Eigenvalues of the Laplacian of compact
Riemann surfaces and minimal submanifolds, Ann. Scuola Norm. Sup. Pisa
Cl. Sci. (4) 7 (1980), no. 1, 55–63. MR 81m:58084

1290. Kentaro Yano and Salomon Bochner, Curvature and Betti numbers, Prince-
ton University Press, Princeton, N. J., 1953, Annals of Mathematics Studies,
No. 32. MR 15,989f

1291. Kentaro Yano and Masahiro Kon, Structures on manifolds, World Scientific
Publishing Co., Singapore, 1984. MR 86g:53001

1292. Shing-Tung Yau, Harmonic functions on complete Riemannian manifolds,
Comm. Pure Appl. Math. 28 (1975), 201–228. MR 55 #4042

1293. , Calabi’s conjecture and some new results in algebraic geometry, Proc.
Nat. Acad. Sci. U.S.A. 74 (1977), no. 5, 1798–1799. MR 56 #9467

1294. , On the Ricci curvature of a compact Kähler manifold and the com-
plex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3,
339–411. MR 81d:53045

1295. , Problem section, Seminar on Differential Geometry, Princeton Univ.
Press, Princeton, N.J., 1982, pp. 669–706. MR 83e:53029

1296. , Open problems in geometry, in Greene and Yau [596], Proceedings
of the AMS Summer Research Institute on Differential Geometry held at the
University of California, Los Angeles, California, July 8–28, 1990, pp. 1–28.
MR 94k:53001

1297. , Review of geometry and analysis, in Arnol′d et al. [67], pp. 353–402.
1298. Shing-Tung Yau and F. Zheng, Negatively 1

4
-pinched Riemannian metric on

a compact Kähler manifold, Invent. Math. 103 (1991), no. 3, 527–535. MR
92a:53056

1299. Yosef Yomdin, Volume growth and entropy, Israel J. Math. 57 (1987), no. 3,
285–300. MR 90g:58008



References 815

1300. Guoliang Yu, Zero-in-the-spectrum conjecture, positive scalar curvature and
asymptotic dimension, Invent. Math. 127 (1997), no. 1, 99–126. MR
97h:58156

1301. Tudor Zamfirescu, Conjugate points and closed geodesic arcs on convex sur-
faces, Geom. Dedicata 62 (1996), no. 1, 99–105. MR 97g:52006

1302. Steven Zelditch, Uniform distribution of eigenfunctions on compact hyper-
bolic surfaces, Duke Math. J. 55 (1987), no. 4, 919–941. MR 89d:58129

1303. , Selberg trace formulae and equidistribution theorems for closed
geodesics and Laplace eigenfunctions: finite area surfaces, Mem. Amer. Math.
Soc. 96 (1992), no. 465, vi+102. MR 93a:11047

1304. , The inverse spectral problem for surfaces of revolution, J. Differential
Geom. 49 (1998), no. 2, 207–264. MR 99k:58188

1305. Shunhui Zhu, The comparison geometry of Ricci curvature, in Grove and
Petersen [650], Papers from the Special Year in Differential Geometry held
in Berkeley, CA, 1993–94, pp. 221–262. MR 98c:53054

1306. Günter M. Ziegler, Lectures on polytopes, Springer-Verlag, New York, 1995.
MR 96a:52011

1307. Wolfgang Ziller, The free loop space of globally symmetric spaces, Invent.
Math. 41 (1977), no. 1, 1–22. MR 58 #31198

1308. , Geometry of the Katok examples, Ergodic Theory Dynamical Sys-
tems 3 (1983), no. 1, 135–157. MR 86g:58036

1309. T. Zizhou, Note on cohomology pinching below quarter theorem, to appear,
1999.
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∗
Hodge star, 690

〈F 〉
space mean value, 499

#
connected sum, 218

1
2 p1(M)

half Pontryagin class, 620

Aut
automorphism group, 596

B(x, y)
bisectional curvature, 682

bγ
Busemann function, 613

b−2n
(
M4n,R

)
anti-self-dual Betti number, 744

B (m, r)
ball of radius r centered at the
point m, 244

B̄ (m, r)
closed ball, 244

b+2n
(
M4n,R

)
self-dual Betti number, 744

Bp (M)
coboundaries, 186

bp (M,F)
Betti numbers, 177

[X,Y ]
Lie bracket, 720

Ca
Cayley numbers, 172

CaP2

Cayley projective plane, 172
CAT (k)

