S eo1sAyd s} pue AJ;-:-)LUOQQ ueapijon3g-uop ajdwis v

Heidelberg

Science
Library

-\

|

pERN RN 9.5

A Simple
Non-Euclidean
Geometry

and Its Physical
Basis

|.M. Yaglom




Heidelberg
Science
Library

206861

PRESTON POLYTECHNIC
LIBRARY & LEARNING RESOURCES SERVICE
This book must be returned on or before the date last stamped

266611984

2)

516.9 YAG
A/C 2068

mumuwummm i

g 30107 5




Heidelberg
Science
Library

516 . Y YAL

B —— S ——

27 MAR 1981

I

e ————

| CATEGORY
v I N
]

3




A Simple
Non-Euclidean
Geometry and

lts Physical Basis

An Elementary Account of
Galilean Geometry and the
Galilean Principle of Relativity

Translated from the Russian
by Abe Shenitzer

With the Editorial Assistance
of Basil Gordon

With 227 Figures

Springer-Verlag
New York
Heidelberg
Berlin

r




I. M. Yaglom Abe Shenitzer

Department of Mathematics Department of Mathematics

University of Yaroslav York University

Yaroslav 4700 Keele Street

USSR Downsview, Omano M3J 1P3
Canada

AMS Subject Classifications: 50.01, 50A10

Library of Congress Cataloging in Publication Data

laglom, Isaak Moiseevich, 1921
A simple non-Euclidean geometry and its physical basis.

(Heidelberg science  library)

Translation of Pnnlmp otnositel'nosti Galileia i
neevklidova geometma

Bibliography: p.

Includes index.

1. Geometry, Non-Euclidean. 2. Relativity (Physics)
I. Title. II. Series.
QA685.12413 516’9 78-27788

Title of the Russian original edition: Printsipi otnositelnosti
Galileya i Neevklidova Geometriva. Nauka, Moscow, 1969.

All rights reserved.

No part of this book may be translated or reproduced in any
form without written permission from Springer-Verlag.

© 1979 by Springer-Verlag New York Inc.

Printed in the United States of America.
987654321 '

ISBN 0—387-90332-I\New York Heidelberg Berlin
ISBN 3-540-90332-1 Berlin Heidelberg New York



Preface

There are many technical and popular accounts, both in Russian and in
other languages, of the non-Euclidean geometry of Lobachevsky and
Bolyai, a few of which are listed in the Bibliography. This geometry, also
called hyperbolic geometry, is part of the required subject matter of many
mathematics departments in universities and teachers’ colleges—a reflec-
tion of the view that familiarity with the elements of hyperbolic geometry
is a useful part of the background of future high school teachers. Much
attention is paid to hyperbolic geometry by school mathematics clubs.
Some mathematicians and educators concerned with reform of the high
school curriculum believe that the required part of the curriculum should
include elements of hyperbolic geometry, and that the optional part of the
curriculum should include a topic related to hyperbolic geometry.'

The broad interest in hyperbolic geometry is not surprising. This interest
has little to do with mathematical and scientific applications of hyperbolic
geometry, since the applications (for instance, in the theory of automorphic
functions) are rather specialized, and are likely to be encountered by very
few of the many students who conscientiously study (and then present to
examiners) the definition of parallels in hyperbolic geometry and the
special features of configurations of lines in the hyperbolic plane. The
principal reason for the interest in hyperbolic geometry is the important
fact of “non-uniqueness” of geometry; of the existence of many geometric
systems. The non-uniqueness of geometry sheds new light on basic features
of mathematics; on the role of idealization in science; on deductive
knowledge (Aristotle’s “inferential knowledge”), i.e., knowledge deduced
from a definite system of axioms; on the role of axiom systems in
mathematics, and on the requirements that must be satisfied by such
systems; and on the relation between abstract “mathematical geometry”
and the “physical geometry” concerned with certain properties of physical

ISee, for example, Chapter 16 in [6]. (The numbers in brackets refer to the Bibliography.)



vi Preface

space. The non-uniqueness of geometry already justifies the effort to
dislodge from the minds of prospective high school teachers the notions
that Euclidean geometry is “innate,” “unique,” “natural,” or “god-given.”

While bearing in mind the non-uniqueness of Euclidean geometry, we
should not lose sight of the fact that hyperbolic geometry is not the only
possible non-Euclidean geometry. In fact, in addition to Euclidean and
hyperbolic geometry, there are countless other geometric systems.

Historically, the view of what constitutes geometry changed radically on
a number of occasions. For centuries it was thought that the sole aim of
geometry is the thorough exploration of the properties of ordinary three-di-
mensional Euclidean space. Despite the development of other points of
view (spherical geometry, the earliest non-Euclidean geometric system, was
well known in antiquity?), there was not a shadow of doubt about the
universality of the concept of Euclidean space until the discovery of
hyperbolic geometry. The revolutionary findings of C. F. Gauss (1777-
1855), N. I. LOBACHEVsKY (1793-1856), and J. BoLyar (1802—1860) in the
first third of the 19th century’® were unique in the history of mathematics
because they shattered views which had lasted for millennia.

Each of the three discoverers of hyperbolic geometry has his own
special merits. Formal priority belongs to Lobachevsky, who first pub-
lished findings on this topic (1829) and who devoted his life to hyperbolic
geometry and developed it more extensively than either Gauss or Bolyai. It
appears that it was Gauss who, about 1816, first arrived at the idea of the
existence of a new geometric system just as valid as ordinary Euclidean
geometry, and that Lobachevsky and Bolyai arrived at this idea almost
simultaneously but later than Gauss (Bolyai approximately in 1824;
Lobachevsky not later than 1826). Finally, it is likely that Bolyai appre-
ciated more deeply the significance of the discovery than did Gauss or
Lobachevsky. Bolyai was very much troubled by the thought that he had
no proof of the consistency of his geometry, while to Gauss and Lobachey-
sky this issue did not seem a matter of great concern. In fact, Lobachevsky
was very close to the discovery of what is now known as the Klein—
Beltrami model of hyperbolic geometry, but he saw no need for such a
model and did not pursue this line of thought. That Bolyai, unlike Gauss
and Lobachevsky, made no attempt to decide experimentally whether the
geometry of the universe is hyperbolic or Euclidean might, in view of
present knowledge, be considered an argument for rather than against him.

The fact that spherical geometry did not fit the Euclidean scheme was first stressed by
B. Riemann, whose geometric ideas were strongly influenced by the discovery of hyperbolic
geometry. See text below.

’In the Russian literature there is a detailed account of the dramatic story of the discovery of
hyperbolic geometry in V. F. Kagan’s book [63]. [Gauss, J. Bolyai, and Lobachevsky arrived
at the ideas of hyperbolic geometry entirely independently and at approximately the same
time. This prompted F. Bolyai, the father of J. Bolyai, to remark that “there seems to be a
right time for certain ideas and they are then discovered simultaneously in different places;
they are like violets which bloom in the spring wherever the sun shines.”]



Preface vii

After the discovery of hyperbolic geometry there arose the notion that
there are just two admissible geometric systems, namely, Euclidean and
hyperbolic geometry. This was the firm conviction of the discoverers of
hyperbolic geometry. However, this point of view did not last very long.
The 19th century was a period of rapid development in geometry. In 1854
the eminent German mathematician G. F. B. RIEMANN (1826-1866) for-
mulated, in a famous memoir [74], an extremely general view of geometry
which greatly widened its scope.* Riemann also noted that there are three
(rather than two) related but distinct geometric systems, namely, the usual
Euclidean geometry studied in high school, hyperbolic geometry and
so-called elliptic geometry, which is very close to spherical geometry. This
list of geometries was extended in 1870 by the German mathematician F.
KLEIN (1849-1925), [73] (see also [56]). According to Klein, there are nine
related plane geometries® including Euclidean geometry, hyperbolic geom-
etry and elliptic geometry (in this connection, see Supplement A). Klein’s
views, which were in a way a synthesis of the geometric views of his
predecessors and of the work of the English algebraist A. CAYLEY (1821~
1891), appeared in 1872 in his Erlanger Programm (see Klein [9]). Klein’s
broad view of geometry has a universality comparable to that of Riemann.

Thus, just as the fundamental discoveries of Lobachevsky (published in
1829), Bolyai (published in 1832), and Gauss destroyed the exclusive
position of Euclidean geometry, so, too, the classical investigations of
Riemann and Klein (1854-1872) destroyed the exclusive position of hyper-
bolic geometry. Nevertheless, even today the term “non-Euclidean geome-
try” frequently stands for just hyperbolic geometry (less frequently, the
plural “non-Euclidean geometries™ is used to denote just hyperbolic geom-
etry) and elliptic geometry, and the existence of other geometric systems is
known only to specialists. It seems that this is largely due to the influence
of dated discussions about the nature of physical space. The views pre-
sented in those discussions have long ago lost all scientific significance.

“This paper [74] was an inaugural lecture presented by Riemann to the faculty of Gottingen
University. The presentation of a probationary inaugural lecture was required of all prospec-
tive professors. Riemann’s lecture was so far ahead of its time that in all likelihood only
Gauss understood and appreciated it. (The fact that Riemann was granted a teaching position
was probably due to Gauss’s high opinion of the lecture.) Riemann’s lecture was published
posthumously in 1864 by his student R. Dedekind, who could hardly have understood it
completely. The full range of Riemann’s ideas entered mathematics only with A. Einstein’s
1916 memoir “On the Foundations of the General Theory of Relativity,” which opens with a
remarkably clear presentation of “Riemannian geometry,” and with H. Weyl's 1919 book [39]
containing a new edition of Riemann’s paper and a penetrating discussion of Riemann’s
ideas.

The second universal view of geometry which will be discussed in this book is due to F.
Klein. It is of interest to note that Klein’s view was also contained in an inaugural lecture—in
this case, a lecture presented to the faculty of the University of Erlangen in 1872.

SKlein distinguished seven plane geometries (cf. for example, his book [56]). The subdivision
of “Kleinian geometries” carried out in 1910 by the English geometer D. M. Y. Sommerville
increased the number of plane geometries from seven to nine.
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Thus, for example, even in Klein’s “Non-Euclidean Geometry,” [56] origi-
nally published in German in 1928, we find the assertion that the geometry
of our universe must be either Euclidean, hyperbolic, or elliptic®; this in
spite of the fact that the scientific unsoundness of this viewpoint, at least in
its original formulation, followed from Einstein’s special theory of relativ-
ity of 1905 and, even more decisively, from his general theory of relativity
of 1916. The hypnotic effect of these antiquated cosmological discussions’
has resulted in an unfortunate imbalance: too much attention is paid in
scientific and popular-scientific literature to hyperbolic geometry (for
example, a number of Russian books and countless papers are concerned
with as special a problem as the theory of geometric constructions in the
hyperbolic plane; this in spite of the fact that the problem clearly does not
merit so much attention) and too little to the remaining “non-Euclidean
geometries of Klein.” The aim of this book is to help redress this imbal-
ance by presenting a widely accessible account of one of these geometries,
namely the geometry of the two-dimensional manifold of “events” (D)
(x is the coordinate of a point on a line and 7 is time) whose “motions” are
the Galilean transformations of classical kinematics.

After this unavoidably long historical introduction 1 should like to
return to the question of the pedagogical soundness of the stress on
hyperbolic geometry. It is undoubtedly important to familiarize future
teachers of mathematics (and also, to some extent, senior high school
students interested in mathematics) with a geometry different from the
Euclidean geometry which they know so well. What is worth debating, I
think, is the question of the choice of a non-Euclidean geometry. I am not
inclined either to disregard completely or to regard as decisive the fact that
hyperbolic geometry was the first non-Euclidean geometry to be dis-
covered. The fact that hyperbolic geometry is linked to the issue of the
independence of the parallel axiom and clarifies the role of that axiom in
Euclidean geometry, is a strong argument in favor of its pedagogical
value.® On the other hand, hyperbolic geometry is rather complex—it is
definitely more complex than Euclidean geometry—and yet the non-
Euclidean nature of a geometry need not imply complexity. In fact, the
geometry presented in this book—Galilean geometry—is the simplest of

Klein’s book, published posthumously, is an edited version of mimeographed lecture notes
published by Klein in 1892 and again in 1893 as a textbook for students of the University of
Gottingen. I regard the efforts at updating undertaken by students of Klein, who prepared
these lecture notes for publication, as entirely inadequate.

"We shall not concern ourselves with modern cosmological theories which discuss (in
different fomulations) the question whether the geometry of the universe is, in its essential
features, elliptic, Euclidean, or hyperbolic.

®This point is of major importance only in developments of a geometry such as those based
on Euclid [1]-[3] or Hilbert [4] (see, for example, the textbook [7]). If high school texts on
geometry used the vector approach (an approach supported by many mathematicians and
teachers; cf. the fervently written book of Dieudonné [8]), then it would be better for present
and future teachers of mathematics to know Minkowskian and Galilean geometry rather than
hyperbolic geometry (cf. Supplement B).
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all Kleinian geometries; in many respects it is simpler than Euclidean
geometry. The main distinction of this geometry is its relative simplicity,
for it enables the student to study it in relative detail without losing a great
deal of time and intellectual energy. Put differently, the simplicity of
Galilean geometry makes its extensive development an easy matter, and
extensive development of a new geometric system is a precondition for an
effective comparison of it with Euclidean geometry. Also, extensive devel-
opment is likely to give the student the psychological assurance of the
consistency of the investigated structure. Another distinction of Galilean
geometry is the fact that it exemplifies the fruitful geometric idea of
duality. And last, but certainly not least, a major merit of the geometry
presented in this book is that it illustrates the important connection
between Klein’s Erlanger Programm and the principles of relativity, and
sheds additional light on Klein’s conception as well as on the role of the
principles of relativity in physics.” These reasons make me think that one
should give serious thought to a mathematics program for teachers’ col-
leges which would include a comparative study of three simple geometries,
namely, Euclidean geometry, the geometry associated with the Galilean
principle of relativity, and the geometry associated with Einstein’s princi-
ple of relativity (Minkowskian geometry; cf. Section 12 of this book), as
well as an introduction to the special theory of relativity.

The present book, with its many possibly interesting but nonessential
details,'® is intended for high school seniors, mathematics teachers, and
students and lecturers in universities and teachers’ colleges, but is not
meant to be a blueprint for the reform of the curriculum of teachers’
colleges. At the moment, we are certainly not ready for such a reform. The
evaluation of the questions raised above requires extensive knowledge of
the geometries associated with the principles of relativity of Galileo and
Einstein, whereas apparently this is the first popular scientific book to
analyze in detail the geometry associated with the Galilean principle of
relativity.

Serious scientific accounts dealing with this geometric system are relatively
recent. References to it are found in the works of Klein (cf. [56]) and in textbooks
dealing with Klein’s ideas. However, these references are brief and insubstantial.
The first detailed investigations of this geometry appeared in the years 1913—1915,
and are contained in papers of the German geometers H. Beck, F. Boehm, and

°It is frequently claimed that hyperbolic geometry can be used in judging the merits of
various cosmological hypotheses. However, to imply that only Euclidean or hyperbolic
geometry can fit the universe seems to me to hinder the acceptance of the ideas of the theory
of relativity. From this point of view there is, I think, more merit in the geometry associated
with the Galilean principle of relativity, since it is likely to pave the way for an understanding
of just such ideas.

"%For example, in spite of the lack of scientific applications of the theorem of K. W.
Feuerbach on triangles (the nine-point circle of a triangle touches its inscribed as well as its three
escribed circles; cf. [33]), we give in this book three proofs, counting exercises, of its Galilean
analogue.
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L. Berwald."" In 1925-1928 this geometry reappeared in the papers of the English
mathematician L. Silberstein, the Pole S. Glass, the Russian A. P. Kotel'nikov, and
the Dane D. Fog'%; these authors seem to have been the first to note the
connection between the geometry they investigated and the Galilean principle of
relativity. However, it was not until the 1950s that Galilean geometry was analyzed
in some sense even more extensively than Euclidean geometry. This thorough study
involved the eminent Dutch geometer N. Kuiper, the German geometer
K. Strubecker, and my student N. M. Makarova (see the Bibliography).

The question of the name of the geometry studied in this book requires
some comment. In the literature it is variously referred to as “semi-
Euclidean,” “flag,” “parabolic,” “isotropic,” and “Galilean,” but none of
these terms is particularly apt. The terms “flag geometry,” “parabolic
geometry” (or “doubly parabolic geometry™), and “isotropic geometry” are
justified by considerations which cannot be entered into in an elementary
account aimed at readers without substantial mathematical background. A
merit of the term “semi-Euclidean geometry” is its closeness to the term
“pseudo-Euclidean geometry”, which is used in connection with the geom-
etry associated with the Einsteinian principle of relativity. However, the
true merit of the term “semi-Euclidean geometry” can be appreciated only
by those familiar with the “pseudo-Euclidean geometry of Minkowski.”
Finally, the now popular name “Galilean geometry” is historically inac-
curate: Galileo, whose works date from the beginning of the 17th century,
did not in fact know this geometry, whose discovery was necessarily
preceded by one of the greatest intellectual triumphs of the 19th century—
the emergence of the idea that many legitimate geometric systems exist. A
more accurate name would be “the geometry associated with the Galilean
principle of relativity.” This name is too long for repeated use and that is
why we have decided, somewhat reluctantly, to use the name “Galilean
geometry.” This name is partially justified by the brilliant clarity and
completeness with which Galileo formulated his principle of relativity,
which leads directly to the (non-Euclidean!) geometry considered in the
present book.

Finally, a few remarks about the plan of this somewhat unusual book.
The long Introduction consisting of two sections, the Conclusion, consist-
ing of three sections, the three Supplements, the extensive Bibliography,
the unusually (and perhaps excessively) long Preface are features not
frequently found in books aimed, in part, at beginners. The complicated

"Cf. 0. BECK: “Zur Geometrie in der Minimalebene,” Sitzungsber. Leipziger Berliner Math.
Ges. 12: 14-30, 1913; r. BoEHM: “Beitrage zum Aquivalenzproblem der Raumkurven.”
Sitzungsber. Akad. Munchen 2: 257-280, 1915; 1. BERWALD: “Uber Bewegungsinvarianten
und elementare Geometrie in der Minimalebene.” Monatsh. Math. Phys. 26; 211-228, 1915.
12Cf, L. SILBERSTEIN: “Projective geometry of Galilean space—-time.” Philos. Mag. 10: 681-696,
1925; 5. GLAss: “Sur les geométries de Galilée et sur une geometrie plane particuliére.” Ann.
Soc. Polonaise Math. 5: 20-36, 1926; A. p. KOTEL'NIKOV: “The principle of relativity and the
geometry of Lobachevsky.” A paper in the collection In memoriam Lobatschevskii, 2nd ed.
Kazan’, Glavnauka, 1927, pp. 37-66; p. F0G: “Den isotrope Plans elementare Geometri.”
Math. Tidskrift, Ser. B xx: 21-33, 1928.
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plan of the book reflects the unusual nature of the topic (I was forced to
begin the book with a long preface when I discovered that its very title"
was bewildering) and, more important, the fact that the book is intended
for different categories of readers. While the Bibliography includes many
items which can be read by beginners, it is intended primarily for teachers
and can be ignored by high school students. Study of the material in fine
print (partly intended for high school teachers of mathematics) is not
necessary for the understanding of the rest of the book. Familiarity with
the introduction is indispensable for the understanding of the rest of the
book. In a first reading, the Conclusion can be ignored. However it seems
to me that Sections 11 and 12 of that chapter could be read with profit at a
later time. Incidentally, the style of the Conclusion is concise; it was not
the author’s intention to add another item to the extensive list of popular
accounts of Einstein’s special theory of relativity, and readers of the very
brief Section 11 will undoubtedly find it helpful to acquaint themselves
first with one of the expositions [38]-[55] (we highly recommend the
remarkable book [40] of M. Born). Section 12, devoted to the “non-
Euclidean geometry of Minkowski,” is also quite concise and is not meant
for rapid reading. This section contains almost no proofs of the quoted
results; the enterprising reader may try to supply his own proofs (here the
bibliographical references may turn out to be helpful). I wish to note that I
made a consistent effort to bring together phenomena of Galilean geome-
try and related phenomena of Euclidean geometry, and this parallelism of
presentation accounts in part for the relatively large size of the book.

The few problems and exercises at the end of each section are intended
to stimulate the reader’s initiative and to encourage reflection, and so are
often formulated somewhat vaguely. The reader will undoubtedly pose
other problems himself. The Exercises (numbered with Arabic numerals)
are meant to help the reader check his grasp of the subject matter. The
Problems (numbered with Roman numerals) are more difficult than the
Exercises, but beyond that the distinction is rather subjective. The solution
of the Problems may involve considerable effort as well as a measure of
research, and may require knowledge in excess of that needed for the
reading of the book itself. However, even these problems are of methodo-
logical rather than scientific interest. The selected answers and hints at the
end of the book are not uniformly detailed and are intended to give the
reader an idea of the nature of the required solutions.