Cartan–Alexandrov–Toponogovhy-
perbolic spaces, 706

category
category of a manifold, 533

CF (L)
periodic trajectory counting func-
tion, 6

char
characteristic number, 743

Chi
Chern form, 740

χ(M)
Euler characteristic, 155, 157, 177

Chrom(M)
chromatic number, 439

ci (V )
Chern class, 740

Ck

k times continuously differentiable,
163

Cliff(d)
Clifford algebra, 694

CvxRad (M)
convexity radius, 302

CPn

complex projective space, 171
Curvp (R;ω, ω)

curvature terms in the Bochner
technique, 734

Cut (γ)
cut value, 293

Cut-Locus (m)
cut locus, 302

Δ
Euclidean Laplacian, 83

D/
Dirac operator, 695

d
exterior derivative, 185

d∗

adjoint of the exterior deriva-
tive, 690
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dA
area measure of a surface, 126

Δ
Laplacian, 401, 723

Δ
rough Laplacian, 732

dΓ
Gromov distance between mm
spaces, 712

dG−H

Gromov–Hausdorff distance, 652
dH

Hausdorff distance, 652
diam

diameter of a metric space, 250
Diff (M)

group of diffeomorphisms, 194
Dirichlet

Dirichlet quotient, 408
d (p, q)

distance from p to q, 4
ds2

Riemannian metric [a.k.a. first
fundamental form], 120

dVM
Riemannian measure, 323

DXY
connection, 724

E(φ)
energy of a map, 700

Ed

d dimensional Euclidean space,
2

Emb(M)
embolic constant, 380

η(s)
eta invariant, 453

η
mean curvature of a hypersur-
face, 337

exp
Riemannian exponential map, 244

F ∗

time mean value of F , 499
F4

an exceptional Lie group, 172
f∗α

inverse image, 185
FillVal

filling value, 565
focal(p)

focal value of a point, 345
f ∗ g

convolution, 420
φW (M)

Witten genus, 620

G2

symmetry group of octonions,
170

G̃L (n,R)
universal covering group of the
general linear group, 170

GL (n,R)
general linear group, 170

GOE
Gaussian orthogonal ensemble,
450

GrassC (k, n)
complex Grassmannian, 171

GrassH (k, n)
quaternionic Grassmannian, 171

Grass (k, d)
real Grassmannian, 170

H
mean curvature of a surface, 56

H

quaternions, 164
h

isoperimetric profile, 339
hc

Cheeger’s constant, 339
Hp
dR (M)
de Rham cohomology, 186

Hess f
Hessian, 401
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hLiouville

Liouville entropy, 502
hmeas

measure entropy, 502
hmet

metric entropy, 502
Hol(p)

holonomy group at p, 664
hol(p)

holonomy Lie algebra at p, 668
Hol0(p)

restricted holonomy group at p,
664

SysH1 (M)
homological systole, 362

Sysk (M)
homotopic systole, 362

Hp (M,F)
homology with F coefficients, 177

Hp (M,F)
cohomology with F coefficients,
177

Horiz(v)
horizontal space, 728

HP
n

quaternionic projective space, 171
htop

topological entropy, 501
hvol

volume entropy, 501
HypnC

complex hyperbolic space, 213
Hyp2

Ca

Cayley hyperbolic plane, 213
Hypd (K)

hyperbolic space of dimension d
and sectional curvature K, 195

HypnH
quaternionic hyperbolic space, 213

HypnK
hyperbolic space over the field
K, 213

Hypd

hyperbolic space of dimension d
and sectional curvature −1, 195

II
second fundamental form, 232

II
second fundamental form of a
surface, 54

inf CF
infimal asymptotic growth of count-
ing function, 532

inf diam(M)
minimal diameter of M in any
metric with −1 ≤ K ≤ 1, 535

inf diam
Inj (M)

infimum over metrics on M of
ratio of diameter to injectivity
radius, 533

inf ‖R‖Ld/2(M)
infimum of Ld/2 norm of the cur-
vature of any metric on Md, 534

inf Vol(M)
Gromov’s minimal volume, 535

Inj (m)
injectivity radius, 295∫

M
α

integral, 187
Isom(M, g)

isometry group, 193

K
Gauß curvature, 56

K
curvature of a plane curve, 13

K
Euler form, 737

k
algebraic curvature of a plane
curve, 17

K(m,n, t)
Euclidean heat kernel, 100

K(m,n, t)
heat kernel, 406
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K -area
K area, 629