A word about Supplements A, B, and C: Just as there are no prere-
quisites for the reading of the main part of the text, so there are none for
the reading of the Supplements; they can be read, in principle, by a
persistent high school student. But persistence is required. The Supple-
ments, written in a very concise manner (and containing practically no
proofs), form the most complex part of the book and are meant for

3The Russian title of the book is The Galilean Principle of Relativity and Non-Euclidean
Geometry (translator’s note).
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thoughtful readers. In spite of the fact that the Supplements do not
explicitly rely on the knowledge of concepts and theorems unknown to
readers with minimal background, they are probably accessible only to
students who are familiar with analytic geometry and the elements of
elliptic or hyperbolic geometry. The material of the Supplements is not
needed for the understanding of the rest of the book. Nevertheless, the
Supplements play a rather important role: while the rest of the book
contains a detailed exposition of one simple non-Euclidean geometry, the
Supplements afford a glimpse of a universe of geometries of which
Galilean geometry is the simplest member.

Formulas (numbered with Arabic numerals), exercises, and problems
are numbered independently in the Introduction, in Chapter I, in Chapter
I, in the Conclusion, and in the Supplements. Hence if a formula, exercise,
or problem is referred to in some part of the book by number alone, then it
is found in that part. In other cases, the reader is referred to an appropriate
section or page.

The book is based on lectures which I delivered in 1956-57 to high
school juniors and seniors who were members of the high school mathe-
matics club at the Moscow State University. In 1963-64 an expanded
version of these lectures was presented to high school juniors at the
Evening Mathematics School of the Moscow State University. The book
was influenced to some extent by the contents of a (more advanced and
extensive) special course, entitled “Principles of Relativity and Non-
Euclidean Geometries,” which [ taught at the Lenin Moscow State
Teachers” College.

[t is a pleasant task for an author to thank those who have helped him. I
wish to express my gratitude to G. B. Gurevich for friendly and helpful
criticism. I am also most grateful to F. I. Kizner, the editor of my books,
for her valuable assistance in the preparation of the final version of this
book. Finally, I wish to acknowledge the fine work of M. S. Koroleva, who
prepared the drawings for the book, and whose help and enthusiasm made
it possible for it to see the light of day.

I. M. Yaglom
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This book is remarkable in that it relies only on precalculus mathematics
and yet has an “idea density” exceeding that of many advanced texts. It is
a fascinating story which flows from one geometry to another, from one
model to another, from geometry to algebra, and from geometry to
kinematics, and in so doing crosses artificial boundaries separating one
area of mathematics from another and mathematics from physics.

The book abounds in helpful comments, discussions, examples, and
applications. Some of the exercises and problems following each section
are what the terms indicate. Others sketch paths to be followed and
explored by more experienced readers.

Enough has been said to indicate that this is an unusual book. However,
only by reading it can one gain an appreciation of the skill with which the
author develops its many themes. It is safe to say that Professor Yaglom
has created a royal road to a large part of geometry and to parts of algebra
and physics for readers ranging from high school students to college
teachers.

The following is a somewhat technical description of the content of the
book.

The Introduction discusses Klein’s concept of a geometry, mechanics,
and the geometrization of mechanics. Chapters I and II (about half the
book) are an elementary but nontrivial introduction to plane Galilean
geometry and to Galilean inversive geometry, with plane and inversive
Euclidean geometry providing both background and contrast.

Plane Galilean geometry can be thought of as the geometry of either
classical kinematics on a line or of shears and translations. In many ways,
Galilean geometry is simpler than Euclidean geometry; for example, we
have for sing and cosg, the Galilean analogs of sin and cos, sing A =4 and
cosg A=1 for all angles A. Like projective geometry, Galilean geometry
has a principle of duality.
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The characteristic property of the transformations of EIG (Euclidean
inversive geometry) is that they preserve (lines and) circles. Similarly, the
characteristic property of the transformations of GIG (Galilean inversive
geometry) is that they preserve (lines and) Galilean circles and cycles, the
Galilean analogs of Euclidean circles. A more surprising characterization
of the transformations of EIG and GIG is that they are the restrictions of
the collineations of space to a sphere and to a cylinder, respectively. In
Supplement C, EIG is shown to be the geometry of the group of fractional
linear transformations

w=(az+b)/(cz+d) and w=(az+b)/(cz+d), z=a+bi, iP=-1
and GIG the geometry of the group of transformations
w=(az+b)/(cz+d) and w=(az+b)/(ci+d), z=a+be, e=0.

Chapters I and II are followed by a chapter called “Conclusion.” Here
classical kinematics, the physical basis of Galilean geometry, is replaced by
relativistic kinematics. The geometrization of relativistic kinematics leads
to Minkowskian geometry. The earlier themes are discussed in the context
of the new geometry. In particular, MIG (Minkowskian inversive geome-
try) is characterized by the study of collineations of space restricted to a
hyperboloid of one sheet. In Supplement C, MIG is shown to be the
geometry of the group of fractional linear transformations

w=(az+b)/(cz+d) and w=(az+b)/(cz+d), z=a+bee’=1.

Supplement A introduces a new range of ideas. The author points out
that in each of the three geometries studied earlier length is measured “the
same way” but angles are not. By measuring angles as well as lengths in
three different ways we are led to nine plane geometries. In Supplement A
some of these geometries are realized as the intrinsic geometries of unit
spheres in appropriate spaces. In Supplement B they are characterized by
suitable sets of axioms. In Supplement C some of them are realized in
terms of analytic models involving the algebras of complex, dual, and
double numbers.

I wish to thank the author for bibliographical suggestions (the German,
French, and even Russian items may not be used by high school students
who read the book, but may be used by other readers). The staff at
Springer-Verlag New York was most helpful. I wish to thank Hardy Grant
for reading an earlier version of the translation. My special thanks go to
Basil Gordon for his untiring efforts to improve the translation.

Remarks on notation

The book poses a notational dilemma in the sense that an absolutely
precise and consistent notation would be very cumbersome. The author’s
notation is sufficiently precise and yet simple, and the translator has
followed the author’s example.
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The reader may find useful the following list of symbols and comments
on notation.

M) (p. 2). d=AA,=\/(xl —x)*+(y,—»)* is the positive Euclidean
length of the segment A4,.

(2) (p. 16). In the case of motion along a fixed line the velocity can be
given by a number rather than a vector.

(3) (p. 38). tanédy, =(k,—k)/(1+kk,) is the signed magnitude of the
tangent of the directed Euclidean angle from / to /,.

@) (p. 38). dy,=|s,—s|/V1+k* is the positive Euclidean distance be-
tween the parallel lines / and /, with common slope k and y-intercepts
s and s,, respectively.

(5) (p. 38). dyy,=x,—x is the signed Galilean length of the directed
segment AA,.

(6) (p. 39). 8,,,=y,—y is the signed special length of the directed special
segment AA4,.

() (p- 41). &, denotes the signed Galilean magnitude of the directed
Galilean anglc from / to /,. If the slopes of / and /, are k and k,,
respectively, then §, =k, — k.

(8) (p- 42). d, denotes the signed Galilean distance between the parallel
lines / and l,. If I and /, have y-intercepts s and s,, respectively, then
dy, = $,~

&) (p 42). dm denotes the signed Galilean distance from the point M to
the line /.

(10) (pp. 41 and 51). NN, is the signed length of the directed segment
NN,. a is the signed length of the directed segment a. 4 is the signed
magnitude of the directed angle 4.

(11) (p. 44). The mechanical significance of §; is that of v, , the velocity of
the uniform motion represented by /, relative to the uniform motion
represented by /. If the slopes of / and /, are k and k,, respectively,
then v, =8, =k,— k. Since tangs, =9, (see p. 47, Ex. 3), we have
U= tang&,, (constrast this with the relation v, =tanh, in relativistic
rnechamcs see p. 188, footnote 16).

(12) (p. 179). d,z ="V 2S(AKBL) is the positive Minkowskian length of
AB.

(13) (p. 180). d’(.,,ﬁ—\ﬂ(x2 x, = (y,=»,)"| is the positive Minkowskian
length of AB.

(14) (p. 180). a'f,,,,—\/(xz—x,)z--(yz—y,)2 is the positive real, or complex
Minkowskian length of 4B.

(15) (p. 258). The modulus |z| of a complex number z = x + iy is given by
i e

(16) (p. 267). The modulus |z| of a dual number z=x+gy is given by
|z|= x.

(17) (p. 267). The modulus |z| of a double number z = x + ey with |x|>|y|
is given by +yx2—y? , and the sign of |z| is that of x. The modulus
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of a double number z=x+ ¢y with |y|>|x] is given by tyyi-x2,
and the sign of |z| is that of y.

(18) (pp. 259 and 272). d, . =|z,—z| is the signed distance from z to z,.
Here z and z, can be complex, dual, or double numbers.

(19). In Supplement C, lower-case Latin characters denote complex, dual,
or double numbers. If a is such a number, then 7 is its conjugate.
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Introduction

1. What Is geometry?

Geometry, a subject with which we are all familiar from high school,
investigates properties of figures, i.e., sets of points in the plane or in
space.! The question arises, which properties of figures are of interest to the
geometer? To answer this question, we can use two different approaches.
Both lead to the same conclusions. Both will be of use to us in what
follows, and so deserve our attention.

The first approach is bound up with the concept of congruence of
figures. Figures are said to be congruent if they have the same geometric
properties. It is perhaps more suggestive to say that congruent figures
differ only in position but not in form or size, or that figures are congruent
if and only if they can be obtained from each other by a motion. For
example, triangles ABC and MNP in Figure 1 differ only in position, and
so have the same (geometric) properties. Thus if the angle between the
median AD and the angle bisector AE of AABC is 15°, then the same is
true of the angle between the median MQ and the angle bisector MR of
AMNP. Congruent figures are frequently regarded as essentially the same.
That is why, in geometry, triangles such as ABC and MNP are frequently
regarded as one rather than two triangles. Similarly, we say that two sides
AB=c and AC=>b and the angle /A=a between them determine a
unique triangle (Fig. 2a)> meaning that triangles ABC and 4’B’C’, (Fig.
2b) with AB=A'B’ (=c), AC=A'C’ (=b), and LA= /LA (=a), are
congruent.

'In this book we will deal mainly with plane geometry, which studies properties of figures in
the plane.

2Note that in general, given two sides AB=c, BC=a and the angle /4 =a opposite one of
the given sides, we can construct two triangles (Fig. 2b).
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P
B R+
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A C M
Figure 1

We wish to stress that, far from having given a mathematically accept-
able definition of congruence, we have merely suggested its sense and
equated statements such as “F and F’ are congruent figures,” “F and F’
have the same geometric properties,” and “F and F’ can be obtained from
each other by a motion.” There are various ways out of this difficulty. One
of them is to say that wo figures F and F’ are congruent if it is possible to
establish a one-to-one correspondence between the points of F and those of F’
such that the distance between any two points A and B of F is the same as the
distance between the corresponding points A" and B’ of F’ (Fig. 3). While this
definition may be unwieldy, it does not tie the concept of congruence of
figures to that of motion. True, our definition introduces the new concept
of “distance between two points,” and a critical reader might well ask what
is meant by the distance between two points. This question, however, is
easy to answer: If, in some (arbitrary) rectangular coordinate system in the
plane, the coordinates of A are x and y and those of 4, are x, and y, (Fig.
4a), then we define the distance between 4 and A4, by the formula®

d=AA1=\/()c1—x)2+(y,—y)2 . (1
In this way the notion of distance is expressed by a simple algebraic

Figure 2a Figure 2b

3Similarly, the distance between the points A(x,y,z) and 4,(x,,y,,z,) in space is given by the
formula

d=A44,=\ (x;=xP+ (1 -y’ +(z, - z) : (1a)
(cf. Fig. 4b).
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Figure 4a Figure 4b

formula. That 4 is independent of the choice of a (rectangular) coordinate
system is proved on p. 9.

Now that we have a definition of congruence, we also have a definition
of the term “geometric property” and, incidentally, of “motion.” Thus a
geometric property is one shared by all congruent figures, and a motion is a
transformation (of the plane) which maps every figure to a congruent figure,
or, equivalently,a transformation which preserves distances.

At this point it is appropriate to give the definition of geometry due to
Klein. According to Klein, geometry is the study of invariant properties of
figures, i.e., properties unchanged under all motions.* This view of geome-
try makes it clear why an angle between two sides of a triangle drawn on a
blackboard is of interest to a geometer, whereas the angle between a side
of the traingle in question and an edge of the blackboard is not. The first
angle is unaffected by motions and is therefore a geometric property of the

4Actually, Klein’s definition of geometry is more general than this (see Klein’s original paper
[9], the introductions to Yaglom’s books [10]-[12], or Section 6 of [14]). However, the above
definition suffices for our purposes.
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triangle. The second angle changes under motions and therefore is not a
geometric property of the triangle; it depends on the location of the
triangle on the blackboard.

We now return to our main theme. The use of coordinates is intimately
connected with the second approach to the question of which properties of
figures are geometric, that is, belong to the domain of geometry. As is
well known, already in the 17th century the famous French mathemati-
cians R. DESCARTES (1596—1650) and P. FERMAT (1601-1665) showed that
Euclidean geometry can be based on the concept of number and reduced
to analysis by the introduction of a coordinate system (of the kind shown
in Fig. 4a) in the plane. Then to each point in the plane there corresponds
a pair of numbers x and y, its coordinates, and to each (plane) figure F,
i.e., to each set of points, there corresponds a set of number pairs, the
coordinates of the points of F.

For example, to the set of points M at a fixed distance r from a given
point Q(a,b), ie., the circle S with center Q and radius r (Fig. 5), there
corresponds the set of number pairs (x,y) such that

Vix—ay+(y—b) =r 1)
or
(x—a)*+(y—b)’=r?, 2
that is,
x2+y2+2px+2qy +f=0, )
where
p=-—a, g=—b, f=a’+b*—r’ (2a)

Similarly, to the /ine / which intersects the y-axis at the point S(0,s) and
forms with the x-axis an angle Z xQM = ¢ with tanp=MP/QP=k (Fig.
6), there corresponds the set of number pairs (x,y) such that

y=kx+s, 3)

Figure 5
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where the intercept s and the slope k may be positive, negative, or zero. (In
this book angles are always measured counterclockwise, so that a negative
value of kK =tang means that Z xQM = ¢ is obtuse; cf. Figs. 6a—d). Again,
to the line m parallel to the y-axis and intersecting the x-axis at 4(a,0)
there corresponds the set of number pairs (x,y) with

x=a )]
(Fig. 7a). To the line n through B(b,0) parallel to the x-axis (Fig. 7b) there
corresponds the set of number pairs (x,y) with

y=>b
[the latter equation is a special case of Eq. (3) with k=0.] In addition to
the terminology employed so far, we also use the expressions “Equation (2)
corresponds to the circle S,” and “Equation (3) corresponds to the line /,”
or, briefly, “the circle S is given by Eq. (2),” and “the line / is given by Eq.
(3).,’

«
3

=
-
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D
0/ z

Figure 8a Figure 8b

Now it is natural to ask what relations between the coordinates of
points have geometric significance and what relations are accidental, i.e.,
depend on the choice of a coordinate system. For example, r in Eq. (2)
expresses a fundamental characteristic of the circle. On the other hand, p
in Eq. (2) has no geometric significance; it is quite easy to find two
congruent circles given by equations of the form (2') with different values
of p as well as two noncongruent circles with the same values of p.°

By now the reader may well have guessed the answer to the question
Just raised. The coordinates (x,y) of a point 4 depend not only on 4 but
also on something not directly related to it, namely, the coordinate system.
We can choose the (rectangular) coordinate axes Ox and Oy in various
ways, and depending on these choices, the coordinates of the point A4 will
vary. In much the same way, a figure, say a line, will be given in different
coordinate systems by different sets of number pairs. If a quantity de-
termined by the set of number pairs corresponding to a figure F does not
depend on the coordinate system, i.e., remains the same upon transition
from one coordinate system to another, then this quantity may be said to
have an invariant character, to depend on the figure F alone, to reflect a
geometric property of F. On the other hand, if the quantity in question
changes upon transition from one coordinate system to another, then it
depends on the position of the figure F in the chosen coordinate system; it
is characteristic not of the figure F with which we are concerned (Fig. 8a),
but of the more complex entity made up of F and the pair of coordinate
axes Ox and Oy (Fig. 8b). In general, a property of a figure is geometric if
and only if it does not depend on the choice of a coordinate system. This is
our second answer to the question of which properties of a figure are
geometric.

Our remarks can be reformulated so as to help us distinguish effectively
between geometric quantities and quantities which depend on the choice of
a coordinate system. Thus, let 4 be a point with coordinates x and y in a

3Clearly, the value p=—a depends on the abscissa a of the center Q of the circle. This
quantity is determined by the choice of the coordinate system, not by the geometric properties
of the circle.
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coordinate system xOy (or, as we shall say in what follows, in the
coordinate system {x,y}), and with coordinates x” and y’ in a coordinate
system x"O’y’ (or {x’,y’}). Suppose that the coordinates of the “old” origin
O in the new coordinate system x’Q’y’ are a and b, and the angle xCx’
between the axes Ox and O’x’ is a (Fig. 9).° Our problem is to express the
“new” coordinates (x’,y") of a point 4 in terms of its old coordinates (x,y)
and the quantities a, b, and a.

To solve this problem it is convenient to introduce the angle Z xO4=¢
(as always, angles are laid off in the positive, i.e., counterclockwise direc-
tion from Ox) and the distance O4 =r.” Then the coordinates x and y of 4
are expressed in terms of r and ¢ by means of the relations

x=rcosg, y=rsing (5)

(Fig. 10). We now introduce an auxiliary coordinate system x,0y,, or
{x1,,}, whose origin coincides with that of {x,y} and whose axes are
parallel to those of {x’,y’} (see Fig. 9). Clearly, the angle from the x,-axis
to the ray O4 is ¢, = ¢ — a (see Fig. 9). Hence,

x,=rcosp,=rcos(p—a)=r(cospcosa+singsina)

=rcosg-cosa+rsing-sina=xcosa+ysina,

SIn analytic geometry one usually employs “right-handed” coordinate systems. In such a
coordinate system the 90° rotation which takes the ray Ox to the ray Oy is counterclockwise.
Here we follow this convention.

"The quantities 7 and ¢ are called the polar coordinates of A.
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and
y1=rsing, =rsin(p—a)=r(sinpcosa —cosgsina)
=rsing-cosa—rcosg-sina= — xsina+y cosa.
On the other hand, Figure 9 shows that

x'=x,+a,
Y’ =y +b,
where a= O’P and b= PO.
It thus follows that
x'= xcosa+ysina+a,

(©)

y'=—xsina+ycosa+b.

Given x’ and y’, we can solve (6) for x and y, and so express the old
coordinates of a point in terms of its new coordinates. The relevant
formulas are:

x=(x"—a)cosa—(y'—b)sina,

. (6a)
y=(x'—a)sina+(y'—b)cosa.
Formulas (6a) can also be written as:
V x= x'cosa+y’'sina+a,
(6b)

y=—x'sina+y’ cosa+b,
where @ and b are the coordinates of O’ in the system {x,y}, and
a@= [/ x'Cx= —a is the angle between the axes O’x’ and Ox.® To justify
this step we need only bear in mind the fact that we may regard {x’,y’} as
the old coordinate system and {x,y} as the new one and use formulas (6)
(with a,b,a replaced by their analogues &, b, ).

We boxed formulas (6) to emphasize their importance. These formulas
play a fundamental role in geometry, since they enable us to decide
whether a quantity or property (defined analytically, i.e., by means of
coordinates) has geometric significance. For example, the distance

d=\(x,—x)*+(»,-»)’ (1)

between A(x,y) and 4,(x,,y,) has geometric significance. In fact, if we
choose a coordinate system {x’,y’}, then the new coordinates of 4 are
given by formulas (6), and the new coordinates of A, by analogous
formulas

xi= x,cosa+ysina+a,
yi=—xsina+y,cosa+b.

8Strictly speaking we should put @=360°— a because we agreed to lay off angles in the
positive direction. However, this does not affect the values of the trigonometric functions in
formulas (6b), and so may be overlooked.
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Hence
(xi=x)’+(¥i =)= [(x;— x)cosa+(y,~y)sina]’
+[ —(x,—x)sina+(y,—y)cosa]?
=(x,; — x)*(cos?a +sin’a) + (v, —y )*(cos’a +sin%)
=(x;=x) '+ (r—»),

which shows that 4 is indeed independent of the choice of a coordinate
system.