KC

complex sectional curvature (of
Kähler manifold), 573

kgc
geodesic curvature of a curve on
a surface, 39

K isotr
C

complex isotropic curvature, 574
KM,g(x, y, t)

heat kernel, 425
KP

n

projective space over K, 172, 228
K(x, y)

sectional curvature, 225

λ1

first eigenvalue of the Laplacian,
88

Λ(M)
space of loops through a point
of M , 480

Λ′
p,q(M)
space of paths in M from p to q,
480

LGC (ρ)
locally geometrically contractible
with contractibility function ρ,
392

li(x)
logarithmic integral, 472

Λ (M)
length of the shortest periodic
geodesic, 361

Λp (T ∗M)
exterior tangent bundle, 185

M(δ)
surface of constant curvature δ,
135

Met
the space of metric spaces, 653

Mγ

moduli space of curves of genus
γ, 448

MinSys (M)
systolic quotient, 531

MinSysk (M)
higher systolic quotient, 532

mm
Gromov metric–measure space,
711

∇
Levi-Civita connection, 725

∇f
gradient, 256

∇kT
k-th covariant derivative of T ,
730

N(λ)
eigenvalue counting function, 86

ObsDiam (X, k)
k-observable diameter of an mm
space X , 713

Ω (M)
loop space of M , 487

Ωp (M)
differential forms, 185

O (n)
orthogonal group, 170

Ω∗ (M)
pointed loop space, 488

packd+1 (M)
packing invariant, 585

c∗
parallel transport along the en-
tire length of the curve c, 663

ca→b

parallel transport along curve c
from time a to time b, or from
point a to point b, 264

π1

fundamental group, 168, 177
πk

homotopy group, 178
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pi(M)
Pontryagin class, 741

rank
rank of a vector, 273

Ricci
Ricci curvature, 267

Rijkl
Riemann curvature tensor, 221

RM (d, a, b,D, v)
the set of compact Riemannian
manifolds of dimension d, cur-
vature a ≤ K ≤ b, diameter at
most D, volume at most v, 654

RMVol=1
Inj≥ε (M)

Riemannian metrics with unit
volume and bounded injectivity
radius, 563

RM (M)
Riemannian metrics on M , 194

RP
2

real projective plane, 164
RPd

real projective space, 168
RS (M)

Riemannian structures onM , 194
RS |K|≤1

Vol=1 (M)
Riemannian structures with unit
volume and sectional curvature
−1 ≤ K ≤ 1, 567

S(M)
Konishi twistor space of a quater-
nionic Kähler manifold M , 678

σ(M)
signature, 743

scalar
scalar curvature, 422

S (∞)
sphere at infinity, 635

S (∞)
sphere at infinity, 201

SO (n)
special orthogonal group, 164,
170

SO (p, q)
special orthogonal group, 170

Sd (k)
space form of dimension d and
sectional curvature k, 228

Spec (D)
spectrum of Laplacian, 86

S/ (M)
spinor bundle, 695

Spinc (d)
a “twisted spinor” group, 697

Spin (p, q)
spin group, 170

Stab SysH1 (M)
stable 1-systole, 375

Stab SysHk (M)
stable k-systole, 376

∗
Hodge star, 402

SU (p, q)
special unitary group, 170

Sysk (M)
k systole of the manifold M , 372

Sys (M)
systole, 351

T d

d dimensional torus, 168, 170
TD(X,Y )

torsion of connection D, 724
M̃

universal cover, 168
TmM

tangent space to M at m, 180⊗r,s
V

(r, s) tensor product of vector
space V , 721

T ∗
mM
cotangent space to M at m, 183

U+
mM
half tangent sphere, 387

UK (n)
unitary group over K, 172



UM
unit tangent bundle, 215

U (p, q)
unitary group, 170

Vert(v)
vertical space, 728

Vol
volume, 324

VRS (d)
maximal volume of simplex in
Hypd, 201

wk(M)
k-th Stiefel–Whitney character-
istic class, 695

∧
wedge, 185

Widthk (M)
k-width of a metric space, 618

Wp,q

Aloff–Wallach manifold, 604

X
the space of mm spaces, 712

Z(M)
Bérard Bergery/Salamon twistor
space of a quaternionic Kähler
manifold M , 677

ζ
zeta function of the Laplace–Beltrami
operator, 443

ZM,g(t)
spectral function, 425

Zp (M)
cocycles, 186
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Vergne, Michèle, 399, 420, 422, 689,

694, 696–700, 743, 744
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Weitzenböck, Roland, 734
Wells, Jr., R. O., 681, 682
Wente, Henry C., 151
Weyl, Hermann, 123, 237, 421, 739,