Similarly, if the equation of a circle S in the old coordinate system
{x,y} is given by (2'), then in order to obtain its equation in the new
system {x’,y’} we must replace x and y in (2’) by their expressions in terms
of the new coordinates [see (6b)]. This gives
[%'cosa+y'sind@+a)’*+ [ —x'sin@+y cosa+5|*

+2p(x’'cosa+y sina+a)+2q(—x'sina+y’ cosa+b)+f=0,
or, after reductions,
x2+y?4+2p'x' +2¢'y +f =0,
where

’

cosd@— bsin@+ pcosd— gsina,

’

]
I
Q

sin@+ b cosa+ psind@+ gcosa,

I
N

f'=a+b*+2pa+2qb+f.

This shows that p has no geometric significance (since, in general, p’=
acos@— bsin@+ pcosa— gsin@p). On the other hand,

P+a—f
has geometric significance, for it is easy to see that
p*+q?*=[(acosa—bsina)+(pcosa— qsin&)]2
+[(asina+ bcosa) +(psina+ qcos&)]2

=a+b2+p*+¢*+2pa+24b,

and therefore
p12+q12_f1=p2+q2_f.
In fact, formulas (2a) show that
g —f=r

where r is the radius of the circle S.

If a line / in the coordinate system {x,y} is given by Equation (3), then in the
system {x’,y’} it is given by the equation

—x'sind@+y’cosa+b=k(x'cos@+y’sina+a)+s.
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If cos@ — ksina+0, then this equation can be rewritten as
yl= k/xl + sl’
where

— — § =
cosa—ksina’ cosa—ksina’
and otherwise (i.e., if cos@— ksina=0), as

,_ kcosa+sina , ki—b+s

xf=al’
where
,_ b—ka—s
kcosa+sina

It follows that neither k nor s has geometric significance; both numbers reflect the
position of the line / relative to the coordinate system. On the other hand, if the
coefficient & of the line in (3) is equal to the coefficient k, of a line /; with equation

y=kx+sy, (3a)
then this equality does have geometric significance; in fact, if k =k, transition to a
new coordinate system yields the equality
,_ kcosa+sina _ kjcosd@+sina _
cos@—ksin@ cosa—k; cosa

In geometric terms, k = k, signifies parallelism of the lines / and /,.
If / and /| are parallel, i.e., if k= k|, then the quantity

|s1—s|

VEk2+1
has geometric significance. In fact,
., ,_ ka—b+s ka+b+s
sy—s5'= — — — ——
cos@a—ksina& cosax—ksina
_ 'sl_s
cosa@— ksina@

and

K241 =( kcos¢7+sin47)2
cosa@— ksina@
_ (kcosa@+sina)*+ (cosa — k sin&)’
B (cosa— ksina)*
_ k2+1
(cosa— ksina)*’

so that
Isi=s'| _ Isi—s|/|cos@a—ksina] _|s;—s]
VEZ+T VIR /|cosa— ksing]| VIR
[Consideration of A SS|P in Fig. 11 shows that
Inzsl __ SS1 g cosp=5,P=d
VE*+1  Vian%p+1

is the distance between the lines I and 1,.]
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Even if the lines / and /, given by Equations (3) and (3a) are not parallel, i.e., if
k+ k,, then the rather complicated expression

kl"k
kik+1
has geometric significance.” To see this, note that
, .. kicos@+sin@  kcosa+sina
kl"k = — — n
cos@—k;sin@ cosa@—ksina

_ (kycosa+sina)(cosa— ksina) — (kcosa@ +sin&)(cosa— k, sin&)
- (cosa@— ksin&)(cosa@— ksin&)
- kl - k

(cos@— k,sin@)(cos@— ksina) ’

and
Kk +1= k,oos&+sin&. kcos@+sina +1
! cosa@—k;sin@ cosa@—ksina
_ (kycos@+sina)(kcosa+sina)+(cosa— k,sin@)(cosa@ — ksina)
- (cos@— k,sina@)(cosa— ksina)
_ kik+1
(cosa—k;sina)(cosa— ksina) ’
so that!?

Ki—k  k—k
KK +1 kk+1°

%If the denominator &,k +1=0, we put (ky—k)/(kk+1)=o0. (Translator’s note.)
"0If cos@— ksin@=0 or cos&— k,sina=0, then in the expression (k] —k")/(kik’+ 1) we put
oo in place of k' or of ki, respectively. For example, if cos@— ksin@=0 (i.e., if the new
equation of / is x’=a’), then we put

ki—k _ . K-k (ki/K)-1 1

Kk +1 - oo B +1 o K+ (/) K"
Then in this case we also have

ki—k' 1 _ —cosatksina _ —cota+k; Kk —k

Kik+1 "~ Ki kycosa+sina  kjcota+1 kk+1’

for clearly, k=cota.
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[It is easy to see the geometric meaning of (k,—k)/(k;k+1). If k=tang and
k,=tang,, where ¢ and ¢, are the angles formed by the lines /,/; and the ray Ox
(Fig. 11b), then

kl_k _ tan(pl—tan‘p

F+T - g gt 2o(mi—e)=tand,

where 6=, — ¢ is the angle between the lines | and [,.]

The term “geometric property” has by now been given two different
meanings. It remains to show that the two meanings are actually the same.
This we do next.

We note that formulas (6) admit an “alibi” interpretation."! We can
think of these formulas as defining a transition from the point A(x,y) to
the point A’(x’,y"), where (x,y) and (x’,y") are the coordinates of 4 and 4,
respectively, in the same (rectangular) coordinate system {x,y}. Thus in
this interpretation formulas (6) define a transformation of the plane. Since
any set of points 4 and its corresponding set of points A’ have the same
geometric properties [this follows from the original interpretation of for-
mulas (6) as giving the connection between the coordinates of the same
point in different coordinate systems], it follows that the transformation (6)
must take a figure F into a congruent figure F’, and so represents a motion.
In fact, the transformation (6) may be thought of as a rotation

x;= Xxcosa+ysina,
Y1=—xsina+ycosa )
through the angle a about the origin O (Fig. 12a) followed by the

translation
x'=x,+a,

®)

(Fig. 12b). we thus return to the assertion that geometry studies properties
of figures preserved by the motions (6) (cf. p. 3, lines 9-10).2

y'=y+b

A similar treatment can be applied to three-dimensional geometry. In a given
(rectangular) coordinate system {x,y,z} each point is assigned three coordinates
(x,y,2). Transition from a coordinate system {x,y,z} to another system {x’,y",z’}
is given by the complicated formulas

x =(cos Bcosa—cosysinfBsina)-x + (sinBcosa +cosycos Bsina)-y
+sinysina-z+a,
y'=—(cosBsina+cosysinfBcosa)x+(—sinBsina+cosycosBcosa)y
+sinycosa-z+b, )
z'=sinysinB-x—sinycos 8-y +cosy-z +c,

1By contrast, the original interpretation, where (x,y) and (x’,y’) are regarded as coordinates
of the same point in two different coordinate systems, is called the “alias” interpretation
(alibi = another place; alias=another name). (Translator’s note.)

2Since we restricted ourselves to right-handed coordinate systems (cf. footnote 6), formulas
(6) do not give all the motions of the plane but only the so-called “direct” motions of the
plane which carry a right-handed coordinate system into a right-handed coordinate system
(see Chap. II, Sec. 2 of [10]; Chap. 3 of [19] and Chap. 1, Sec. 18 of [32]).
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where a,b,c are the coordinates of the old origin O in the new system {x’,y’,z’},
and a,B,7 are the so-called Euler angles. These angles are shown in Figure 13, in
which we use an auxiliary coordinate system {x,,y,,z,} whose origin is O, and
whose axes are parallel to those of {x’,y’,z’}. The line of intersection of the planes
Oxy and Ox, y, is denoted in the figure by ON. We may say that three dimensional
geometry is concerned with those relations among the coordinates of points which are
unchanged by the transformations (9). Alternatively, we may regard the coordinate
system as fixed and view (9) as defining a transition from a point A(x,y,z) to a new

Figure 13
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point A'(x’,y’,2’), that is, we may regard §9) as defining a transformation of space.
Since the transformations (9) are motions,'> we again come to Klein’s point of view,
which asserts that geometry studies the properties of figures preserved by all motions.

PROBLEMS AND EXERCISES

1 Prove formulas (9).

2 (a) How would formulas (6) change if one did not employ right-handed
coordinate systems only (cf. footnote 6)? [It is clear that the “alibi” interpreta-
tion of the restriction to right-handed coordinate systems amounts to consider-
ation of direct motions only (cf. Footnote 12)]. (b) How would formulas (9)
change if one did not employ direct motions only (cf. Footnote 13)?

3 (a) Show that every direct motion of the plane is a rotation or a translation.
(b) Show that every opposite motion of the plane is a glide reflection, i.e., a
reflection in a line followed possibly by a translation in the direction of this
line.

I (a) Classify direct motions in space [cf. Exercise 3 (a)]. (b) Classify opposite
motions in space.

Il Interpret “motion” as translation [cf. Equations (8)]. Define the geometry of
translations to be the study of properties of plane figures invariant under all
translations. (a) Which of the following Euclidean concepts are also concepts
of the geometry of translations: triangle, quadrilateral, trapezoid, rhombus,
circle, parallelism, perpendicularity, median, angle bisector, altitude, length of
a segment, magnitude of an angle, area? [Hint: In Euclidean geometry, a
trapezoid is a quadrilateral with a pair of parallel opposite sides, and a circle is
the locus of points equidistant from a fixed point Q. Could these concepts be
defined in terms of our geometry of translations?] (b) Which of the following
theorems of Euclidean geometry carry over in a natural way to the geometry
of translations: the theorems about the midline of a triangle'* and a trapezoid;
the theorems about the concurrence of the medians and altitudes of a triangle;
the theorem on the sum of the angles in a triangle; the theorems about
properties of isosceles triangles; the theorem which asserts that triangles with
equal bases and altitudes have equal areas; the theorem which asserts that
triangles (polygons) with equal areas are equidecomposable'®; Pythagoras’
theorem? (c) Show that, in the geometry of translations: two triangles 4BC
and A’B’C’ are congruent if and only if the segments A4’, BB’, and CC’ are
congruent; if two opposite sides of a quadrilateral are congruent, then the
remaining two sides are congruent; if the opposite sides of a 2n-gon are
congruent, then the diagonals joining opposite vertices intersect in a point
which is their common midpoint.

Il Define central Euclidean geometry to be the study of properties of the plane
which are invariant under the rotations (7) about a fixed point O (which
should be excluded from the plane since it plays a different role from the

3More precisely, “direct” motions; cf. Chap. 7 in [19], or Chap. 4, Sec. 14 of [32].

14This theorem states that the line joining the midpoints of two sides of a triangle is parallel to
the remaining side. (Translator’s note.)
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other points). Develop elements of plane central Euclidean geometry using
Problem II as a model.

IV Define geometry of parallelism to be the study of properties of plane figures
invariant under translations and central dilatations (i.e., under motions which
carry each line to a parallel line). (a) Write down equations [analogous to (6)]
that yield all the “motions™ of this geometry. (b) Using Problem II as a model,
develop elements of the geometry of parallelism; in particular, you might try
to decide the status of the theorem about the equidecomposability'® of two
triangles (polygons) with equal areas.

V  Develop three-dimensional geometries corresponding to various “exotic” [i.e.,
different from (9)] sets of “motions” of space.

2. What is mechanics?

One of the basic aims of this book is to establish a definite connection
between mechanics and geometry. This connection rests on a deep analogy
between the role of motions in geometry (considered as distance-preserving
transformations of the plane or of space, unrelated to such purely
mechanical concepts as velocity or the path of a moving point) and the
role of uniform motions in mechanics. (Here velocity is obviously a crucial
concept, as the word “uniform” in the description indicates.) This connec-
tion can also be said to rest on the analogy between the respective roles of
rectangular coordinate systems in geometry and so-called inertial reference
frames in mechanics. The present section is devoted to a discussion of
these analogies.

The three basic areas of mechanics are kinematics, statics, and dy-
namics. We shall be primarily concerned with kinematics, which studies the
motions of material points and bodies. What we mean by “motion” in
mechanics is so different from what we mean by “motion” in geometry
that, were it not a matter of firmly rooted tradition, there would be every
reason to give these concepts different names.

In geometry a “motion” is a certain type of point transformation which
associates to each point 4 a definite point A’. The geometer regards the
question of how A4 reaches A’ as meaningless. He identifies the motion
with the correspondence A—>A’ and regards all else as irrelevant. In
mechanics, on the other hand, motion is a definite process which takes 4 to
a new point 4’, and what concerns us are the paths of individual points as
well as their velocities or accelerations at various times. A principal
difference between mechanical and geometric motions is that time is a
factor in mechanical motions but not in geometric motions. In mechanics,
a description of a motion which takes a figure F onto a figure F’ is a rule
which tells us how the position of each point 4 of F changes in time; in
mathematical terms, we speak of the functional dependence A= A(f) of the

15For a discussion of equidecomposable Euclidean figures see, for example, [Sb).
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position of 4 in F on time ¢. This functional dependence is given in some
time interval #,<t<t,, where the moving figure occupies at time ¢, the
initial position F [so that A(f))=A is a point of F}, and at time ¢, the
position F’ [so that A(¢,)=A’is a point of F’; see Fig. 14].

In mechanics, with its technical applications, we are mainly concerned
with motions of figures in space. Nevertheless, we shall also study plane
motions of the kind illustrated in Figure 14. The concept of plane motion
can be made physically real as follows. Consider a plane-parallel motion of
an object @, that is, a motion in which the points of & move parallel to a
fixed plane = (Fig. 15a). It is clear that the motion is completely char-
acterized by the process of displacement of the points of a section of ®
parallel to the plane «, for example, by the motion in the plane 7 of the
plane figure F in which 7 intersects ®.'6

A special case of this type of motion is rectilinear motion, in which the
points of ® move with the same velocity in a direction determined by some
line o (Fig. 15b). It is clear that such a motion is fully characterized by the
motion of an arbitrary point 4 of ®. Since the direction of a rectilinear
motion is along a fixed line, its velocity can be given by a number rather
than a vector (the number being positive or negative depending on the
direction of the motion along the line). The position of the point 4 on the
line o is also given by a (positive or negative) number x, which measures
the (positive or negative) distance of A4 from the origin O on the directed
line 0. We say that x is the magnitude of the directed segment OA; this
means that x is the length of this segment if its direction (from O to A)
agrees with the positive direction on o, and the negative of that length
otherwise. [We use the notations O4 and OA for segments and directed
segments, respectively.] The fact that in rectilinear motion velocity and

16Assuming, of course, that the intersection F=®n 7 is not the empty set. This is really no
loss of generality, since 7 can always be replaced by any plane parallel to = throughout the
discussion. (Translator’s note.)
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Figure 15b

position of a point can each be given by a number is an obvious
advantage. Rectilinear motion is also simpler than plane-parallel or general
motion in space in other respects. The relative simplicity of rectilinear
motion is the main reason why, in this book, we are mainly concerned with
rectilinear motion of a (material) point 4 on line o.

We shall now explain which properties of moving objects are significant
in mechanics (i.e., are mechanical phenomena), and which are not. At first
it might seem that the fundamental notions of mechanics (more precisely,
of kinematics) are “path,” “velocity,” and “acceleration.” [By the path of a
point A we mean the curve traced by the point in its process of motion
(see, for example, Fig. 14). By the mean velocity of A in the time interval
from ¢, to ¢; we mean the change in position A(¢,)— A(t,) divided by the
difference ¢, —#y; and by the instantaneous velocity at time ¢t we mean the
limit as A¢—0 of the mean velocity in the time interval from ¢ to ¢+ At
(derivative of displacement with respect to time). By the mean acceleration
in the time interval from ¢, to ¢, we mean the change in velocity v(#;)—
v(4,) divided by the difference ¢, — 7y; and by the instantaneous acceleration
at time ¢ we mean the limit as A7—0 of the mean acceleration in the time
interval from ¢ to ¢+ Az (derivative of velocity with respect to time).] This
is not the case, however. In and of themselves, paths and velocities of
points have no mechanical significance and cannot be the objects of study
in mechanics.

This assertion may surprise many readers. We leave the necessary
explanation to the great GALILEO GALILEI (1564 -1642)'7:

Shut yourself up with some friend in the main cabin below decks on some
large ship, and have with you there some flies, butterflies, and other small

YGalileo Galilei, Dialogue Concerning the Two Chief World Systems. [15), pp. 186-187.
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flying animals. Have a large bowl of water with some fish in it; hang up a
bottle that empties drop by drop into a wide vessel beneath it. With the ship
standing still, observe carefully how the little animals fly with equal speed to
all sides of the cabin. The fish swim indifferently in all directions; the drops
fall into the vessel beneath; and, in throwing something to your friend, you
need throw it no more strongly in one direction than another, the distances
being equal; jumping with your feet together, you pass equal spaces in every
direction. When you have observed all these things carefully (though there is
no doubt that when the ship is standing still everything must happen in this
way), have the ship proceed with any speed you like, so long as the motion is
uniform and not fluctuating this way and that. You will discover not the least
change in all the effects named, nor could you tell from any of them whether
the ship was moving or standing still. In jumping, you will pass on the floor
the same spaces as before, nor will you make larger jumps toward the stern
than toward the prow even though the ship is moving quite rapidly, despite
the fact that during the time that you are in the air the floor under you will
be going in a direction opposite to your jump. In throwing something to your
companion, you will need no more force to get it to him whether he is in the
direction of the bow or the stern, with yourself situated opposite. The
droplets will fall as before into the vessel beneath without dropping toward
the stern, although while the drops are in the air the ship runs many spans.
The fish in their water will swim toward the front of their bowl with no more
effort than toward the back, and will go with equal ease to bait placed
anywhere around the edges of the bowl. Finally the butterflies and flies will
continue their flights indifferently toward every side, nor will it ever happen
that they are concentrated toward the stern, as if tired out from keeping up
with the course of the ship, from which they will have been separated during
long intervals by keeping themselves in the air. And if smoke is made by
burning some incense, it will be seen going up in the form of a little cloud,
remaining still and moving no.more toward one side than the other.

This deservedly famous and frequently quoted passage contains a
beautiful and most accomplished description of one of the fundamental
principles of mechanics—Galileo’s principle of relativity. This principle can
be briefly formulated as follows. No mechanical experiment conducted within
a physical system can disclose the uniform motion of this system. Thus
mechanical phenomena taking place in two laboratories, one of which is in
uniform motion with respect to the other (as, for example, in the case of
the moving and stationary boats in Galileo’s Dialogue), are indistinguish-
able from the point of view of observers in the two laboratories. Galileo’s
principle of relativity implies that all properties studied in mechanics are
preserved under transformations of the physical system obtained by
imparting to it a velocity which is constant in magnitude and direction
(such transformations are called Galilean transformations). In other words,
mechanical properties of (moving) objects do not change under Galilean
transformations (cf. the definition of geometric properties given in Sec. 1 as
properties invariant under motions).

The Galilean principle of relativity can be stated in a “geometric” form
which links it directly to Klein’s concept of geometry. For the sake of
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Figure 16

simplicity, we restrict ourselves to mechanical phenomena which may be
regarded as taking place in a plane, such as, for example, motions of
physical objects restricted to a portion of the earth small enough to be
supposed flat. As usual, we introduce in the plane a rectangular coordinate
system {x,y}. Then the mechanical motion of a point 4 is given by the
formulas

x=x(t),
y=y(1),

which tell us how the coordinates (x,y) of the point vary with time ¢. [The
motion of a figure F is described by similar formulas which tell us how all
the points 4 = A(x,y) in F move.'®] It is quite clear that transition to a new
coordinate system {x’,y’} obtained from {x,y} by rotating the axes Ox, Oy
through an angle a and translating the origin O to some point O’ (Fig. 16)
cannot influence physical laws. Such laws must, therefore, take the same
form in either of two coordinate systems {x,y} and {x’,y’} connected by
the relations

(10)

x'= xcosa+ysina+a, 6

y'=—xsina+ycosa+b, ©)
with a =/ xCx’, the angle between the axes Ox and O’x’, and (a,b) the
coordinates of O in the new coordinate system. This means that for a
proposition to have mechanical significance it must retain its form under
the transformations (6). In addition, Galileo’s principle of relativity asserts
that the description of all mechanical processes relative to coordinates
(x,y) or (x’,y’) is unaffected if the origin and axes of the coordinate system

18We are dealing, essentially, with plane-parallel motions of objects (cf. p. 16 and Fig. 15a).
Since plane-parallel motion of a rigid body @ is completely determined by that of its plane
section F, it suffices to consider the points of @ in the plane figure F.
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{x".y’} move uniformly with respect to the coordinate system {x,y} or,
equivalently, the origin and axes of the old coordinate system {x, )y} move
uniformly with respect to the new coordinate system {x'.y’}. Now if the
origin O of {x,y} moves with velocity v along the line / which forms an
angle B with the axis O’x’ (cf. Fig. 16), then the coordinates a(f) and b(¢)
of O relative to {x’,y’} at time ¢ are

a(t)=a+vcospt,
b(t)=b+vsinp-t
(here a and b are the coordinates of O relative to {x’,y’} at #=0). Hence

the relation between the coordinates (x’,y’) and (x,y) of a point A relative
to {x',y’} and {x,y} is

x'= Xxcosa+ysina+(vcosf)t+a, a1
y'=-—xsina+ycosa+(vsinf)z+b.

It follows that all phenomena which have mechanical significance must be
expressible by means of formulas whose form is unaffected by the transfor-
mations (11) [or, as mathematicians put it, are invariant under the transfor-
mations (11)].

We can supplement formulas (11) to some extent. We observe that
formulas (10), which describe the motion of a point A =A(x,y), and
formulas (11) involve the time ¢ in addition to the coordinates (x,y). This is
as it should be, for the basic difference between mechanical and geometric
motions is that the time factor is considered in the former and ignored in
the latter. Obviously, the choice of a “time origin” must not affect the form
of physical laws. Thus, for example, most people today count time from
the birth of Christ. On the other hand, the ancient Greeks counted time
from the first Olympiad (July 1, 776 B.C.), the ancient Romans counted
time from the founding of Rome (April 21, 753 B.C.), Moslems usually
count time from the date of Mohammed’s flight from Mecca to Medina
(“hegira”; July 16, 622 A.D.), and so on. Nevertheless, in all of these time
systems (whose origin is often linked to some mythical event) physical laws
take the same form. To put it in simple terms, the choice of one calendar
or another must have no effect on the content of physics. It is therefore
appropriate to add to (11) the transformation

U'=t+d,

which describes a shift in the time origin; here d is the time of the old time
origin (i.e., the moment #=0) in the new time system. We thus have

(cosa)x +(sina)y +(vcos B)t +a,
—(sina)x +(cosa)y +(vsinB) t + b, (12)
t+d.

xl
yl
tl

We box formulas (12) to emphasize their fundamental importance. The
mathematical meaning of Galileo’s principle of relativity is that all proper-
ties of (plane-parallel) motions which have mechanical significance are ex-
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Figure 17

pressible in terms of formulas which are invariant under the transformations
(12).

Formulas (12), just like formulas (6) in the previous section, can be
looked at in two ways. One way (the alibi interpretation) is to look at (12)
as a transition from event A(x,y,f) [characterized by giving the position
A(x,y) and the time ¢] to event A’(x’,y’,t’), where the point 4'(x’,y") moves
uniformly with velocity v with respect to the point A(x,y); here « is the
angle at 1=0 between 4’0’ {where O’'= 0’(a,b)] and A0, B is the angle
between the path of 4’ and Ox, and d is the value of ¢ at t=0. From this
point of view, formulas (12) define a transformation in physical space—
time. Such transformations are called Galilean transformations. Another
viewpoint (the alias interpretation) is to look at formulas (12) as the
connection between two reference frames {x,y,t} and {x’,y’,¢'}. Then all
reference frames linked by relations of the form (12) (with different
parameters a,f,v,a,b,d) are equivalent. Also, relative to such reference
frames, the laws of mechanics take a particularly simple, “natural” form.
The latter statement requires clarification. Let {x,y} be the initial coordi-
nate system, and let {x’,y’} be a new coordinate system moving with
respect to {x,y} not uniformly but in some other, more complicated
manner; for example, let {x’,y’} rotate about the origin O of {x,y} with
angular velocity w (Fig. 17). Then objects at rest relative to the moving
coordinate system {x’,y’} are acted upon by external forces due to the
motion of {x’,y’}. Such forces are called inertial forces. In our example,
such a force is the “centrifugal force” directed outward from the center of
rotation. We experience such a force whenever the car we ride in negoti-
ates a turn (with the car there is associated a coordinate system relative to
which we are at rest). The reference frames in which there are no inertial
forces, and in which physical laws are therefore not complicated by the
need to consider the “extraneous” inertial forces, are called inertial refer-
ence frames; there are infinitely many such reference frames, and transi-
tion from one to another is effected by a transformation (12).'°

1%In connection with these matters, we suggest that the reader consult [ 17].



22 Introduction

It is now easy to explain why such seemingly simple and basic notions
as the path of a moving point or its velocity have no physical meaning and
cannot, therefore, appear in a statement of a physical law. In fact, the path
of a moving point depends on the choice of an inertial reference frame (we
recall that inertial reference frames move uniformly with respect to each
other); for example, the tip of a pen wielded by an artist on a fast-moving
boat traces an extremely involved path when viewed by an observer on the
boat, but a nearly linear path when viewed by a stationary observer on
shore.?® Similarly, the velocity of a point depends on the choice of an
inertial reference frame; an object at rest relative to a boat moving
uniformly may be moving fast relative to the land. Things are different
when we consider the relative velocity of one object with respect to
another. For example, the velocity with which a runner approaches the
ribbon at the finish line is a mechanical quantity, since it does not depend
on the inertial reference frame in which we consider runner and ribbon.
Whether our coordinate system is linked to the earth or to the fixed stars
(in which case both runner and ribbon move with tremendous, “cosmic,”
velocities), the relative velocity of the runner, which depends on how fast
the distance between runner and ribbon is decreasing, is the same. Of even
greater importance is the fact that the acceleration of a moving point has
“absolute” significance, i.e., its value is independent of the choice of an
inertial coordinate system. This is not so surprising if we bear in mind the
fact that acceleration involves the difference of velocities (cf. p. 17 above).
Since transition from one inertial reference frame to another has the effect
of changing all velocities by the same amount, the difference between two
velocities remains unchanged.

Now the velocity of a point is represented by a vector, i.e., velocity is a vector
quantity. Moreover, the velocity v of a point 4 relative to the old coordinate system
{x.»} (its so-called absolute velocity) differs from the velocity v’ of A relative to the
new coordinate system {x’,y’} (its so-called relative velocity) by a vector a which
equals the velocity of the origin O’ of {x’,y’} relative to {x,y} (the so-called
transport velocity of {x’,y’} relative to {x,y}). Thus

v=v'+a
(cf. pp. 48-49). It follows that if v, and v, are the velocities of two objects (for
example runner and ribbon) in one reference frame, and v}, v} are their velocities in
another reference frame, then

vi=vi+a and v,=v,+a,
so that
Vi—Vy=V]—Vj
Things are much the same if v, and v, are the velocities of an object at two instants

t; and #,. Since {x’,y’} is supposed to move uniformly relative to {x,y}, i.e., the
vector a is assumed constant, it follows, just as before, that

v =V)+a, V,=v;+a, and v;—V,=V{—V.

20Ct. Galileo’s “Dialogues” [15}, pp. 171-172.
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But then the average acceleration w,,=(v,—V,)/(#;,—,), and the instantaneous
acceleration Wi, =lim, _,, W,, do not depend on the choice of an inertial coordi-
nate system.?!

So far we have concerned ourselves with two-dimensional (more ac-
curately, plane-parallel) motions affecting points A(x,y) of some plane
x0Oy. However, nothing prevents us from restricting ourselves to even
simpler, rectilinear motions, where we need only consider motions of points
A=A(x) of some fixed line o. Then, if {x} and {x’} are two inertial
reference frames, the origin O of the coordinate system {x} moves relative
to the coordinate system {x’} with constant velocity v (Fig. 18), i.e., at
time 7, the coordinate a(¢) of the (moving) point O relative to the coordi-
nate system {x’} is given by

a(t)=a+ot,
where ¢ is time and a is the {x'}-coordinate of O at time 1=0. Since the
relation between the coordinates x and x’ of a point 4 in the coordinate
system {x} and the coordinate system {x’} with origin O’ is

x'=x+a(t)
(cf. Fig. 18),2 it follows that
x'=x+vt+a.
By adding the relation
t'=t+b,

which expresses the possibility of shifting the time origin, we arrive at the
formulas

x'=x+vi+a
> 1
r= t+b, (3)

which give the relation between two inertial coordinate systems in the case of
rectilinear motions (Galilean transformations for rectilinear motions).

True rectilinear motions do not occur in physics very often. Conse-
quently the mechanics of such motions is of less interest than that of
motions in the plane or in three-space. However, it is natural to begin the

2'We suggest that the reader familiar with elements of the calculus check that if r=r(x,y) is
the position vector of a (moving) point A(x,y), then its acceleration ¥ = d?r/dr? is not affected
by a transition from {x,y,7} to {x’,y’,#'}, provided that the two reference frames are related
by the formulas (12).

ZHere we are considering only right-handed coordinate systems, in which the positive
direction on the x-axis is fixed beforehand (for example, by selecting the positive direction on
o, supposed horizontal, to be the direction to the right of O; cf. footnote 6 of Sec. 1).
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study of mechanics with the simplest case, that of rectilinear motion, where
the difference between mechanical and purely geometric considerations is
particularly clear and not obscured by technical difficulties which arise
when it is necessary to take into consideration the vector character of the
basic mechanical magnitudes (velocities, accelerations, forces). Also, the
study of rectilinear motions, which includes in particular the study of
(small) displacements of material points under gravity (vertical displace-
ments), has definite “applied” interest. Finally, comparison of formulas
(13) and (12) [and even more so, of (13) and (16)] amply illustrates the
convenience and simplicity of presentation resulting from the restriction to
rectilinear motions.

One more argument in favor of the restriction to rectilinear motions is

that the resulting geometry is only two-dimensional, and hence can be

more easily visualized. Indeed, in studying rectilinear motions, what inter-
ests us is those facts which are described relative to a coordinate system
{x,y} by formulas invariant under the Galilean transformations

x'=x+vt+a,
Y= t+b. (13)

If we represent the position of a point A(x) on a line o at time ¢ by means
of an auxiliary point 4(x,?) of a (two-dimensional) plane xOt with coordi-
nates x and ¢ (Fig. 19a,b), then we obtain a kind of “geometry” in which
the only facts of geometric (or rather mechanical) significance are those
facts which can be expressed by means of formulas invariant under the
transformations (13). Hence these transformations play the role of “mo-
tions” of our geometry, which do not change the properties of figures of
interest to us. It is this geometry which we will study in Chapters I and II.
While it would be proper to refer to it as “the geometry of Galileo’s
principle of relativity” we shall use the simpler name “Galilean geometry.”
Our study of Galilean geometry will compare it with Euclidean geome-
try, named for the great Greek mathematician EucLID, who lived and
taught in Alexandria in the third century B.C., and to whom we owe the
first (excellent) textbook on geometry, from which many generations

Figure 19a
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learned this subject.”® The difference between Euclidean geometry and
Galilean geometry is that the motions of Euclidean geometry are given by
formulas (6) and those of Galilean geometry by formulas (13). To simplify
the comparative study of these two remarkable geometries, we shall use the
usual Euclidean coordinate symbols x and y in the Galilean plane;
specifically, we shall use the letter y (not x) to denote the coordinate of a
moving point 4 on a line o, and x (not ) to denote time. Then we say that
Euclidean geometry is the study of properties of figures in the coordinate
plane {x,y} that are invariant under the transformations (6), and Galilean
geometry is the study of properties of figures in the coordinate plane {x,y}
that are invariant under the transformations

x'= x +a,

y'=vx+y+b (132)

[cf. (13a) and (13), and observe that the letters a and b are reversed in
passing from (13) to (13a)]. While we propose to carry out a comparative
study of the two geometries, and thus to emphasize the geometric approach
to Galilean relativity, we urge the reader not to overlook the mechanical
interpretation of the subject.

Finally, we observe that every Galilean transformation (13a) can be
composed of the transformation

x,= X,

n=ovx+y, (142)

or

x,=x+vt,]

=t

which describes the uniform motion with velocity v of the origin O, of the
moving coordinate system { y,} on 0,2 and the transformation

! —
x'=x+a, x'=x,+b,
or

Y'=n+b (148)

=t +a,

which describes a shift of O, to some point O’, together with a shift of the
time origin. The geometric sense of (14b) [or of (8); see p. 12 above] is that
of a translation (see Fig. 12b). A transformation (14a) represents a shear
with coefficient v in the direction of the y-axis. This shear leaves the points
of the y-axis fixed, and translates all other points in a direction parallel to
it. The magnitude of the translation is proportional (with proportionality
constant v) to the distance from the point in question to the y-axis. The
direction of the shift is reversed when we cross the y-axis (see Fig. 20).
Thus, to check whether a certain quantity is invariant under the transfor-
mations (13a), it suffices to see whether it is invariant under the shears (14a)
and the translations (14b). This fact will frequently be of help to us in what
follows.

BFor an English translation, see [1]-[3).
24We assume that at time ¢=0, O, coincides with O.
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Similarly, the study of mechanics of plane-parallel motions reduces to the study
of a geometry of three-space with coordinates {x,y,?} whose motions are given by
formulas (12). This geometry can be called three-dimensional Galilean geometry. It
is of considerable interest but it is decidedly more complicated than two-dimen-
sional Galilean geometry. Each motion (12) can be split into three motions: a
rotation

X;= Xxcosa+ysina,
y=—xsina+ycosa, (15a)
4 t
about the t-axis (Fig. 21); a shear
Xy =X +(OCOSB)t|,
Y= yi+(osinB)n, (15b)

L= h

in the direction of the vector v=(vcosB,vsinf,0), under which the plane xOy
remains pointwise fixed while each plane « parallel to it is translated a distz nce vt
in the direction v;® and a translation

x'=x, +a,
Y=y, +b, (15¢)
= L+c

determined by the vector (a,b,c) (Fig. 21c). Hence the propositions of three-dimen-
sional Galilean geometry must be invariant under the rotations (15a), the shears
(15b), and the translations (15c).

Four-dimensional Galilean geometry, which studies all properties invariant under
motions of objects in space, is even more complex. It can be described more

I vt<0 (i.e., if the coordinate ¢ which characterizes the plane  is negative), then the
direction of the translation is opposite to that of v.
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Figure 21a

Figure 21c

precisely as the study of those properties of four-dimensional space?® with coordi-
nates {x,,z,t} that are invariant under the general Galilean transformations

x'= (cosBcosa—cosysinBsina)x + (sin Bcosa+cosycos Bsina)y
+(sinysina)z +(vcosé,)t +a,

y'=—(cosBsina +oosvsinBcosa)x+(—sinﬂsina-i-cosycosﬁcosa)y
+(sinycosa)z+(vcosdy) i+ b, (16)

z'=(sinysinB )x — (sinycos B )y + (cosy)z + (vcosdz)t +c,

Y=t+d,

with cos?3, +cos?, +cos?d;=1 [cf. formulas (9)]. These transformations are the
motions of the geometry. We are not in a position to study this remarkable
geometry in depth.

We close this section with a few remarks on another subject. Three-dimensional
Galilean geometry, whose motions are given by formulas (12), results from an

26See, for example, [19]-[21].
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attempt to express the basic facts of plane kinematics in geometric language. The
“geometrization” of the facts of plane statics leads to a different but no less
interesting geometry which we propose to describe briefly.

In statics, given a system of forces, we may move the vector of each force along
its line of action,?” add a number of forces applied at the same point using the
parallelogram law, or, conversely, decompose a force into the vector sum of several
forces applied at the same point. By means of such transformations (which do not
change the static properties of the system), any system of forces can be reduced to
a single force (i.e., a single sliding vector; see footnote) or to a so-called couple, i.e.,
a pair of noncollinear, parallel, oppositely directed forces of equal magnitude. Of
even greater interest to us is the fact that any system of forces can be reduced to a
single vector F applied at a predetermined origin O (principal vector of the system)
and a couple hy=M H, and h,= —h,=M,H,, where O is the midpoint of the
segment M, M, (Fig. 22).2® Such a couple is completely determined by its moment

u=h- OM, -sin £('OM, ,h;)+ h-OMysin £ ( OM; ,h,)
=( OM; Xh;)+('OM; Xhy,)

(principal moment of the system).?’ The symbol “X” in the last formula denotes
the cross product of two vectors: if the vectors a= 04 =(x1,;) and b= QB=(x,,y,)
are applied at the same point Q, then aXb=QA4-QBsin LAQB=1x,y,— x5y,
where, as always, the angle AQB is measured counterclockwise from QA to OB
(Fig. 23).3° Moreover, the principal vector of a system of forces f},f,,...,f, applied
at the points 4,,4,,...,4, is the sum of these forces,

F=']+f2+ e +fn,

applied at O, and the total moment of the system is the sum of the moments of the
Jorces {; about O:

u=( 04, Xf;)+( 04; xXt,)+ - - - +('04, xt,).

Since the vector F is determined by its two coordinates x and y, the set of all
possible plane systems of forces is three-dimensional in the sense that each such

27A vector which is restricted to move along a line is called a sliding vector. Thus a system of
forces in statics is equivalent to a system of sliding vectors.

28See, for example, [23], pp. 241-242,
2See, for example, [23], p. 240.
30See, for example, [23], pp. 223-224; or [24], pp. 345-358.
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system is determined by three coordinates x, y, and u.3' If we move the origin of
our coordinate system from O to O’(a,b) (where a and b are the components of the
vector 00’ =c; see Fig. 24), then clearly the principal vector F of the system of
forces f,,f5,...,f, remains unchanged, and the new value of the total moment is

w'=(0"4, xf))+(074; xf)+--- +( 04, x1,)
={(04, - 00" )x1,}+{(04; - 00" ) xf,} +--- +{( 04, — 00" )x{,}
=(04, xf,)+(04; X))+ -+ +(04, xXf,)—eX(f;+h+--- +1,)
=u—cXF=u—(ay—bx)=bx—ay+u.

(Here we have used the distributive property of the cross product, (m+mn)Xp=
(m X p)+ (n Xp),and the fact that ¢ X F=(a, b) X(x,y)= ay — bx.) Finally, rotation of
the coordinate system through an angle a does not affect the total moment u (since
u depends only on the origin O of the coordinate system, not on the orientation of
its axes), but changes the coordinates x and y of F to

x'= xcosa+ysina,
y'=—xsina+ycosa
[cf. formulas (7)].

3111 is not difficult to see that if the coord::istes of a system of forces 1,,1,,...,1, are x;,y,,u;,
and the coordinates of a system g,,8,,...,8,, are X,y u,, then the coordinates of the combined
system f1,[os s Jos 815825+ 8m @r€ X1+ X3, ¥y +¥,, and u; +u,.
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In summary, the effect of a change of the coordinate system on the coordinates
x,y,u of a (plane) system of forces is given by the formulas

x'= (cosa)x +(sina)y,
y'= —(sina)x+(cosa)y, a7
u'= bx —ay+u.

In addition to this alias interpretation, our formulas also admit an alibi interpreta-
tion (cf. footnote 11). We may, therefore, assert that the study of plane statics
reduces to the study of three-space {x,y,u} under the motions (17), i.e., to the study of
the properties of three-dimensional space that are not affected by the transforma-
tions (17).

Since the general theory of systems of forces (reduction to principal vector and
total moment) was first developed by the French physicist L. POINCEAU
(1777-1859) in his book “Elements of Statics” (1804), the geometry of three-space
with the motions (17) should be called the Poinceau geometry. In what follows we
shall not discuss this geometry, but rather concern ourselves exclusively with
Galilean geometry.

PROBLEMS AND EXERCISES

4 The role played by the transformations (13a) in Galilean geometry is similar
to that of the direct motions (6) in Euclidean geometry. The totality of
(direct and opposite) Galilean motions is given by the formulas

xX'=*x +a,

(13'a)
y'= vxxy+b,
and the Galilean similitudes are given by the formulas
x'=ax +a,
(137a)
Yy =vx+By+b,

where af8+0, and where it is natural to distinguish between direct simili-
tudes (a and B positive) and opposite similitudes (« and/or B negative).
What is the mechanical interpretation of the transformations (13'a) and
(13”a)? Decompose the transformations (13a) and (13”a) into simpler ones
(cf. formulas (15a—c). Give a classification of the transformations (13'a) and
(13”a) (cf. Exercise 3 and Problem I).

5 Consider three-dimensional Galilean geometry with the motions (12). We
shall find it convenient to write these motions in the form

x'= (cosa)x+(sina)y+pz+a,
y'=—(sina)x+(cosa)y +vz+b, (129
z'= z+c.