812
Wheeden, Richard L., 3
Whitney, Hassler, 78, 162, 179
Wieacker, John A., 717
Wilhelm, Jr., Frederick H., 270,

362, 367, 583, 585, 594, 624
Wilking, Burkhard, 604, 605, 607
Willmore, T. J., 152, 716
Wintner, Aurel, 123
Wirtinger, Wilhelm, 692
Witten, E., 179, 428, 528, 701
Wohlrab, Ortwin, 69, 70
Wojtkowski, Maciej P., 9, 26, 503
Wolf, Emil, 520
Wolf, Joseph A., 315, 316, 552,

637, 674
Wolpert, S., 99
Wu, Hung Hsi, 622, 652, 688, 710,

735, 780
Wu, Jyh-Yang, 533, 649, 783

Xavier, Frederico, 55
Xu, Chong Ming, 167

Yamabe, Hidehiko, 561
Yamaguchi, Takao, 584, 625, 640,

649, 660, 704, 705
Yang, C. T., 522
Yang, Chen Ning, 698, 709
Yang, Da-Gang, 621
Yang, Deane, 559, 650, 661
Yang, Paul C., 435
Yano, Kentaro, 616, 678, 734
Yau, Shing-Tung, 153, 321, 399,

435–437, 528, 555, 572, 597, 606,
627, 628, 638, 683, 684, 688, 701

Ye, Rugang, 650, 651, 656



Yomdin, Yosef, 482
Yu, Guoliang, 688

Zalgaller, V. A., 29, 31, 198, 328,
618

Zamfirescu, Tudor, 309
Zehnder, Eduard, 682
Zelditch, Steven, 437
Zheng, F., 597
Zhu, Shunhui, 286
Zhu, Xi-Ping, 595
Ziegler, Günter M., 77
Ziller, Wolfgang, 486, 488, 491, 552,

557, 560, 605, 606, 796
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– local, 125
generatrix, 56, 70
generic, 78
genus, 155, 354
geodesic
– closed, 50, 51

– flow, X, 383, 398, 417, 458–460,
462, 464, 470, 472, 473, 482, 498

– loop, 51
– minimal, 244
– on surfaces, 38–53
– primitive, 470
– space, 705
geodesy, 3
geometric curve, 11
geometric hierarchy, 311–321
geometric measure theory, 190, 344,

627, 717
geometric number theory, 365
geometrically contractible, 392
– locally, 392
geometry
– Euclidean, 2–114
ghost geodesic, 466
glide
– in hyperbolic plane, 447
gluing, 173–174, 215–218, 542
– of hyperbolic surfaces, 216
golden ratio, 258, 466
golden triangle, 723
gradient, 256
Grassmannian
– complex, 171
– quaternionic, 171
– real, 170
Gromov–Hausdorff distance, 562,

601, 603, 625, 626, 649, 651, 652,
653, 661

Gromov–Lawson torus theorem, 631
group
– duality condition, 639
– growth of, 330
– hyperbolic, 632
growth
– of a group, 330

h-principle, 640
Hadamard’s conjecture, 152
half Pontryagin class, 620
Hardy–Littlewood–Karamata the-

orem, 421, 422
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harmonic
– coordinates, 245, 291, 651, 655
– differential form, 451, 691
– manifold, 314
– map, 701
– radius, 655
harmonics, 87
– spherical, 30
Hausdorff property, 163, 193, 246
heat, 79–114
– equation, 79, 100–104, 405
– kernel, 100, 406, 418
– shrinking curve, 27, 493
Heintze theorem, 636
Heintze–Karcher lemma, 332
Heintze–Karcher theorem, 338
Heintze–Margulis lemma, 636
helicoid, 70
helix, 20
Hersch theorem, 434
Hessian, 401, 723
hierarchy
– geometric, 311–321
Hilbert hyperbolic surface theorem,

152
Hirzebruch signature theorem, 743
Hodge star, 402, 690
Hodge–de Rham theorem, 691
holomorphic curvature, 682
holonomy, 130, 301, 663–684
– group, 663–684
homeomorphy, 178
homofocal quadric, 44
homogeneous space, 170–171, 206–

209
– normal, 230, 745
homological systole, 362
homology, 177
– Floer, 551
– simplicial, 177
homology sphere, 177, 566, 568
homophonic, 440
homotopy, 178
– group, 178