In a certain intuitive sense this geometry is intermediate between Euclidean
solid geometry and three-dimensional semi-Galilean geometry, whose motions
are given by the formulas

xX'=x+Ay+pz+a,
y'= y+ vz+b, (127)

’

z'= z+c.
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Thus, for example, in Euclidean geometry there are no special directions, in
three-dimensional Galilean geometry with the motions (12°) the z-axis is
special in the sense that its direction is unchanged by the motions (12", and
in three-dimensional semi-Galilean geometry with the motions (12”) the
z-axis and the Oy:z plane are special. The geometry with the motions (12”) is
the closest three-dimensional analogue of Galilean geometry.

Decompose the motions (12”) into “elementary” motions [in a manner
suggested by the decomposition of the motions (12) into the elementary
motions (15a-c)].

(a) It is natural to think of the motions (12) as the direct motions of
three-dimensional Galilean geometry. How would you define the corre-
sponding opposite motions as well as the corresponding (direct and opposite)
similitudes (cf. Exercise 4)? Decompose the motions (12’) into simpler ones
[in a manner suggested by decomposition of the motions (12) into the
elementary motions (15a—c)). Classify the motions (12) (cf. Exercise 3 and
Problem I). What is the physical interpretation of these motions? (b) Solve
the corresponding problem for the semi-Galilean geometry with the motions
a12”).

(a) Show that if we start with affine plane geometry whose motions are given
by
x'=ax+by+e, .
y'=cx+dy+], )
with ad—bc+#0 (see Chap. 13 of [19]), and single out the motions which
preserve a certain direction (say the direction of the y-axis), then we obtain
the geometry whose motions are given by (13”a). (b) Describe the geometry

whose motions are the motions (*) which preserve two directions (say the
directions of the x- and y-axes).

Give an analytic description of the Poinceau geometry of three-dimensional
statics whose points are systems of forces in space and whose motions are

generated by coordinate transformations in the space in which these forces
act.

Consider three-dimensional central Galilean geometry whose motions are
given by
x'= (cosa)x+(sina)y+pz,

y'=—(sina)x +(cosa)y +»z, (12'a)
z'= z,

and show that if we take as basic elements planes not passing through the
origin, then we obtain the Poinceau geometry.

(a) Classify all (direct and opposite) similitudes of the Euclidean plane (cf.
Exercise 3 and Problem I). (b) Classify all (direct and opposite) similitudes of
three-dimensional Euclidean space.

(a) Classify and describe all (direct) motions (13a) in the Galilean plane (you
will find it helpful to consult subsequent chapters of this book). (b) Classify
and describe all (direct and opposite) motions (13'a) in the Galilean plane
(cf. Exercise 4 above). (¢) Classify and describe all (direct and opposite)
similitudes (13”a) in the Galilean plane.
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(a) Characterize the geometric structure of the direct motions (12)) of
three-dimensional Galilean geometry. Do the same for the direct and oppo-
site motions of this geometry as well as for its similitudes (cf. Exercises 5—6
above). (b) Solve the corresponding problem for three-dimensional semi-
Galilean geometry (cf. Exercises 5—6). (¢) Solve the corresponding problem
for central three-dimensional Galilean geometry (cf. Problem VID).

(a) Solve the analogue of Problem X for the Poinceau geometry with direct
motions (17). (b) Solve the analogue of Problem X for the Poinceau geome-
try of three-dimensional statics (cf. Problem VI).



I. Distance and Angle; Triangles and
Quadrilaterals

3. Distance between points and angle between lines

We shall now systematically study Galilean geometry, i.e., the geometry of
the plane xOy whose motions are given by the equations

xX'=x +a,
y'=vx+y+b.

(M

This means that we shall be interested solely in those properties of figures
in the plane xOy that are invariant under the transformations (1) (or,
equivalently, under the shears

x'=x,

y'=vx+y (1a)
and the translations

x=x+a,

y'=y+b; (1b)

cf. p. 25 above);it is only these properties of figures that have geometric
significance in this unusual geometry. Also, we shall bear in mind that our
geometry arose naturally out of mechanical considerations connected with
Galileo’s principle of relativity. This implies that, in our case, properties of
geometric significance are really properties of mechanical significance;
more specifically, facts of one-dimensional kinematics.

Before considering the basic concepts of Galilean geometry we shall
find it useful to list certain fundamental properties of the motions (1). We
remark that the transformations (1) map

(a) lines onto lines;

(b) parallel lines onto parallel lines;

(¢) collinear segments AB, CD onto collinear segments A’'B’, C'D’ with
C'D'/A’B’=CD/AB;

(d) a figure F onto a figure F’ of the same area.
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Figure 25a Figure 25b

(The proofs of these facts are given below.) This means that the concepts
of lines, parallel lines, ratios of collinear segments, and areas of figures are
significant not only in Euclidean geometry but also in Galilean geometry.
Also, it is very important to note that any transformation (1) takes every
line parallel to the y-axis into another line parallel to the y-axis. Thus, while
in Euclidean geometry the term “line parallel to the y-axis” has no
geometric significance (since such a line can be carried by a Euclidean
motion into an arbitrary line; cf. Fig. 25a), in Galilean geometry lines
parallel to the y-axis play a special role different from that of all other
lines. On the other hand, lines parallel to the x-axis are not distinguished in
Galilean geometry from other “ordinary” lines, i.e., lines not parallel to
Oy. This is illustrated in Figure 25b, where a shear (1a) takes a line /
parallel to Ox into a line I’ not parallel to Ox. In what follows, the term
“line” will mean a line not parallel to Oy, whereas parallels to Oy will be
referred to as special lines.

We now prove that the motions (1) have the properties (a), (b), (c), and
(d). Note that since the translations (1b) obviously have these properties
(see Fig. 12b), we can restrict the proof to the shears (1a).

(a) A shear takes every parallel to Oy into itself; this follows directly
from the definition (1a) of a shear (see p. 25; in particular, Fig. 20).
Further, suppose (1a) takes a point 4 on a line / through the origin O into
a point A’ (Fig. 26). We denote the line OA4’ by /', the points where an
arbitrary special line m intersects / and ” by M and M’, and the points
where m and AA’ meet the x-axis (which we shall always represent as
perpendicular to the y-axis') by Q and P. Since 4’ is the image of 4 under

!This normalization is convenient simply because we are used to rectangular coordinate
systems. However, it is important to remember that perpendicularity of lines is significant in
Euclidean geometry but not in Galilean geometry.
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the shear (1a), it follows that
A P OP-v+AP _ OP
AP AP T AP
Looking once more at Figure 26 (where M'Q/MQ=A'P/AP and
OP/AP=0Q/MQ), we see that
MQ_A'P_OP otr1=22 OQ _00v+MQ
MQ AP AP MQ MQ

v+1L

ie.,
M'Q=0Q-v+MQ.

Thus the shear takes every point M on / to a point M’ on ['. Briefly, the
shear takes the line | onto the line I'.

Let /, be a line parallel to / and not passing through O (Fig. 26). Let 4
be the common (Euclidean) length of the vertical segments A4,, BB,,
CC,,... between / and /,. The restriction of the shear (1a) to a special line
m is a translation along m (by an amount depending on m.). Hence the

segments AA, = BB, =--- =d are mapped onto the segments
A’A},B’Bj,... of the same length,
A’A1=B’'B{=C'C{="--- =d.

Since the endpoints A’,B’,C’,... belong to the image !’ of /, the endpoints
A',B;,Cj,... belong to the image I; of I;. Hence /] is a line parallel to /".
This proves that the shear (1a) maps the line I, onto the line I}.

(b) The proof of (b) is implicit in the proof of (a). We can also say that
a ghear maps lines parallel to a given line / onto lines parallel to its image
r.

2t is easy to show that if / and !’ form (Euclidean) angles a and «’, respectively, with the
x-axis, then tana’=tana + v.
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Figure 27

(¢) The equality C'D’'/A’B’=CD/AB follows directly from Figure
27; its proof is left to the reader. We observe that if AB and EF are
parallel segments and the (parallel) segments A’B’ and E’F’ are their
images under a shear, then

E'F’ _ EF

A'B’  AB
(cf. Fig. 27, where EF=CD, and E'F'=C’'D’, since the parallelogram
CDFE is mapped onto the parallelogram C’D’F’E"). Thus the concept of
the ratio of the lengths of parallel segments is meaningful in Galilean
geometry. However, if AB }f MN, then a shear may map these segments
onto segments A’B’ and M’N’ such that M'N’/A'B’#~MN /AB (cf. Fig.
27, where AB<A’B’ but MN >M'N").

(d) The area of a figure F is approximated by the sum of the areas of
the squares in the interior of F formed by two families of lines parallel to
the coordinate axes with neighboring lines in each family separated by a
small distance e (i.e., the area is approximately equal to the number of
such squares multiplied by the area e” of one square; see Fig. 28). Actually,
the area of F is defined as the limit (assuming it exists) of a sequence of
these approximations as e decreases to zero. A shear (1a) takes the figure F
to a figure F”, and every square S of the net to a parallelogram S (see Fig.
28). Since a shear induces a translation on every parallel to Oy, the sides of
S’ parallel to Oy have length e, and the perpendicular distance between
them is e. Hence area (S’)=e*=area (S). It is plausible (and can easily be
proved) that the area of F’ is the limit as e approaches zero of the number
of parallelograms in its interior multiplied by the area e? of each of them.
It follows readily from this that

area F'=area F.
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After these preliminaries, we review the concepts of “distance between
points” and “angle between lines” in Euclidean geometry and then discuss
their analogues in Galilean geometry.

In Euclidean geometry, the distance d,, between two points A(x,y) and
A,(x,y,) is defined by the formula

dAA,=V(x1_x)2+()’|_)’)2 5 (2)

if the distance between the points vanishes, the points coincide. The angle
8y, between two lines | and [, with equations

y=}cx+s and y=kx+s
is defined by the formula

-k

tang, = ——; (3
kk,+1

this is suggested by the fact that if ¢ and ¢, are the angles formed by / and
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I, and the x-axis, then tanp=k, tang, =k, and
tang, —tangp  k;—k
l+tang tanp 1+kk

tan§y, =tan(p, —¢)=

(see p. 11 and Fig. 11b above).

If k=k,, then / and /; are parallel, and formula (3) assigns the value
zero to the angle §, between the lines. We define the distance dy, between
parallel lines by the formula

5,—8
,_1_|_; 4)
Vk*+1
this is suggested by the fact that |s, —s|=SS, is the length of the segment
on the y-axis between / and /,, and Vk*+1 =\/tan2q>+1 =1/coseo,
where @ is the angle formed by each of the lines / and /; and the x-axis (cf.
p. 10 above; in particular, Fig. 11a). We call the reader’s attention to the
fact that although 8, and dy both measure the “deflection” of / and /,,
these quantities are radically different; angles are measured in angular
units (degrees or radians) and distances in units of length (inches or
centimeters). Consequently these quantities are not comparable; knowing
that two intersecting lines form an angle of 30°, and two parallel lines are
15 cm apart (cf. Fig. 29), we cannot say that one of these two deflections is
larger than the other. We also note that the distance (4) between lines is
defined only if the angle (3) between them is zero, and that two lines
coincide if and only if they form an angle § equal to zero and the distance
d between them is zero.

In Galilean geometry, the distance d, 4, between two points A(x,y) and
A (x,y) is defined by the formula

dn, =

dyq, =%~ X; (5)

it equals the signed length of the projection PP, of the segment 44, on the
x-axis (Fig. 30a). Note that distances can be negative; in fact, d, a=
—d, 4, Since the x coordinate of a point 4 transforms under a motion (1)
in accordance with the formula

x'=x+a,
it is clear that the difference x, — x of the abscissas of two points 4, and 4

15¢m
30° AN

Figure 29a Figure 29b
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is invariant under this motion. [This also follows readily from the geomet-
ric properties of a shear (1a) and a translation (1b).]

If the distance d,,, between 4 and 4, is zero, i.e., x,=x, then 4 and 4,
belong to the same special line (parallel to the y-axis; cf. Fig. 30b). For
such points it makes sense to define the special distance

8AA1 =Yy~ J)- (6)

In fact, if the abscissas of A(x,y) and A4,(x,,y,) coincide (x,;=x), then a
motion (1) takes these points to points A’(x’,y’) and Aj(x},y7), with
x'=x{=x+a and

y'=vx+y+b,

yi=vx+y;+b.
Hence

yi—y'=(ox+y,+b)—(vx+y+b)=y,—y.

Thus the difference y, —y is unchanged by a motion, and so has geometric
significance in the Galilean plane. On the other hand, if the distance

d4,=x,—x between 4 and 4, is not zero, then the difference y,—y of
their ordinates is not preserved by a motion, for, in that case,
1=y =(vx;+y,+b)—(vx+y +b)=y,—y +o(x,— x)#y, —y.

This is not surprising. After all, a shear (la) keeps the origin O fixed and
changes the ordinate of any point M not on the y-axis. But then it cannot
preserve the difference of the ordinates of M and O.

It is clear that two points 4 and B of the Galilean plane coincide if and
only if their distance d,z and their special distance §,, both vanish.

By a circle S in the Galilean plane we mean the set of points M(x,y)
whose distances from a fixed point Q have constant absolute value r; the

point Q(a,b) is called the center of S and the (nonnegative) number r its
radius. Since

doy=x—a
[cf. formula (5)], the equation

2 _ .2
dQM—r
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which defines S can be written as

(x—a)’=r3
or
x2+2px+q=0, )
where
p=-—a, gqg=a*-rk (7a)

It is clear that the circle S with center Q and radius r consists of the points
on two special lines whose Euclidean distance from Q is r (Fig. 31a); if 7 is
zero the two special lines coincide (Fig. 31b). We note that while a
Galilean circle S has a definite radius (equal to half the Euclidean distance
between its two component special lines), it has infinitely many centers,
namely the points of the special line through Q (see Fig. 31).

It is natural to define the angle &, between lines | and I, intersecting at a
point Q as the length of the circular arc NN, cut off by / and /, from the
unit circle S centered at Q (cf. the Euclidean configuration 32a and the
Galilean configuration 32b; naturally, by the “length of the arc” NN, of
the Galilean circle S we mean the special distance Syn, between N and N)).

S5
J } lM(x ) Y
s . M(z,y)
el 2(e.b)
S5 M
] z 7 z
Figure 31a Figure 31b

Figure 32a Figure 32b
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The angular measure §;, is meaningful in Galilean geometry. In fact, a
motion (1) takes the intersection point Q of / and /, onto the intersection
point Q' of their images /” and /{, and the unit circle S and its arc NN,
onto the unit circle S’ (centered at Q') and its arc N'N’; (Fig. 33). This
definition of angle in Galilean geometry can also be phrased as follows. 7o
determine the angle 8, between the lines | and 1\, draw the special line m one
unit to the right of their intersection Q. If N and N, are the points where m
meets | and l,, respectively, then
811,= NN, =8NN,,
the signed length of NN,. If the equations of / and /, are y=kx+s and
y=k,x+s,, and Q has coordinates (x,,y,), then the equation of m is
x=x5+1.
Hence N and N, have coordinates
(xo+1L,k(xo+1)+s) and (xo+ Lk (xo+1)+s,).

Consequently

8”|=8NN|= [kl(xO+ 1)+S1] - [k(x0+ 1)+s]

= [(klx0+sl)—(kx0+s)]+k1—k=k|—k

[for Q(xg,¥o) lies on both / and /,, and this implies that kxy+s=k,xo+ 5,}.
In summary,

811, =k, —k. (®)

This formula is definitely simpler than formula (3), which defines the
(directed) angle between lines in Euclidean geometry.

If we rotate /; counterclockwise about Q so that it tends to the special
line m through Q, then the angle §, increases beyond all bounds (Fig. 34).
This goes very much against our Euclidean intuition.

G —
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If the lines / and /, are parallel, then by formula (8) the angle §;,
between them is zero. In that case, we can define the distance dy, between
the (parallel) /ines I and I, as the (special) length of the directed segment
MM, between / and /; belonging to a special line (the special line is
arbitrary; cf. Fig. 35). This definition makes sense because the motions (1)
map special lines onto special lines. If the equations of the lines / and /, are
y=kx+s and y=kx+s,, then clearly

dll,=sl—s' )

This formula is also far simpler than the corresponding formula (4) in
Euclidean geometry.

Finally we define the distance d,, from a point M to a line | as the
(special) distance from M to the point of intersection of / with the special
line through M (Fig. 36b). This definition is suggested by the following
considerations. In Euclidean geometry, the distance from a point M to a
line / is defined as the distance from M to the point P on / nearest to M
(Fig. 36a). In Galilean geometry, the point P on / nearest to M is at
distance zero from M, that is, d,,,=0. This prompts us to measure the
distance from M to / by the special distance from M to P: dy,;=8,,,. If the
equation of / is y =kx+s, then the coordinates of P [which is on / and on
the special line through M(x,,y,)] are (xq,kx,+ s). Hence

— MP == 8yp=yo—(kxo+35),
and therefore

—dyy=yo— kxo—s. (10)

Thus, apart from sign, the distance from M to / is the result of substituting
the coordinates of M in the left side of the equation y — kx—s=0 of /.* It

3We wish to stress that in defining d, 4> 844, O,» dy, we ordered the points 4,4, and the lines
L 1,. This is reflected in formulas (5), (6), (8), and (9), from which it is apparent that the
quantities in question can be positive, negative, or zero.

4Cf. p. 234.
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is clear that the distance d;, between two parallels / and /; can be thought
of as the distance d,,, , where M is any point on /.

The definitions of distance from a point M to a line / and of distance
between parallel lines / and /, indicate that in Galilean geometry the special
lines play the roles of perpendiculars to a line (cf. Figs. 37a and 37b, which
refer to Euclidean and Galilean geometry, respectively). In what follows
we shall frequently return to the analogy between perpendiculars to a line
and the special lines.

We shall now give the mechanical interpretation of the concepts in-
troduced in this section, i.e., we shall interpret concepts of Galilean
geometry in terms of concepts of kinematics on a line o. Clearly, the
kinematic counterpart of a point M(x,y) of the Galilean plane is an event
(¢,x) determined by the position x on o and the time ¢ (Fig. 38); here the x
coordinate of M(x,y) corresponds to the time coordinate ¢ of (z,x), and
the y coordinate of M(x,y) corresponds to the space coordinate x of (z,x).
The counterpart of the distance d between points 4 and A, in the Galilean

)

l

l
L
0 ' z
A
Figure 37a Figure 37b
g (1)
0 =
z

Figure 38
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plane is the time interval t,—t between the events corresponding to 4 and
A,. If this interval is zero, i.e., if the two events are simultaneous, then they
are separated by a space interval equal to the distance between the points
on the line o which correspond to the events A4 and 4,. This space interval
is the special distance § between the two points in the Galilean plane
corresponding to the two events. We note that the space interval § can be
defined only for simultaneous events, for in the case of nonsimultaneous
events, the distance between the corresponding points depends on the
choice of inertial reference frame, and therefore has no meaning in
Galilean geometry. Thus, in a reference frame associated with the earth,
the distance between the school to which you go in the morning and the
home where you have supper in the evening is small. On the other hand, in
a reference frame associated with the fixed stars, the school to which you
go in the morning is at an enormous distance from the home where you
have supper in the evening, for you and the earth have traveled very far in
the time which elapsed between the two events. Also, it should be pointed
out that the ordinary distance d between two events and the special
distance & between (simultaneous!) events are not comparable, since they
are measured in different units; the first in units of time (seconds, years,
centuries) and the second in units of length (inches, kilometers, etc.).

A line / in the Galilean plane with equation y =kx+s corresponds to
the uniform motion

x=kt+s
along a line o with velocity k, where, as we know, the velocity depends on
the choice of inertial reference frame, and therefore has mno physical
significance. On the other hand, in the case of two lines with equations
y=kx+s and y=k,x+s,, that is, in the case of points L and L, on the
line 0 which move uniformly in accordance with the equations

x=kt+s and x=kit+s,
the difference
8y, =k, —k (®

of the velocities of the two points does have physical significance; it is the
relative velocity of one moving point with respect to the other. The
quantity §, —the angle between the lines / and /; in the Galilean plane—
can also be described as the velocity of the second point relative to a
reference frame in which the first point is at rest. In fact, if by means of a
motion (or coordinate transformation) (1) we bring the line / into coinci-
dence with the x-axis, i.e., if we make a fixed point L, of o correspond to /,
then the difference k, — k takes the form

8y, =k, —k=ki—k'=k;—0=Kk;

(since the velocity k’ of the first point in the new frame of reference is
zero). But then §,, is indeed equal to the velocity kj of the second point
relative to a reference frame in which the first point is at rest. The
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following is yet another definition of the angle §,, regarded as the relative
velocity of two uniformly moving points L and L, on the line o: If at time
t, the two points occupy the same position (a) on o [so that the point
Q(ty,a) of the Galilean plane is on both lines / and /], then §, is the
distance 8 between L and L, at time #,+ 1 (cf. Figs. 39a and 39b).

Two parallel lines in the Galilean plane correspond to two uniformly
moving points L and L, whose velocities (relative to any inertial reference
frame) are the same. These points move in accordance with equations

x=kt+s and x=kt+s,,

and their relative velocity 8, is zero. For two such moving points (say two
points in Moscow moving in space together with the earth) it is possible to
find a reference frame in which both are at rest. It then makes sense to
speak of the distance d, between such moving points, or the distance
between parallel lines. This distance is equal to the difference

5,—S

of the coordinates of the points on the line ¢ at time r=0 (or any other
fixed moment). Finally, it is natural to define the distance from a point
(event) M to a line / (that is, a point L moving uniformly on o) as the
distance from M to L measured at the time of the event M.

A special line m in the Galilean plane whose equation is x=a corre-
sponds to a definite moment in time

t=a.

Since it consists of a// points of the line o at this time, it can also be
thought of as a “motion with infinite velocity.” This accords with the fact
that the slope of a special line is the tangent of the angle between m and
the x-axis (i.e., tan90°) and must be supposed infinite. Finally, a circle in
the Galilean plane with center Q and radius r corresponds to the set of
events whose distance from a fixed event Q(t,a) is, in absolute value, equal to
the (time) interval r, i.e., the set of events (t—r,x) and (t+r,x) with
arbitrary r.

We can summarize our discussion in the form of a dictionary in which
the left column contains various concepts of Galilean geometry and the
right column contains their counterparts in kinematics on a line o.
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Geometric concepts Mechanical concepts
Point Event
Line (ordinary) Uniform motion
Special line Moment in time
Distance d between points Time interval between events
Special distance & between points Space interval between simultaneous events
Angle § between lines Relative velocity of points in uniform motion

Distance d between parallel lines  Distance between points of o
at rest with respect to each
other

Distance from point to line Distance (at a given time) from a
fixed point of o to a point
in uniform motion

Circle of radius r The set of events which occur r
time units before or after
a fixed event

We now give a kinematic interpretation of the concept of area of a figure which,
as we saw earlier, has significance in Galilean geometry. Let F be a figure, i.e., a set
of points in the Galilean plane. To this set of points there corresponds a set of
events, each of which is determined by prescribing its position (on the line o) and
time. We shall now define a quantitative measure of this set of evens. Such a
measure must take into consideration the spatial as well as temporal extent of the
set F. To define it, we place in F “elementary event sets” of fixed spatial extent e
and fixed duration 7. Clearly, the counterpart in the Galilean plane of such an
elementary event set E is a rectangle with sides e and 7. We define the space—time
content of E to be er. Now cover F with a net of nonoverlapping rectangles of
x-mesh 7 and y-mesh e (Fig. 40; cf. Fig. 28). Form the sum of the space-time
content of those event sets of the net which lie in F. The limit of these sums as e
and 7 approach zero (if it exists) is called the space-time content of F. Clearly, it is
Jjust the area of the figure F in the Galilean plane.

yar 4}#
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“
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Figure 40

PrROBLEMS AND EXERCISES

1  Without relying on drawings, give an analytic proof of the properties (a)—(c)
of the Galilean motions (1).

2 Give analytic proofs of the invariance under (1) of the quantity §,, in (8)
associated with a pair of intersecting lines; the quantity 4, in (9) associated
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I

with a pair of parallel lines (for such lines 8, =0); and the quantity d,,, in (10)
associated with a point and a line [cf. the proof, given on pp. 38-39, of the
invariance under (1) of the quantities d,,, and §,,, in (5) and (6) associated
with pairs of points].

Let xOy be the familiar coordinate system in the Galilean plane, where Oy is a
special line and Ox=o is an ordinary line. Let S be the (Galilean) unit circle
with center O, and M a typical point on § with coordinates x and y. Denote
the line OM by [ and the angle §,, by a. Define the Galilean cosine cosg a, and
the Galilean sine singa by the equations x =cosga, y =singa. Prove that for
all @, cosga =1 and sing a = a.> Prove, for example, that
sing(a + B) =singa cosg 8+ cosga sing 3,

and that if 4BC is a “right triangle” with acute angle 8,5 4c=a (We recall
that this means that BC L AC in the sense of Galilean geometry, i.e., BC isa
special line; cf. p. 43, in particular, Fig. 37b), then d,-=d, gcosga, dpc=
d,gsinga. Develop the suggested parallelism between Euclidean and Galilean
trigonometry.

Define the distance between two points, the angle between two lines, and the
angle between two planes in three-dimensional Galilean geometry with the
motions (12'). Define analogues of the concepts of circle and sphere. Discuss
the physical significance (in terms of plane kinematics) of the various con-
cepts.

Define the same concepts in three-dimensional semi-Galilean geometry with
the motions (12”).

(a) Define the same concepts in the Poinceau geometry with the motions (17).
Can you give a mechanical interpretation (in terms of plane statics) of these
concepts?(b) Define the same concepts in the Poinceau geometry of three-di-
mensional statics (cf. Problem VI in the Introduction). Can you give a
mechanical interpretation (in terms of three-dimensional statics) of these
concepts?

Establish the connections between the quantities in Problems I and III (a)
implied by the results of Problem VII in the Introduction.

4. The trilangle

The simplest polygon in the Galilean plane is a triangle ABC formed by
three points A, B, C and three (ordinary) lines BC =a, CA=b, and AB =c
(Fig. 41). Just as in Euclidean geometry, the letters a,b,c are also used to
denote the lengths of the sides of the triangle, i.e., the (positive®) distances
|dgc|l=a, |dcq|=b, |d 5|=c, and the letters 4, B, C stand not only for the
vertices of the triangle but also for the (positive®) magnitudes of its angles:

SCompare these results with the “asymptotic equalities” cosa~1 and sina~a, which hold for
small angles a. [The precise meaning of the latter relations is that lim, ,cosa=1 and
lim,_,o(sina/a)=1; in this connection, see Sec. 13 of the Conclusion.}

SCf. footnote 3.
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Figure 41

|8sc| =4, |8,,]=B, |8,,|=C. Occasionally, we shall denote the positive
length |d,s| of a segment AB by the same letters 4B. (Such notation will
appear, for example, in some equations involving the lengths of the sides of
a triangle.)

The lengths a, b, and ¢ of the sides of a triangle in the Galilean plane
and the magnitudes 4, B, and C of its angles are connected by very simple
relations. If ¢ is the largest side, then

a+b=c (11)

(Fig. 41). The mechanical interpretation of this equality is obvious: if 4, B,
and C are three arbitrary events, then the time interval between the first
and last of them is equal to the interval between the first and second plus
the interval between the second and last (additivity of time intervals).

From Figure 41, we can easily read off another relation. Suppose C is
the largest angle of AABC. If the slopes of BC, CA, and AB are ky, ky, and
ks, respectively, then A =k, —k,, B=k;—k,, and C=k,— k,. Hence

A+B=C. (12)

To obtain the mechanical interpretation of this relation, we select an
(inertial) reference frame in which the side AC of the triangle corresponds
to the state of rest.” Then —A and — C are the velocities of the uniform
motions represented in the Galilean plane by the lines ¢ and a, respec-
tively, while — B is the relative velocity of the motion a with respect to a
moving reference frame determined by the motion ¢ (in other words, the
velocity of a relative to a frame of reference in which c is the state of rest).
Thus, with proper labeling of the uniform motions represented by the lines
a, b and ¢, formula (12) gives the classical law of composition of velocities:
The “absolute velocity” of a motion, i.e., its velocity with respect to a fixed

"In other words, we perform a motion (1) to make AC lie on the x-axis.
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reference frame, is the sum of its “relative velocity,” i.e., its velocity with
respect to a moving reference frame, and its “transport velocity,” i.e., the
velocity of the moving reference frame. Take, for example, the case of a
passenger walking from the rear to the front of a moving train. His velocity
with respect to the tracks (his absolute velocity) is the sum of his velocity
relative to the train (his relative velocity) and the velocity of the train (the
transport velocity which characterizes the motion of the moving reference
frame with respect to which we compute the relative velocity).

The mechanical interpretation of Eq. (12) could also be stated: The
largest of the three relative speeds determined by three uniform motions is the
sum of the remaining two.

The “angle formula” (12) can also be deduced from the “side formula”
(11) by means of the relation

ATBTC (13)

which is the analogue, in Galilean geometry, of the law of sines in
Euclidean geometry. Relation (13) states that in any triangle of the
Galilean plane, the sides are proportional to the opposite angles:

a=\AA, b=AB, c¢=)C (14)

(the significance of the proportionality factor A will be discussed in Sec. 9
below). To obtain (12) from (11) we need only divide both sides of (11) by
A

It remains to prove (13). To do this, it suffices to draw the “altitudes”
AP, BQ, and CR of AABC, i.e., the segments of the special lines through
the vertices of the triangle cut off by the opposite sides (cf. Fig. 42a). [The
discussion on p. 42 and Fig. 37 justify calling AP, BQ, and CR the
altitudes, in Galilean geometry, of A ABC.] We denote the lengths of the
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altitudes by h,, h,, and h_:

h,=AP=|8,,|,

h,=BQ= |8BQ|’

h,=CR=|6gl-
The definition of angle in Galilean geometry implies that

h.=B-a=A-b (15)
(Fig. 42a; we recall that BR=BC=a and AR=AC=>b). Hence

a b

A
Similarly, using the altitudes 4, and A,

e see that

B
£
C

SEN

and
b _ ¢
B C’
We shall now derive another consequence of relations (15). We first
show that if S is the area of AABC (recall that area is a meaningful

concept in Galilean geometry; cf. p. 36) then

S=31ah,=3bh,=1ch,. (16)
For proof, apply a Galilean motion (1) to AABC so that its image is a
triangle A’B'C’ with B’C’ parallel to the x-axis (Fig. 42b). Then the
Galilean lengths of B'C’ and of the altitude %, coincide with their
Euclidean lengths. Hence

S'=31a'k,

where S’ is the area of A A’B’C’ (note that S’ is the Euclidean as well as
the Galilean area of AA4’B’C’; the area of a figure is the same in both
geometries). Since the quantities a, 4, and S are invariant under Galilean

motions, we have a’=a, h,=h,, and S’=S (cf. Figs. 42a and 42b). But
then

S=1ah,.

A similar argument is used to prove the two remaining relations in (16).
In the third formula of (16), we substitute A, = A4b from (15). This gives
S=1bcA. By symmetry, we obtain

S=21abC=1acB=1bcA. (17)
Formulas (17) are the Galilean analogues of the Euclidean relations
S=3absinC=}acsinB=1bcsin4. 17)

Consider the Euclidean proposition: If the sides a and b of AABC are
congruent, then so are the angles A and B opposite them, and conversely.
Formulas (13) imply that this result also holds in Galilean geometry (for
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Figure 43 Figure 44

proof, note that a/A4 =b/ B; cf. Fig. 43.) Thus a triangle is isosceles (i.e.,
has two equal sides) if and only if it is isogonal (i.e., has two equal angles).
It is also clear that the altitude CR of an isosceles triangle ABC bisects the
side AB opposite to C (cf. Fig. 43, where AR=AC=b, BR=BC=a). On
the other hand, CR does not bisect the angle C, since a special line cannot
possibly bisect an angle.® This implies that in Galilean geometry the angle
bisectors need not intersect in a point®® in Figure 43, the bisectors 4K and
BL of A and B intersect in the midpoint @ of the altitude CR, but, as
already pointed out, CR is not the angle bisector CN of C. A Euclidean
proposition which does remain valid in Galilean geometry is that the
medians AD, BE, and CF of a triangle ABC intersect in a point M which
divides each median, beginning with the vertex, in the ratio 2:1; AM:MD
=BM:ME=CM:MF=2:1. This follows from the fact that the medians
of a triangle in Galilean geometry coincide with its Euclidean medians,
and the ratio of the segments into which their intersection point divides
them is the same in both geometries (Fig. 44; cf. p. 34 above).

We note that in Galilean geometry there are no equilateral triangles; if
two sides of a triangle are congruent, then the third side is twice as long
[by Eq. (12)]. A similar result holds for angles.

Let ABC be a triangle in the Galilean plane. If, instead of the positive quantities
a,b,c,A,B,C (cf. pp. 47-48) we introduce the signed quantities @=dj, b=d,,
c=dyp, A=08,p 40, B=08pc ps» and C=0¢4 cp, then formulas (11)-(13) of this
section take the following simple form:

a+b+c=0, ar)
A+ B+ C=0, (12)
a_»b_ ¢

a_s_=¢. 13
A B C (13)

8If the sides meeting at C have slopes k, and k,, the angle bisector must have a slope k
satisfying k, — k = k — k5, so that k=(k,+ k,)/2. Since k, and k, are assumed to be finite, so
is k. (Translator’s note.)

84 1t can be shown that in Galilean geometry the angle bisectors in a triangle never intersect
in a point; see Figure 48b.
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Thus here, too, we arrive at relations analogous to (14), where now the sign of the
proportionality constant A has definite geometric significance (cf. footnote 22 of
Sec. 9).

We now consider congruence criteria for triangles in Galilean geometry. First of
all, two triangles ABC and 4’B’C’ with congruent sides or angles need not be
congruent. To see this, we recall that in Galilean geometry the two smallest sides of
a triangle determine the third side, and (as in Euclidean geometry) the two smallest
angles determine the third angle, but two sides or two angles do not determine a
triangle (see Figs. 45a and 45b). Moreover, the familiar congruence criteria of
Euclidean geometry, briefly referred to as SAS and ASA, do not hold in Galilean
geometry. For example, triangles ABC and 4,BC in Figure 46a have a common
angle C enclosed by the common side CB of length a, and the congruent sides CA,
CA, of length b. However, AB=a+ b, while A\B=a—b, so triangles ABC and
A, BC are not congruent. Similarly, triangles ABC and 4,BC in Figure 46b have a
common side BC enclosed by equal angles, yet 4B >4,B. On the other hand, the
Euclidean congruence criteria SAS and ASA are valid in Galilean geometry if we
deal with directed sides and angles. Specifically, AABC=AA'B'C’ if ad=dgc=
dB'C'= d’,5= dCA = dC'A'= b-', and C= C’; also, AABCE AA,B'C, if a= dBC=
dg.c:=a', B=B’, and C=C". We leave the proof of these assertions to the reader.

We note that relations (13) imply that two triangles ABC and A'B’'C’ with
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congruent angles have proportional sides (cf. Fig. 45b above). Thus

a b ¢

In this case AA4’B’C’ can be obtained from AABC by means of a so-called
similitude of the first kind with similitude coefficient k, i.e., by a mapping of the
Galilean plane to itself which preserves (the magnitudes of) angles, and which
multiplies (the lengths of) segments by a fixed number k. An example of such a map
is a (positive) central dilatation with center O, which we define as a transformation
of the plane, taking every point 4 onto the point 4’ of the ray O4 such that

on

0A
cf. Figure 47a. Similarly, two triangles ABC and A'B’C’ with congruent sides have
proportional angles (cf. Fig. 47b). Thus

=k;

In this case, AA’B’C’ can be obtained from AABC by means of a so-called
similitude of the second kind with similitude coefficient «, i.e., by a mapping of the
Galilean plane which preserves segments and multiplies angles by a fixed number k.
An example of such a transformation is a compression with axis Ox and coefficient
k, which takes every point 4 to the point 4’ of the ray PA| Oy such that
PA_
PA ’
cf. Figure 47b. We shall not pursue the very interesting study of similar figures in

the Galilean plane (i.e., figures related by a similitude of the first or second kind, or
the product of a similitude of the first kind and one of the second kind).

PROBLEMS AND EXERCISES

4  With the notation of Exercise 3, prove that a/sing4 =b/sing B=c/singC,
Saupc=1absingC, and (after a suitable choice of sides in the triangle)
a*=b>+c?—2bc-cosgA. Develop the analogy between Euclidean and
Galilean trigonometry suggested by these relations.
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Prove the congruence criteria stated on p. 52.

6  (a) Consider a quadrilaterial in the Galilean plane. Find relations involving
its sides, angles, the lengths of its diagonals, the angles between the diagonals
and between opposite sides, the lengths of its midlines, the length of the
segment joining the midpoints of its diagonals, etc. (b) Find relations involv-
ing the angles, sides, and diagonals of an arbitrary polygon in the Galilean
plane. [ Hint: You may find it convenient to use directed segments and angles
(cf. the remarks in small print on p. 51).]

7 State congruence criteria for quadrilaterals and n-gons in the Galilean plane.

8  State criteria for similarity (of the first and second kind; cf. p. 53) of triangles
in the Galilean plane.

V  Formulate results involving triangles and tetrahedra in three-dimensional
Galilean geometry.

VI Formulate results involving triangles and tetrahedra in three-dimensional
semi-Galilean geometry (cf. Problem II).

VII Formulate results involving triangles and tetrahedra in three-dimensional
Poinceau geometry (cf. Problem HI).

5. The principle of duality; coparallelograms and cotrapezolds

In the previous section we showed that, just as in Euclidean geometry, the
medians of a triangle in Galilean geometry intersect in a point (which
divides each median in the ratio 2: 1 beginning at the vertex). On the other
hand, in contrast to Euclidean geometry, the angle bisectors of a triangle in
Galilean geometry never intersect in a point (cf. Figs. 48a and 48b°). This
may disappoint some readers and leave them with the impression that in
Euclidean geometry figures are more “regular” and “simple” than in
Galilean geometry. However, this is not the case. In fact, Galilean geome-
try is actually simpler than Euclidean. In particular, the angle bisectors of
a triangle in Galilean geometry have a simple and remarkable property
which more than makes up for the fact that they are not concurrent. This
property will emerge from the principle of duality, an important feature of
Galilean geometry which we now proceed to discuss.

It is well known that the properties of lines in Euclidean geometry are
often analogous to those of points. Thus, for example, two points de-
termine a unique line (Fig. 49a), while two lines intersect in at most one
point (Fig. 49b). The set of points of a line @ between points M and N of a,

Note that it is not quite right to compare Figures 48a and 48b. After all, in Galilean
geometry a triangle has precisely three angle bisectors (cf. footnote 8, where it is shown that
each angle has only one bisector). On the other hand, in Euclidean geometry a triangle has,
strictly speaking, six angle bisectors (three bisectors of the interior angles and three bisectors
of the exterior angles). These six angle bisectors of a triangle form a fairly complex
configuration: they intersect three at a time in four points, the center of the inscribed circle and
the three centers of the escribed circles of the triangle. Also, there are Jour triples of them
whose intersections with the opposite sides of the triangle are collinear.
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i.e., the segment MN (Fig. 49a), is analogous to the set of lines passing
through a point 4 and contained between the lines m and n on A4, i.e., the
angle mAn (Fig. 49b). A triangle can be regarded as a set of three
noncollinear points and three segments determined by these points (Fig.
50a), but it can also be thought of as a set of three nonconcurrent lines and
the three angles determined by them (Fig. 50b); and so on. Unfortunately,
this analogy between points and lines does not go far enough so that one
cannot always rely on it in searching for new properties of points or lines.
One flaw in the correlation between points and lines is the existence of
parallel lines, i.e., lines without a common point. For the analogy between
properties of points and properties of lines to be complete, the existence of
parallel lines would require the existence of “parallel points,” i.e., pairs of
points which cannot be joined by lines. But there are no such points in
Euclidean geometry. Again, while the distance between points 4 and B
can be arbitrarily large, the size of the angle between two intersecting lines
is restricted; if we increase the angle between lines a and b by rotating one
of them about their intersection point, then after a rotation  ough 180°
the rotated line returns to its original position.'®

10The angles of arbitrary size employed in trigonometry are not defined merely by a pair of
lines, the “sides™ of the angle. Consequently, such angles are not strict analogues of segments
that are uniquely determined by their endpoints.
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b

Figure 50a Figure 50b

In Galilean geometry the situation is different. There we do have
“parallel points,” i.e., points which cannot be joined by an (ordinary) line.
To be sure, such points can be joined by a special line (see, for example,
Fig. 51) but in Galilean geometry special lines are radically different from
ordinary lines. Again, the angle between two lines in Galilean geometry
can be arbitrarily large: starting with a pair of lines a and b intersecting in
a point Q, we can pass through Q a line b, such that Z aQb= £ bQb,, then
a line b, such that Z bQb,= /b ,Qb,, then a line b, such that /b,Qb,=
£ b,Qb,;, and so on. In this way, we obtain a sequence of lines whose
“angular distances” from a increase indefinitely, i.e., a sequence of lines
which forms an ever larger angle with a (see Fig. 52b; also, cf. Fig. 52a,
which illustrates the corresponding construction for distances between
points). We thus have a situation in which the analogy between points and
lines is complete. This analogy suggests that interchanging the words
“point” and “line,” “distance” and “angle,” “lies on” and “passes through”
in any theorem of Galilean geometry yields another theorem."