– rational, 178
homowave, 440
Hopf fibration, 173, 374
Hopf–Rinow theorem, 249
horizontal space, 728
horseshoe, 515, 589
Huber trace formula, 447
hyperbolic
– group, 632
– manifold, 316
– – arithmetic, 317
– plane models
– – hyperboloid, 196
– – Klein, 197
– – Poincaré, 197
– – Poincaré disk, 197
– point
– – of a surface, 79
– rationally, 619
– space, 195
– – in Gromov’s sense, 706
hyperboloid model
– of hyperbolic plane, 196
hyperelliptic function, 308
hyperkähler, 679
hyperplane
– hyperbolic, 198
hypersurface, 169
– rigidity, 233

ideal triangle, 200
identity
– first Bianchi, 223, 573
immersed submanifold, 169
immersion, 59, 183
index
– of a critical point, 479
– of an elliptic operator, 699
– of vector field, 737
induced metric, 34
inequality
– isodiametric, 65
– isoperimetric, see isoperimetric

inequality
– isosystolic, 351
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infinite dimensional manifold, 710
infranilmanifold, 542, 595, 657, 660
injectivity, 292–310
– radius, 139–145, 295, 300
– – of surface, 49
inner metric, 4, 34
– of curves, 10
– of surfaces, 34–38
inscribed square problem, 13
integral, 187
interferometer, 20
intrinsic metric, 34
intrinsically harmonic
– differential form, 691
inverse image, 185
isodiametric inequality, 65
isometric embedding, 237
isometry, 193
isoperimetric
– inequality
– – in E3, 73
isoperimetric inequality, 29
– Brunn–Minkowski theorem, 31
– in E3, 74
– Knothe’s proof, 30
– spherical, 328
– Steiner symmetrization, 31
– Steiner’s quadrilateral, 31
– Stokes’ theorem, 29
isoperimetric profile, X, 339
isosystolic inequality, 351
isotropy group, 207

Jacobi
– last theorem, 144
Jacobi vector field, 271, 426, 504
– trivial, 273
Janet theorem, 238
jigsaw metric, 636

K-theory, 629, 699
Kähler
– geometry, 684
– manifolds, 684
Kac–Feynman–Kato inequality, 428

KAM (Kolmogorov–Arnol′d–Moser)
theorem, 432, 490, 506

Katok’s theorem, 510
Killing vector field, 730
kissing number, 610
Klein
– bottle, 341, 353
– model of hyperbolic plane, 197
– surface, 317
KO-theory, 699
Konishi twistor space, 677
Kähler
– form, 554, 666
– manifold, 554–556, 665, 666, 670,

681–684

Laplace operator, see Laplacian
Laplace–Beltrami operator, see Lapla-

cian
Laplacian, 83, 394, 401, 723
– canonical, 693
– determinant of, 443
– rough, 732
– special, 693
lasso, 667
lattice, 204
– critical, 365
law of large numbers, 711
Lawson’s conjecture, 153
le mouvement á la Poinsot, 220,

305
Lebesgue–Rochlin space, 712
Leibnitz’s rule, 181
lemma
– Heintze–Karcher, 332
– Heintze–Margulis, 636
length, 3
– counting function, 50
– space, 4, 705
– spectrum, 85, 417, 429, 431
lens space, 269, 517
Levi-Civita connection, 723, 725
Lichnerowicz λ1 theorem, 433
Lichnerowicz formula, 695
Lie
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– algebra, 183
– bracket, 183, 720
– group, 170
line, 612, 623
linear connection, 724
Liouville theorem, 383, 498
Lipschitz, 163, 654
locally geometrically contractible,

392
locally symmetric space, 209
Loewner theorem, 351
long line, 163
loop
– geodesic, 51
loop space, 487
Lorentzian manifold, 709

von Mangoldt–Hadamard–Cartan
theorem, 278

manifold, 162
– Allof–Wallach, 541, 604
– arithmetic hyperbolic, 317
– hyperbolic, 316
– infinite dimensional, 710
– Kähler, 554–556, 665, 666, 670,

681–684
– quaternionic Kähler, 674
– real analytic, 163
– Riemannian, 193
– topological, 163
maximum principle
– for parabolic PDE, 426
Maxwell’s fisheye, 520
meager, 78, 491
mean curvature, 56, 337
– flow, 70
measure
– Bowen–Margulis, 508, 509
– entropy, 502
– isotropy, 314
– Patterson–Sullivan, 511
mechanics
– classical, 219–220
metric
– ball, 244