The italicized assertion (whose proof we discuss in what follows) is
known as the principle of duality, and theorems related by it are said to be
dual to each other. This principle sheds new light on some by now familiar
facts. Thus in Galilean (and in Euclidean) geometry the angle between two
lines is a measure of the “deviation” of one line from the other, and if that
angle is zero, i.e., if the lines are parallel, then an additional measure of
deviation is the distance between the lines. Similarly, the distance between
two points is a measure of the “deviation” of one point from the other, and
if that distance is zero, i.e., if the points are on the same special line
(“parallel to each other™), then an additional measure of deviation is the
special distance, which is measured in units quite different from those of
ordinary distance.

The main merit of the principle of duality is that it enables us to deduce
new theorems from known ones. Thus, for example, it is clear that the

formulas
a+b=c¢c and A+ B=C,

"Note that in view of the analogy between points and lines, it is obvious but not very
important, that our “word transformation” changes a statement of Galilean geometry into
another statement. What is important but not obvious is that it changes a theorem of Galilean
geometry into another theorem.
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valid for arbitrary triangles, are dual to one another. This means that
knowing one of them we could immediately predict the other. In some
cases the resulting new theorem coincides with the original one; for
example, interchanging sides and angles in the relations a/A=b/B=c/C
yields the essentially identical relations 4/a=B/b=C/c. However, in
most cases the dual of a theorem of Galilean geometry is a new theorem
which may not be easy to discover without the principle of duality.

It is easy to illustrate the value of the principle of duality by means of
examples. We know that in an isosceles triangle ABC with AC= BC, the
altitude (special line) from the vertex C is also the median from C, but it is
not the angle bisector of C. Coincidence of the median CF of A4BC and
the altitude implies that CF is special, ie., using the terminology in-
troduced above, the midpoint F of side AB is parallel to the vertex C (Fig.
53). The dual of the midpoint F of the side AB is the bisector f of the angle
C. Hence the dual of the parallelism of points C and F is the parallelism of
lines ¢ and f. We thus arrive at the following assertion: the bisector f of the
angle C at the vertex of an isosceles (or isogonal—cf. p. 51) triangle ABC is

-
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Figure 52a Figure 52b
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parallel to its base AB=c. For proof'? we note that f bisects the vertical
segment AP. Moreover, f bisects PB, since PC=AC=CB. Thus f is a
midline of A ABP and hence f||BA, as asserted.

For other examples, we turn to properties of parallelograms and
trapezoids. It is clear that if the opposite sides of a quadrilateral ABCD in
the Galilean plane are parallel (in which case we call the quadrilateral a
parallelogram), then they are congruent (Fig. 54a). Further, the intersection
point Q of the diagonals AC and BD of the parallelogram ABCD bisects
them (as in Euclidean geometry). The figure in the Galilean plane dual to a
parallelogram is a quadrilateral A BCD whose opposite vertices A and C, B
and D are parallel, i.e., lie on special lines AC and BD (Fig. 54b). We shall
use the term coparallelogram for the (necessarily self-intersecting) quadri-
lateral ABCD with sides AB=a, BC=b, CD=c, DA=d. It is clear that
the opposite angles of a coparallelogram are congruent (and hence A = C and

12Since we have not yet proved the principle of duality, we can use it only as a guide to the
discovery of plausible theorems. If we had a proof of this principle (see Sec. 6), then the duals
of known theorems would require no further proof.
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B=D). This fact, dual to the congruence of the opposite sides of a
parallelogram, follows immediately from the definition of angle in Galilean
geometry. Further, to the diagonals AC and BD of the parallelogram
ABCD there correspond the intersection points £ and F of the (pairs of)
opposite sides @ and ¢, b and d of the coparallelogram ABCD. To the
lengths of the diagonals AC and BD of the parallelogram there correspond
the magnitudes of the angles aEc and bFd of the coparallelogram. To the
intersection point Q of the diagonals AC and BD of the parallelogram
there corresponds the line g= EF. The dual of the assertion that Q bisects
the diagonals AC and BD is the following theorem: The line EF which joins
the points of intersection E and F of the opposite sides of the coparallelogram
ABCD bisects the angles at E and F. For proof, we draw the special line
through E, and note that E is the midpoint of its segment UV between b
and d (this follows from the congruence of the opposite angles of the
coparallelogram). This implies that /bFg= / qFd. But then ZaEq=
L qEc, for LaEq= / bFq+ /aBb and /qEc= /qFd+ /dDc.

It is natural to define a frapezoid as a quadrilateral ABCD with parallel
opposite sides AB and DC (Fig. 55a). Since a Galilean trapezoid, thus
defined, is also a Euclidean trapezoid, its midline MN (joining the centers
M and N of the sides AD and BC) is parallel to the bases 4B and CD, and
its length is half the sum of their lengths."> We call a quadrilateral ABCD
in the Galilean plane with sides AB=a, BC=b, CD=¢, DA=d and
parallel vertices B and D (this, we recall, means that BD is a special line;
see Fig. 55b) a cotrapezoid. To the sides BC and DA of the trapezoid
ABCD there correspond the vertices C and A of the cotrapezoid ABCD,
and to the midpoints N and M of the sides of the trapezoid there
correspond the bisectors n=CS and m=AS of the angles C and 4 of the

Blt is clear that the Euclidean relations MN ||4B||CD and MN=1AB+1CD, ie., AB/MN
+ DC/MN =2, remain valid in Galilean geometry.
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cotrapezoid with intersection point S. The fact that the midline MN of the
trapezoid ABCD is parallel to its bases AB and CD yields the dual
assertion that § is parallel to the vertices B and D, i.e., is on the special line
BD; this follows readily from the definition of angle bisector in Galilean
geometry, which implies that the lines AS and CS bisect the segment BD.
The assertion that the midline of a trapezoid is half the sum of its bases
yields the dual theorem that the angle mSn is half the sum of the angles aBb
and dDc of the cotrapezoid:
LmSn=3/aBb+3/dDc  (8,,=18,+18,).

mi

[The latter follows from the fact that (see Fig. 55b)

AS, = AB, — S\B, = 4B, -1 D,B,
= AB, —3(AB, — AD,)=1"4B, + 14D, ;

here B, D\||BD is a special line.] A special case of this theorem is the
assertion that in a triangle ABC (viewed as a “degenerate cotrapezoid”
ABCP with BP an altitude) the bisectors AS and CS of the angles A and C
intersect at the midpoint S of the altitude BP, where they form an angle iB
(see Fig. 56a, where AS,=3AB,; compare this result with the theorem
about the midline of a triangle, Fig. 56b).

It is now easy to formulate the dual of the theorem on the intersection
point of the medians of a triangle. The duals of the midpoints D, E, F of
the sides BC, CA, and 4B of AABC are the bisectors d=AU, e=RBV,
f=CW of its angles 4,B,C (cf. Fig. 57a and 57b). The duals of the lines
AD,BE,CF are the intersection points U, V, W of the angle bisectors of
AABC with the opposite sides. Hence the dual of the theorem that the
medians 4D, BE, CF of a triangle ABC intersect in a point M (Fig. 57a) is

Figure 56a Figure 56b
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the theorem that the points U,V, W lie on a line m (Fig. 57b). Further-
more, the duals of the relations

AM:MD=BM:ME=CM:MF=2:1
are the relations
LaUm: L mUd= LbVm: . mVe=LcWm: LmWf=2:1.

In summary, the intersection points of the angle bisectors of a (non-iso-
sceles'®) triangle ABC with the opposite sides lie on a line m which divides
the angles between the bisectors and the opposite sides in the ratio 2:1
beginning with the sides. This is the property of the angle bisectors of a
triangle in Galilean geometry to which we alluded at the beginning of this
section.

To prove this theorem, we recall a proof of the theorem about the
medians of a triangle.'® First we show that the intersection point M of the
medians AD and BE of AABC divides the medians in the ratio AM : MD
=BM:ME=2:1. To this end, we join the midpoints D and E of BC and
CA to the midpoint N of the segment CM (Fig. 58a; so far we cannot
claim that CM is part of the median CF of our triangle). Since DN is a
midline of ABMC, and EN is a midline of ACMA, it follows that
DN ||BE and EN||AD. But then MDNE is a parallelogram, and so

DM=NE=1MA and EM=ND=;MB.

This argument holds for any two medians of the triangle. Hence the
intersection point of any two medians of the triangle divides each median
in the ratio 2:1 beginning with the vertex. This implies that all three
medians are concurrent, since both BE and CF intersect AD in the unique
point M such that AM:MD=2:1.

We now dualize our argument by interchanging points with lines, and
segments with angles. We denote by m the line UV, where U and V are the

1411 A ABC is isosceles with AC= BC, then the line KL passing through the intersection points of
the bisectors of the angles A and B with the opposite sides is parallel to the base AB of the
triangle and to the bisector of the angle at C (cf. p. 51 above; in particular, Fig. 43).

15This proof works in both Euclidean and Galilean geometry. (Translator’s note.)
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intersection points of the angle bisectors d=AU and e= BV with the
opposite sides. Let n be the bisector of the angle mW,c formed by the line
m with the side AB=c of AABC (Fig. 58b; at this point we cannot claim
that W, coincides with the point W where the bisector f of angle C meets
the side c). Let R and S be the intersection points of n with the angle
bisectors d and e. Since R is the intersection of the angle bisectors d and n
of AAV W, it lies on the altitude VP (cf. p. 60 and Fig. 56a). Similarly,
§, as the intersection of the angle bisectors e and n of A BU W,, lies on the
altitude UQ. Hence the (self-intersecting) quadrilateral RUVS is a
coparallelogram. But then £ mUd= / eSn and £ mVe= / dRn. Now ap-
plying to the triangles A VW, and BUW, the theorem on p. 60, we see that

LdUm= /nSe=%/mUa and [eVm= ZnRd=3/mVb,

ie., m divides the angles formed by d and e with the opposite sides of the
triangle in the ratio 2:1 beginning with the sides. Now define W to be the
intersection point of the bisector f=CW of the angle C with the side
AB=c. Then, by symmetry, the line UW=m, has the property
LaUm,: Lm;Ud=2:1. Hence m, coincides with m, i.e., the points U, V,
W are on m, and

LaUm: L mUd= LbVm: L mVe=LeWm: /[ mWf=2:1.

This proof of the “theorem on angle bisectors” of a triangle is very
instructive because it is the exact dual of the proof of the theorem on the
medians of a triangle. The latter fact sheds additional light on the principle
of duality, for it shows that we can use verbal transformations (interchang-
ing “point” with “line,” and so on) not only to formulate the duals of
known theorems, but also to prove them. To understand the reason behind
this phenomenon, we must examine the process of proving a theorem in
geometry. Consideration of this process will not only deepen our under-
standing of the factors underlying the principle of duality, but will also
show what must be done to justify it. Note that, in spite of their suggestive-
ness, our examples of the use of the principle of duality do not constitute a
proof of its validity.
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We recall that to prove a theorem in some mathematical system, one
proceeds as follows. By means of purely logical steps the theorem in
question is reduced to simpler theorems. In turn, these are reduced to still
simpler theorems, and so on. This process continues until we arrive at
simple propositions called axioms which we accept without proof. In the
final analysis it is these unproved propositions (axioms) on which we base
the proofs of the theorems in the system. In actual proofs of geometric
propositions, we carry the reduction process back to previously established
theorems rather than to the axioms. This does not affect the general
scheme of proof outlined above; it merely means that we leave out
established portions of the deductive chain. Now our discussion of
Galilean geometry suggests that the basic properties of points and lines,
distances and angles are entirely analogous in the sense that by interchang-
ing the words “point” and “line,” and so on, in any axiom of Galilean
geomelry, we obtain a valid proposition (see Sec. 6). Thus, for example, the
axiom “two lines have at most one point in common” (Fig. 59a) yields the
assertion “there is at most one (ordinary) line joining two points” (Fig. 59b).
Again, the parallel axiom which asserts that through a point A not on a line
a there passes a unique line not intersecting a yields the assertion that on
every (ordinary) line a not passing through a point A there is a unique point
L which cannot be joined to A by an (ordinary) line (Fig. 59d); and so on.
Had we drawn up a list of axioms and proved their duals as theorems, then
we could claim that the principle of duality (cf. p. 56) holds in our
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geometry; in fact, the dual of a theorem could then be proved by
interchanging the words “point” and “line,” and so on, in the proof of the
original theorem. (It should be pointed out that the proof thus obtained
would not involve the same axioms as the proof of the original theorem,
but rather their duals.) Thus the proofs of duals of theorems of Galilean
geometry given above would be superfluous.

The reason that we do not use this approach to establish the principle of
duality is that it would require a list of the axioms of Galilean geometry. In
the elementary part of our book such a list would be out of place; indeed,
many of our readers are probably not even familiar with a complete set of
axioms of Euclidean geometry (not usually given in elementary texts).!®
More advanced readers will find it profitable to study the (three) proofs of
the principle of duality presented in Section 6.

Here is another proof of the theorem formulated on p. 60 about the intersec-
tions of the angle bisectors of a triangle (in the Galilean plane) with the opposite
sides. It is well known that the concurrence of the medians of a triangle (valid in
Euclidean and in Galilean geometry) follows directly from Ceva’s theorem, which
asserts that three lines AU, BV,CW passing through the vertices of a triangle ABC
and intersecting the opposite sides in points U,V,W (cf. Fig. 60a) are concurrent or
parallel if and only if

AW BU CV _,
WB UC VA
cf. p. 25.'7 18 [Ceva’s theorem also implies that the Euclidean angle bisectors of a
triangle are concurrent. Indeed, if AU, BV, and CW are the Euclidean angle
bisectors of A ABC with sides of lengths AB=¢, BC=a,CA=5, then AW: WB=
b:a, BU.:UC=c¢:b, CV:VA=a:c, and
AW BU CV _b ¢ a_
WB UC VA a p ¢
implies that AU, BV, and CW are concurrent.] Similarly, the collinearity of the
points U, V, W in Figure 57b follows from the theorem of Menelaus, which asserts

that points U,V,W on the sides BC,CA,AB of a triangle ABC (Fig. 60b) are
collinear if and only if'% %

AW _BU TV _
BW CU 4V
In fact, if in Figure 57b, AB=d,z=¢, BC=dgc=a, CA=d,=b (where a+b+¢
=0), then, in view of relations (13') on p. 51, consideration of triangles ABU and
ACU yields

BU : AU = L BAU: L ABU=48,,:8,, and CU: AU =/ UAC: L UCA
=8db:86b'

'$For complete sets of axioms of plane Euclidean geometry see, for example, [SH7] or [4].
!7For Ceva’s theorem see, for example, Problem 27(b) in [11] or Chap. VIII of [33].

18We have already noted that the ratio of the Galilean lengths of two collinear segments is the
same as the ratio of their Euclidean lengths. Since Ceva’s theorem only involves such ratios,
its Galilean analogue follows immediately. (Translator’s note.)

19C., for example, Problem 27(a) in [11] or Chap. VIII of the book [33].

20The Galilean analogue of Menelaus’s theorem follows from the same reasoning as was given
in the footnote 18. (Translator’s note.)
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Figure 60a Figure 60b

Dividing the first of these equations by the second, we obtain
BU : CU =8,,8,:8..04.
But 8,,= £ BAU= L UAC=24, (since AU bisects angle 4). Hence
BU:CU=LUCA: LABU=§8,:8,=LC: LB=¢:b
(cf. (13) of Section 4). A similar argument shows that
CV:AV=a:c and AW :BW =b:a.
Now the equality

AW BU C _beca_,

BW CU AV a p ¢
implies that the points U, V, W are collinear.

<
o
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We conclude this section with a few remarks about the mechanical meaning of
the principle of duality. We arrived at Galilean geometry by taking as points events
of one-dimensional kinematics characterized by a location on the line 0 and a
moment in time. The motions of our geometry are Galilean transformations. The
“distance” between two events is the time interval separating them. For simulta-
neous events, for which this distance is zero, we define a new “distance,” namely,
the space interval between the points on o corresponding to our events. Further,
two (nonsimultaneous) events determine a uniform motion along o which “joins”
them and this motion plays the role of a line in our geometry. This, then, is the
foundation of a theory which, as we saw, resembles Euclidean geometry. However,
we are free to try to construct other geometric systems by taking as our points not
events but other entities of mechanics. In particular, we could take as the “points”
of a new geometric system all uniform motions on the line o, and as its motions, as
before, the Galilean transformations which determine the transitions from one
inertial reference frame to another. There is a natural metric which can be imposed
on our set of uniform motions; specifically, we can take as the distance between
two motions their relative velocity—which, as we know, has “absolute” signifi-
cance (i.e., significance independent of the frame of reference). If both motions
have the same velocity (i.e., if their relative velocity is zero), then we can speak of
the usual distance between moving points, which in this case does not change with
time. Further, two uniform motions (with different velocities) determine a unique
event which belongs to both of them and this event plays the role of a line in the
“geometry of uniform motions.” The principle of duality asserts the essential
equivalence of the “geometry of uniform motions” just described and the “geome-
try of events” treated in the main part of this book.

PROBLEMS AND EXERCISES

9 The midlines of AABC form AA’B’C’ whose angles are congruent to those
of AABC and whose sides are half the size of those of A4BC. AA’B’C’ is
obtained from AABC by means of a dilatation with center M, which
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coincides with the centroid of AA4BC, and coefficient— 1/2. State and prove
a theorem of Galilean geometry dual to that just stated.

The midpoints 4°, B’, C’, D’ of the sides of any quadrilateral ABCD form
the vertices of a parallelogram. Its sides are parallel to the diagonals of
ABCD and are half their size. The angles of 4’B’C’D’ are congruent to the
angles between the diagonals of ABCD, and the area of A’B’C’D’ is half the
area of ABCD. State and prove a theorem of Galilean geometry dual to that
Just stated. [Hint: What concept of Galilean geometry is dual to the concept
of area of a figure?]

(a) What theorem of Galilean geometry is the dual of Ceva’s theorem? (Ct.
p. 64.) (b) What theorem of Galilean geometry is the dual of Menelaus’
theorem? (Cf. p. 64.)

In Euclidean as well as in Galilean geometry, the line joining the intersection
point P of the diagonals of a trapezoid®' to the intersection point Q of its
nonparallel sides bisects its bases. State and prove the dual of this theorem
in Galilean geometry. [Hint: To prove the original theorem, note that the
dilatation y, with center Q and coefficient k,=QD/QA takes AB to DC.
This implies that y, carries the midpoint M of AB to the midpoint N of DC.
But then M,N,Q are collinear. To prove the collinearity of M,N,P we
consider the dilatation y, with center P and coefficient k,= — PC/PA)

Q

A B
M

Give other examples of pairs of dual theorems of Galilean geometry.

Discuss the principle of duality in three-dimensional semi-Galilean geometry
(see Exercise 5). Give examples of pairs of dual theorems of this geometry.
[Hint: In this geometry the dictionary which enables us to go from a
theorem to its dual includes the following pairs of concepts.

Point Plane
Line Line
Plane Point
The point 4 is in the plane 7 The plane a contains the point P
The point 4 is on the line ¢ The plane a contains the line ¢
The line a is in the plane 7 The line a contains the point P
Distance between points Angle between planes
Angle between lines Angle between lines
Angle between planes Distance between points

and so on.]

ZIAssumed to be not a parallelogram. (Translator’s note.)



6. Proofs of the principle of duality 67
6. Proofs of the principle of duality

Our discussion of the principle of duality in Galilean geometry on pp.
62-64 made the principle seem plausible but did not rigorously prove it. In
this section, we present a number of proofs of the principle.

We pointed out earlier that the principle of duality does not hold in
Euclidean geometry (however, see Problem IX below). It was first dis-
covered in projective geometry.?* The founder of projective geometry, the
French engineer and geometer J. V. PONCELET (1787-1867), deduced the
(projective) principle of duality from the fact that polarities of the projec-
tive plane (cf. Chap. 1, Sec. 4 of [12]) interchange points and lines and thus
transform the diagram associated with a given projective theorem into the
diagram of its dual (whose validity follows from properties of polarities).
At about the same time, another French geometer, J. D. GERGONNE
(1771-1859), also considered the principle of duality. Gergonne wrote
theorems and their duals in two columns. Transition from one column to
the other required interchanging the terms “line” and “point,” “passes
through the point” and “lies on the line,” and so on. Gergonne was
familiar with the concept of a polarity but did not use it to establish the
principle of duality. He relied, instead, on an argument analogous to that
used in Section 5 of this book to make the Galilean principle of duality
plausible. In a sense, Gergonne may be said to have anticipated the
derivation of the principle of duality from a list of axioms of projective
geometry (of course, at that time mathematicians had no such list and were
not aware of the need for one). A third proof of the (projective) principle
of duality is due to a contemporary of Poncelet and Gergonne, the
German geometer A. F. MoOBrus (1790-1868) and is based on the use of
“point coordinates” and “line coordinates.” These could be used to trans-
late an analytic proof of a projective theorem into an analytic proof of its
dual (with “line coordinates” replacing the ordinary coordinates of a
point).