– Carnot–Carathéodory, 636, 706
– cone, 686
– Einstein, 546, 549
– entropy, 502
– induced, 34
– inner, 34
– intrinsic, 34
– jigsaw, 636
– railway, 636
– Ricci flat, 549
– space, complete, 249
– Tits, 321
microlocal analysis, 427, 437
Milnor’s octahedron, 223
minimal
– geodesic, 244
– surface, 69
– – in E3, 67–70
– volume, 227, 535
minimax principle, 88, 408
mirror bouncing, 4
mixing, 499, 515
mm space, 329, 712
mobility
– axiom of, 276, 314
Möbius transformation, 318
modular domain, 277, 311, 318
moduli problem, 530
Morse
– index, 518
– index theorem, 480
– theorem, 479
– theory, 300, 465, 491, 592
Moser theorem, 188
Mostow rigidity, 318
multiplicity, 404
musical isomorphisms, 722
Myers–Cheng theorem, 268, 286,

336
Möbius group, 201

Nash embedding theorem, 238, 469
Nash–Kuiper theorem, 238
Nash–Tognoli theorem, 179, 470
natural tensor, 223, 731
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nilmanifold, 284
nodal
– line, 104
nodal set, 417
non-destructive assay, 97
noncommutative geometry, 711
nondegenerate
– critical point, 478
norm, 192
normal
– coordinates, 221
– covering, 168
– homogeneous space, 230, 745
Novikov conjecture, 628, 634
number theory, 311, 412

observable diameter, 713
octahedron
– Milnor’s, 223
operator
– curvature, 615
orbifold, 617, 650
orientable, 187
osculating circle, 13

packing invariant, 585
pair of pants, 216
Palais theorem, 193
Palais–Smale condition C, 550, 551,

557, 605
panda, 172
pants
– pair of, 216
parabolic point, 79
parallel transport, 264, 723, 727
parametrix, 419
parking, 707
Paternain theorem, 503
path, 3
– shortest, 244
Patterson–Sullivan measure, 511
pendulum, 116
– double, 219
periodic
– geodesic, X

– – twist type, 490
– trajectory, 6
Pfaffian, 741
phase space, 116, 507
PL-manifold, 704
Planck’s constant, 83
plane
– Euclidean, 2
– real projective, 164
plane curve, 9–31
Plateau problem, 69
Poincaré
– conjecture, 551, 587, 599, 616,

649
– disk model
– – of hyperbolic plane, 197
– half-plane model
– – of hyperbolic plane, 197
– return map, 430, 490, 494
Poinsot
– le mouvement á la, 220, 305
point
– simple, 614
Poisson formula, 413
Poisson type formula, 104
polarized F structure, 540, 547,

658
pole, 614
polygon, convex, 6
polytope, 111
Pontryagin class, 741
positive mass theorem, 688
pouch, 580
primitive
– geodesic, 470
principal curvature, 54, 233
probability theory, 711
problem
– Ambrose, 237, 309, 730
product
– of manifolds, 169
– of Riemannian manifolds, 202
– warped, 215, 601
programming
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– computer, 2
projective plane
– real, 164
projective space, 213, 228, 260, 304,

315–321, 414–415, 593, 594, 604
– complex, 171
– quaternionic, 171
– real, 168, 258, 303
protractor, 20
Prüfer surface, 163
pseudo-Riemannian manifold, 709
Pu theorem, 352
pullback, 185
pure polarized F structure, 540,

658

quadric, 42
– homofocal, 44
quantum chaos, 450
quasi-isometry, 633
quasimode, 107, 432
quaternionic Kähler
– manifold, 674
quaternionic projective plane
– exotic, 490
quaternions, 164
quotient space, 203–206

radius
– convexity, 302
– filling, 367
– injectivity, see injectivity radius
– – of surface, 49
radius of curvature, 13
Radon transform, 462
railway metric, 636
rank
– of a map, 183
– of Riemannian manifold, 273,

509
– of symmetric space, 213, 255,

314, 487, 502, 509, 606, 634, 636,
639

– of unit vector, 273
rational homotopy, 178

rationally elliptic, 486, 619
rationally hyperbolic, 486, 619
Rauch comparison theorem, 282,

283
ray, 612
Ray–Singer torsion, 453
real analytic, 51
– manifold, 163
– Riemannian metric, 163
real projective plane, 164, 340, 352
real projective space, 258, 303
real spinor, 694
reducible
– Riemannian manifold, 203
Reeb’s theorem, 581
regular simplex, 201
Reidemeister torsion, 454
residual, 78, 491
resonance, 92, 417
de Rham cohomology, 186
de Rham reducibility theorem, 251
de Rham theorem, 177, 178, 186,

188, 248
Ricci calculus, 730
Ricci curvature, 267
Ricci flat metric, 549
Riemann
– curvature tensor, 117
Riemann hypothesis, 448
Riemann surface, 176, 446
Riemannian
– submersion, 213–215, 230, 745
Riemannian covering space, 203
Riemannian manifold, 193
– reducible, 203
Riemannian metric, 191
– real analytic, 163
Riemannian structure, 194
rigid body, 116
rigidity theorem, 586
Rodrigues–Gauß map, 66, 127, 153,

158
rolling surface theorem, 65
rough Laplacian, 732



SUBJECT INDEX 847

Rozansky–Witten invariant, 742
ruled
– surface, 70

Santalo’s formula, 388
Sasakian, 427
scalar product, 192
scar, 107, 451
Schrödinger equation, 79, 400, 405,

525
Schwarz symmetrization, 95
second Bianchi identity, 731
second fundamental form, 53–61,

232, 337
– on a surface, 54
second variation, 133, 264
secondary characteristic class, 697
segment, 40, 244
Seiberg–Witten
– equations, 558
– invariants, 559
Selberg trace formula, 416, 447,

450
semiclassical limit, 400, 450
series, Fourier, 30
shortest path, 244
sign
– of Einstein metric, 549
signature, 743
simple
– plane curve, 12
simple point, 614
simplicial volume, 255, 544, 568
simply connected, 168
singularity
– conical, 703
skein, 486
skinny, 78
small eigenvalue, 447
smooth, 162
soul, 611
space
– covering, 167, 203–206
– homogeneous, 170, 206–209, 321
– hyperbolic, 195

– length, 4
– lens, 269
– locally symmetric, 209
– projective, 213, 228, 260, 315–

321, 414–415, 604
– – complex, 171
– – quaternionic, 171
– – real, 168
– quotient, 203–206
– Riemannian covering, 203
– symmetric, 209
– – rank 1, 320–321
– – rank > 1, 321
space form, 166, 274–277, 311–321
space mean value, 499
space of paths, 480
special Laplacian, 693
special orthogonal group, 164
spectral gaps, 417
spectrum, X, 85, 404
– length, 85, 429
speed, 11
– of sound, 83
sphere
– exotic, 582
sphere at infinity, 318, 321, 511,

635
sphere theorem, 580
spherical
– harmonics, 30, 110
– trigonometry, 36
spherical codes, 609
spin structure, 695
Spinc structure, 697
spinor, 694
– bundle, 694, 695
– field, 695
– real, 694
splitting theorem, 622
stability
– of minimal manifold, 692
stable, 78
– systole, 375
stadium
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– Bunimovitch, 7
starfish
– three-legged, 476
Steiner symmetrization, 31
Steiner’s quadrilateral, 31
Stiefel–Whitney classes, 695
Stokes’ theorem, 188
Stone–Weierstraß theorem, 406, 414
straightedge, 19
strangulation, 476
stroboscope, 85
Sturm–Liouville theory, 136, 338,

426, 466
sub-Riemannian geometry, 707
submanifold, 716
– embedded, 169
– immersed, 169
– totally geodesic, 254–255
submersion, 183
– Riemannian, 213–215, 230, 745
sum
– connected, 218
supermanifold, 700
superrigidity, 321
supersymmetry, 700
surface, 33–79, 119–158
– constant curvature, 38, 133, 274–

277, 528
– Delaunay, 61
– Klein, 317
– of revolution, 42
– Riemann, 176
– Weingarten, 150
– Weinstein, 464
– Zoll, 461
surgery, 174, 215–218
– trivial, 218
symbol, 402
symmetric space, 209, 314
– locally, 209
– rank 1, 314
symplectic geometry, 682, 684
– complex, 680
Synge theorem, 269, 300

synthetic geometry, 601
systole, 270, 351, 531
– k dimensional, 372
– homological, 362
– stable, 375
systolic
– (p, q) freedom, 373
– (p, q) softness, 373
– inequalities, X
– quotient, 352
– ratio (or quotient), 354

T structure, 540, 658
table, billiard, 4
tangent
– bundle, 182
– line, 12
– space, 180
– vector, 181
tapestry, 474
Tarski–Seidenberg theorem, 566
Teichmüller space, 471
telemetry, 3
tensor, 720
– natural, 223, 731
– product, 720
theorem
– Abresch–Meyer, 300
– Atiyah–Singer index, 699
– Ballmann–Wojtlowski, 503
– Bangert–Franks–Hingston, 494
– Bertrand–Puiseaux, 124
– Besicovitch’s 1st, 359, 377
– Besicovitch’s 2nd, 377
– Bieberbach, 316, 596
– Bishop, 334
– Bonnet, 140
– Bonnet–Schoenberg–Myers, 266,

290
– Brunn–Minkowski, 31
– Buchner–Wall, 308
– Burago–Ivanov, 525
– Cartan surface, 234
– Cartan–Janet, 238
– Cheeger finiteness, 469, 642
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– Cheeger–Colding, 624
– Cheeger–Rong, 542
– Colding L1, 286
– Colding L2, 288
– conformal representation, 277
– Croke’s embolic, 381
– Dai–Wei, 290
– Dvoretzky, 74, 329
– Euler, 308
– Faber–Krahn, 94, 426
– Frobenius, 720
– Gauß–Bonnet, 735
– Gauß–Bonnet, 125–130, 547
– – global, 155
– – local, 125
– Gromov–Lawson torus, 631
– Hardy–Littlewood–Karamata, 421,

422
– Heintze, 636
– Heintze–Karcher, 338
– Hersch, 434
– Hilbert hyperbolic surface, 152
– Hirzebruch signature, 743
– Hodge–de Rham, 691
– Hopf–Rinow, 249
– hypersurface rigidity, 233
– isoperimetric inequality in E3,

74
– Jacobi’s last, 144
– Janet, 238
– KAM (Kolmogorov–Arnol′d–Moser),

432, 490, 506
– Katok, 510
– Lichnerowicz λ1, 433
– Liouville, 383, 498
– Loewner, 351
– von Mangoldt–Hadamard–Cartan,

278
– Morse, 479
– Morse’s index, 480
– Moser, 188
– Mostow rigidity, 318
– Myers–Cheng, 268, 286, 336
– Nash embedding, 238, 469

– Nash–Kuiper, 238
– Nash–Tognoli, 179, 470
– Palais, 193
– Paternain, 503
– positive mass, 688
– Pu, 352
– Rauch comparison, 282, 283
– Reeb’s, 581
– de Rham, 177, 178, 186, 188, 248
– de Rham reducibility, 251
– rigidity, 586
– rolling surface, 65
– sphere, 580
– spherical isoperimetric inequal-

ity, 328
– splitting, 622
– Stokes’, 188
– Stone–Weierstrass, 414
– Stone–Weierstraß, 406
– symmetric space, 209
– Synge, 269, 300
– Tarski–Seidenberg, 566
– Toponogov comparison, 281
– triangle comparison, 281
– Tsukamoto, 522
– Weinstein, 520
– Whitney embedding, 179
– Wiedersehenmannigfaltigkeit, 520
– Wilhelm, 270
– Wolpert, 449
theorema egregium, 119
three point transitive, 314
three-legged starfish, 476
time mean value, 499
Tits metric, 321, 635
topological
– entropy, 482, 501, 515
– manifold, 163
– transitivity, 504
Toponogov comparison theorem, 281
torsion
– free, 724
– of a connection, 724, 725
– Ray–Singer, 453
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– Reidemeister, 454
torus, 168
– flat, 204
totally convex, 252
totally geodesic submanifold, 217,

254–255
trajectory
– periodic, 6
transformation
– Möbius, 318
transgression, 481
transitive
– three point, 314
triangle
– on Riemannian manifold, 281
triangle comparison, 281–291
– Toponogov theorem, 281
trivial
– Jacobi vector field, 273
Tsukamoto theorem, 522
tube formula, 73–77
Turing machine, 566
turning number, 22
twist type of periodic geodesic, 490
twistor, 677, 698
twistor space
– Bérard Bergery/Salamon, 676
– Konishi, 677

umbilic, 54
Umlaufsatz, 22
unit tangent bundle, 383, 393
unit tangent sphere, 244
universal covering, 168

variation
– first, 4, 243–248
– second, 264
variational principle, 502
vector field, 720
– Jacobi, 271, 504
– trivial Jacobi, 273
velocity, 11
vertex, 24
vertical space, 728

vibrating membrane, 83
visibility, 636
volume, 187, 324
– cone, 686
– entropy, 501
– filling, 367
– form, 187, 323
– simplicial, 544

warped product, 215, 601
wave equation, 79, 405
waves, 79–114
wedge product, 185
Weingarten surface, 150
Weinstein
– surface, 464
– theorem, 520
Weyl eigenvalue estimate, 421
Weyl problem, 237
whispering gallery, 90
Whitney embedding theorem, 179
widths
– of metric space, 618
Wiedersehenmannigfaltigkeit the-

orem, 520
Wilhelm theorem, 270
Willmore conjecture, 152
Wirtinger inequality, 142, 692
Witten genus, 620
Wolpert theorem, 449
wrinkling
– finely corrugated, 149

Yang–Mills field, 698

Zoll surface, 461
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