In this section we give three proofs of the principle of duality in
Galilean geometry. The first proof uses an approach analogous to that of
Mobius, the second echoes Poncelet, and the third is in the spirit of
Gergonne.

I. Analytic proof of the principle of duality (the approach of Méblus)

Since every (ordinary) line / in the Galilean plane is uniquely determined
by the coefficients k and s of its equation y = kx + s, we refer to the pair of
numbers (k,s) as the coordinates of the line | (the tangential coordinates of
I). The mapping (x,y)—(x’,y") defined by Eq. (1) of Section 3 sends each
point (x,y) of the Galilean plane to another point (x’,y"). It induces a
mapping (k,s)—(k’,s’) which sends each line (k,s) of the Galilean plane to

22See, for example, Chap. 14 in [19], Chap. 7 in [31], Chap. 5 in [32], and [14].
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another line (k’,5"). To describe the latter mapping, we invert

xX'=x +a,

Y'=vx+y+b, W
and obtain
x=x'—a,
y=—o(x'—a)+y —b,
or
x= x a, )

y=—ovx'+y' +av—b.
This means that the mapping (1) carries the line /, i.e., the set of points
(x,y) satisfying the equation y = kx +s, to the set of points (x’,y") satisfy-
ing the equation

—ox'+y' +av—b=k(x'—a)+s,

or
Y'=(k+v)x'+(—ak+s+b—av). (18)
Putting
K= k 4o,
s'=—ak+s+(b—av), (19)
we see that (18) can be written as
y=Kx+s (18)

and thus represents a line /', the image of / under (1).

We have defined Galilean geometry to be the study of properties of
figures [sets of points (x,y)] invariant uiider all the transformations (1).Ifa
figure is defined to be a collection of lines rather than of points, then we
must describe Galilean geometry as the study of figures [sets of lines (k,s)]
invariant under all the transformations (19). If we rewrite (19) in the form

k'= k+A,

s’=Vk+s+B,
where V=-—qa, A=v, and B=b—av, then it becomes clear that the
difference between Galilean geometry of points and Galilean geometry of
lines is just a matter of terminology.

For example, the fundamental invariant of a pair of points 4(x,y) and
A(xy,y,) under all the transformations (1) is their distance

dgq,=x,—x, )

(20)

or if d,, =0, their special distance
sAA, =Ny (6)
(cf. pp. 38-39). Similarly, the fundamental invariant of a pair of lines (k, s)
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and (k,,s;) under all the transformations (20) is the angle

811, =k,—k (8)
between / and /,, or if &, =0, the “special angle”

du, =8-S )

(or distance) between / and /. Again, from the point of view of the
geometry of points, a line ¢ with tangential coordinates (k,s) is the set of
points (x,y) satisfying the equation

y=kx+s (21)
(cf. Fig. 52a). On the other hand, from the point of view of the geometry of
lines, a point Q(x,y) can be characterized by the pencil of lines (21), where
x and y are fixed and k and s are variable (cf. Fig. 52b). Thus in the
geometry of lines the (ordinary) coordinates (x,y) of a point arise as the

coefficients in the equation (21), which we rewrite for the sake of symmetry
as

s=(—x)k+y. 2r)
Starting with this equation we can again establish the invariance of the
distance between points; the distance in question is given by (5) if the
value of (5) is different from zero, and by (6) otherwise.

The complete symmetry between the study of points (x,y), lines (21)
and invariants of points and lines under the mappings (1), and the study of
lines (k,s), points (21) [or (21")] and invariants of lines and points under
the mappings (20) establishes the principle of duality.

1I. The “transformation” proof of the principle of duality
(the approach of Poncelet)

We denote by /=I(k,?) a line in the Galilean plane whose equation in
“symmetric” form is
y=kx—t or t+y=kx, (22)
where — ¢ is the y-intercept s (cf. the first proof of the principle of duality).
We define the distance between parallel lines / and /, whose equations are
y=kx—tand y=kx—t, to be
dy=—dy=t—t (23)
Then we consider the polarity 7: M<>m which interchanges the point
M(X,Y) and the line m(X, Y) (whose equation is y=Xx—Y):
M(X,Y)om(X,Y). (24)
The geometric interpretation of the map « is apparent from Fig. 61: 7
interchanges the point M(X,Y) and the line m(X, Y) with y-intercept — Y
which makes a Galilean angle X with the axis of abscissas. (This implies in
particular that in Fig. 61 we have OP=Y/X and NQ=X?2)
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It is easy to see that the polarity 7 has the following properties:

(® If m(M)=m [so that w(m)= M] and n(N)=n, then d,;y=3,,,
(i) If M and N are parallel (i.e., lie on a special line), then m||n and
Oyn=d,, [Where m(M)=m and #(N)=n].
(iii) If m=a(M), N=u(n), then d,,,=d,,,.
Property (iii) implies property
(iv) If M is on n, then m(M)=m passes through N =m(n) (ie., if dy,,=0,
then d,, =0).

[In fact, if M(x,y)En(k,t), then the coordinates (x,y) of M and the
coordinates (k,) of n are connected by the symmetric relation (22). But
then the coordinates (x,y) of m=m(M) and the coordinates (k,f) of
N =m(n) are connected by the same relation. Hence N(k, ) € m(x,y).]

Property (iv) implies that = interchanges the pencil of (ordinary) lines
through M and the points of the line m=m(M).

The existence of the mapping = with properties (i)-(iv) implies the
principle of duality. This follows from the fact that = interchanges the
diagram of a Galilean proposition and the diagram of its dual.

li. Axiomatic proof of the principle of duality
(the approach In the spirit of Gergonne)

In Supplement B of the present book, Galilean geometry is described in
terms of points and vectors. Specifically, to each pair of points 4 and B
there is associated a vector AB=a; the vectors satisfy the groups of axioms
L 11, III® and IV®, and the correspondence AB=a between points and
vectors satisfies the axioms in group V. Also, Supplement B contains a
sketch of the development of plane Galilean geometry based on these five
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groups of axioms. (While the extensive development of Galilean geometry
presented in Sections 3-5 is ultimately based on these axioms, it seemed
pointless to dwell on this issue in those sections.) Here we assume familiar-
ity with Galilean geometry and prove that it satisfies not only the axioms
listed in Supplement B but also their duals, which are the result of
interchanging in the axioms the terms “point” and “line” and of linguistic
adjustments necessitated by this interchange.In this way the principle of
duality is established, for as soon as we can deduce a theorem of Galilean
geometry from the axioms, we can immediately deduce its dual from the
duals of those axioms.

We define a vector in the Galilean plane as an ordered pair of points
(4, B) and call the line AB its carrier. W say that the vectors (4,B) and
(C,D) (or, using earlier notation, AB and CD) are equal if their carriers
are parallel (or coincident) and their lengths are the same: d,z=d,, or, in
the case of “special vectors” whose carriers are special lines, 8,5 =20.p
(Fig. 62a). [This rule is equivalent to the parallelogram law: If AB=CD
and their carriers are distinct, then the points 4, B,C, D are vertices of a
parallelogram.] Similarly, we define a doublet in the Galilean plane as an
ordered pair (a,b) or ab of ordinary lines, and a special doublet as an
ordered pair of parallel lines. We call the lines a and b the beginning and
end of the doublet, respectively. We call the intersection point of the lines

di

~o D,

A

A<

Figure 62a Figure 62b
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of an ordinary doublet, and any point on the begi_nning of a special
doublet, its vertex. We call the angle 8., of a doublet ab its angle, and the
distance d,, associated with a special doublet ab its special angle. We say
that the doublets ab and cd are equal if their vertices are parallel (i.e., lie
on the same special line) or coincident and their angles, or special angles
are equal (Fig. 62b). We shall use boldface capital letters to denote
doublets. [Our definition of equality of doublets is equivalent to the
following assertion: If ab=cd and the vertices of the doublets are distinct,
then the lines a,b,c,d are the sides of a coparallelogram. (Can you prove
this?)] We define all zero doublets, i.e., doublets with the same beginning
and end, to be equal. We denote a zero doublet aa (and a zero vector AA)
by 0. Our definition of equality of doublets implies that any doublet is
equal to some doublet with a preassigned beginning a. L

Addition of vectors is defined by the “triangle law”: AB+ BC=AC
(Fig. 63a). This definition implies the commutativity of vector addition
(a+b=b+a follows from the parallelogram law: AB+AD=AC if
AB||DC and AD| BC; see Fig. 63a) and its associativity [i.e., the fact
that (a+b)+c=a+ (b+¢)] follows readily from the equality
(A4B+ BC)+ CD=AB+(BC+ CD)=4D. Similarly, the definition ab+ bc
= ac of doublet addition (Fig. 63b) implies that this operation is commuta-
tive (the equality A+ B=B+A can be deduced from the “coparallelogram
law” for addition of doublets: ab+ ad=ac if the vertices of the doublets ab
and de, ad and bc are re parallel; cf. Fig. 63b) and associative [since clearly
(ab+bc)+ cd=ab+(bc+ cd)=ad]. Further, it is gbkus that for each
doublet A we have A+0=A, and that the doublet ba is the additive inverse
of ab in the sense that @b+ ba=0. Thus addition of doublets satisfies all
the axioms of group I. Addition of doublets also satisfies the axioms of
group V with lines playing the role of points: the definition of addition of
doublets states that ab+ bc =ac, and the definition of equality of doublets

Figure 63a Figure 63b
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Figure 64

implies that given a line a there is just one doublet with beginning a equal
to a given doublet A.

We now define multiplication of a doublet by a number: ac=aab if the
doublets ac and ab have a common vertex and 8, = a8, or d,, = ad,, (see
Fig. 64, where ac=2ab and uw=— %u_v). From this definition it follows
readily that 1A=A for any doublet A, that a(BA)=(aB)A, and that
(a+ B)A=aA+ BA for all numbers a and B and all doublets A. With a
little effort we can prove that a(A + B)= aA + aB for all numbers a and all
doublets A, B (cf. Exercise 19 below).

Addition of doublets and multiplication of doublets by numbers can be
used to assign coordinates to doublets. Let I denote any doublet oe where,
for the sake of simplicity, we take o to be a horizontal line and §,, =1. Let
O be the special doublet of with d,;=1 (Fig. 65). If A=oais a doublet with
beginning o, end a, and vertex M, then by drawing the line u||a through
the point O we obtain the decomposition oa= ou+ ua=ou+ ov, where the
line v|jo is determined by the condition d,,=d,,. It follows that ou=~§oe
and ov=1of, where the numbers £=§,, and n=d,,,,*5,, are the coefficients
in the decomposition

A=d+10 (25)

and are called the coordinates of the doublet A (or of the line a®). The
decomposition (25) implied that doublets satisfy axiom II{ [i.e., if A,B,C
are any three doublets, then there exist numbers a, 8,y not all zero, such
that aA + BB+ yC=0 (proof?)] as well as axiom III{. The latter assertion
follows from the fact that a special doublet is never a multiple of an
ordinary doublet, so that an ordinary doublet and a special doublet (say,
the pair I, Q) are always linearly independent.

More appropriately, the rectangular coordinates of a; it is natural to call the numbers p=4§,,
and @=d,,, the polar coordinates of a. The connection between the rectangular and polar
coordinates of a line is given by the relations £ =p=pcosge, =pp =psinge (cf. Exercise 3 of
Sec. 3).
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Figure 65

The formulas §=4§,, and n=d),,,*5,, and the definition of multiplication
of a doublet by a number imply readily that if A has coordinates (£,7) [for
which we shall write A=(£,7) or A(§,n)), then aA has coordinates (af, an).
It is somewhat more difficult to prove that A(, n+B¢,n)=C¢+£,m+
7;); an assertion which follows, for example, from the coparallelogram law
(see Fig. 66). It is clear that the equalities a({,n)=(af oan) and (£ n)+
(¢1,m)=(£+£;,m+n,) imply all the rules for operating with doublets.

The scalar product of doublets is defined by the formula

ab-cd = L (26)

or
AB=|A|B], (26a)
where the absolute value or modulus |A| of an ordinary doublet A is its

angle, and the modulus of a special doublet is defined to be zero. It is clear
that the scalar product of the doublets A(¢,1) and B(£,,7,) is equal to

AB=§,. (26b)
Equation (26b) shows that scalar multiplication of doublets satisfies
axioms IV,-IV{®: AB=BA, (e¢A)B=a(AB), (A+B)C=AB+AC, AA=A>
>0 for a nonspecial doublet A, and O?=0 for the special doublet O.
Finally, the “supplementary” axiom IV (see p. 252) holds because of the
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7

Figure 66

special angle d,, associated with each special doublet ab (i.e., each doublet
ab with al|b; such doublets O satisfy AO=0 for all A). The “supplemen-
tary” scalar product (ab-mn),, where a||b and m||n, is defined by the
relation

(ab-'mn),=d,-d,,. (26'b)

We have shown that our system of lines and doublets satisfies the
axioms in groups I, II, ITI®, IV®, and V and have thus established the
principle of duality.

Let ab and cd be doublets with vertices P and Q. In addition to the scalar
product ab- cd=8,,-6,,, we can define the cross product

ab X Cd =8ab.8¢‘d.dPQ‘ (27)
If A=A(£,m) and B=B(£),1), then it is easy to see that
AXB=£n,— 7§, (272)

Formula (27a) implies the following relations:
AXB=—(BXxA),
(aA) XB=u(A XB),
(A+B)XC=(AXC)+(BXC)

(cf. p. 252, Suppiement B). The cross product of doublets yields a formula for the
distance between the intersection points P and Q of the lines a,b and c,d, respectively:

‘ab X cd

=—_— 28
o @ el e
If the doublets ab and cd have coordinates (¢,m) and (£,,7,), then
§m—né,
dPQ = T . (283)

PROBLEMS AND EXERCISES

14 Describe in geometric terms: (a) A line translation
k'=k+A,
s’=s+ B,
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15

16
17

18

19

21
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where k and s are tangential coordinates and 4 and B are arbitrary (fixed)
numbers. (b) A line shear

k'= k,

s'=Vk+s.
(c) A general transformation (20).

Give specific examples of analytic proofs of theorems of Galilean geometry
and of “dual” proofs of their duals (the dual proofs involve tangential
coordinates).

Prove properties (i)—(iii) of polarities (p. 70).

Consider specific examples of theorems of Galilean geometry and their trans-
forms under a polarity 7.

(a) Describe the set of points M in the Galilean plane for which #(M)=> M
(where 7 is a polarity), and the set of lines m for which m(m)Em. (b) Use
Exercise 18(a) and property (iv) (p. 70) of a polarity to give a new geometric
description of a polarity.

Show that a(A+B)=aA + aB for all numbers a and all doublets A,B.

Show that oax ob= 28,45, Where S, is the oriented area of the triangle with
sides 0,a,b (just as OA X OB=2S,,5, Where S,,p is the oriented area of
A OAB). What is the meaning of the term “oriented” used above? [0A4 X OB
is the cross product of two vectors (cf. p. 252 of Supplement B), and oa X 0b is
the cross product of two doublets (cf. p. 75).]

Give an example of a proof of a theorem of Galilean geometry using the
axioms listed in Supplement B and a “dual” proof of its dual using the
properties of lines and doublets given above.

Consider the polarity o : M<m of the Euclidean plane which maps the point
M(r, ) with polar coordinates r(=0) and ¢ to the line m(1/r,p) with “normal
coordinates” p=1/r and a=@; here the term “normal coordinates” refers to
the numbers a and p in the “normal equation” xcosa+ysina—p=0 of the
line cf. Eq. (16) of Supplement A]. Make up a dictionary associated with o
starting with

point M line m

line m point M

point M on line n line m passing through point N

parallel lines m,n points M, N on a line through
the origin O

angle between lines m and n angle MON

the distance MN the quantity M’N’ /(OM’-ON"),

where M’, N’ are the projections
of O onto m,n

and give examples of dual (i.e., related by 7) Euclidean theorems.

Justify the principle of duality in three-dimensional semi-Galilean geometry
(cf. Problem VIII, Sec. 5) using (a) the analytic; (b) transformational; (c)
axiomatic approach.




Il. Circles and Cycles

7. Definition of a cycle; radius and curvature

In elementary geometry we study properties of figures in the Euclidean
plane bounded by line segments and circular arcs. Examples of such
figures are triangles, circles, and circular segments.

In the Euclidean plane, a circle is usually defined as the set (locus) of
points which are at a fixed distance r from a given point Q (Fig. 67a). An
equivalent but less common definition of a circle is the set of points from
which a given segment AB is seen at a constant directed" angle o (Fig. 67b).
In Galilean geometry these two definitions yield different sets. We saw that
a circle s in the Galilean plane defined as the set of points which are at a
fixed distance r from a given point Q was a figure of little interest, namely, a
pair of special lines (Fig. 68a). Of greater interest is the set Z of points M
from which a given ordinary segment AB (i.e., a segment on an ordinary
line) is seen at a constant (directed) angle a. The latter set is called a cycle.

The common school practice is to speak of (positive) angles between lines rather
than of directed angles between lines. If we follow this practice, then (in Euclidean
geometry) the locus of points M from which a given segment 4B can be seen at a
constant angle a is a pair of circular arcs (Fig. 67c) rather than a circle. (Note that
the directed angle between the lines M, 4 and M, B in Figure 67c is the negative of
the directed angle between the lines MA and MB in that figure.)) This is a
convincing demonstration of the appropriateness of the notion of directed angle
between lines.

It is easy to deduce the equation of a cycle. Let 4(a,,a,) and B(b,,b,)
be two points in the Galilean plane, and let M (x,y) be a point such that
L AMB=qa. The slopes k and k, of the lines MA and MB (see Fig. 68b)

1By the directed angle between an ordered pair of intersecting lines we mean the smallest
positive angle through which we must rotate the first line in order to bring it into coincidence
with the second.
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WM
Figure 67a Figure 67b Figure 67¢
are given by
—-a —-b
k=y 2 and k,=y 2.
x—a x—b,

In view of Eq. (8) in Section 3, we have

-b —-a
amk—k=2_2_2"%
Consequently, the coordinates of all points M (x,y) with /AMB=a
satisfy the equation

y=b, y-a

x—b, x—a

=a

or?
a(x—b)(x—a)—(x—a,)(y —b)+(x—b;)(y —ay)=0.
The latter equation can be written as
(b,—a)y=ax’+ [(bz— a,)—a(b;+a,) ]x+ aa,b,—a,b,+ ab,

Figure 68a Figure 68b

2Note that MA and MB are ordinary lines, so that x — b, 0 and x —a, +0; there is no useful
notion of Galilean angle between two lines, one of which is special.
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Figure 69a Figure 69b Figure 69c  Figure 69d
or as
y=ax*>+2bx+c, 1)
with
b,—a,—a(b;+a aa,b,—a;b,+ a,b
a= 2 -0, b=2 ,—a(b, 1)’ o= 2017 40T O (1a)

(AB is an ordinary line, so that b, — a,+0). Eq. (1) is the familiar equation
of a (Euclidean) parabola.

Thus the cycles of the Galilean plane are the parabolas (1). Sometimes the
term cycle is applied to the set of points given by the equation

ax*+2b,x+2b,y +c=0. 2)

Equation (2) is more general than Eq. (1) and reduces to Eq. (1) when
b,#0, a#0. The “special” cycles included in Eq. (2) are circles (pair of
special lines), special lines, and ordinary lines. To obtain a circle we put
b,=0, a#0, b}—ac>0. To obtain a special line we put b,=0, a+0,
b —ac=0 or a=b,=0, b,;#0. To obtain an ordinary line we put a=0,
b,#0. [Similarly, the equation of a Euclidean circle (Eq. (2°) of Section 1
of the Introduction) can be written in the form

a(x®+y?)+2b,x+2b,y +c=0, @)

which includes circles as well as lines (Eq. (2') represents a line if a=0).] If
“cycle” is taken to mean “a curve described by an equation of the form
(2),” then we can assert that three points of the Galilean plane determine a
unique cycle [i.e., an ordinary cycle (1), a circle, a special line, or an
ordinary line; see Figs. 69a—d]. Nevertheless, in what follows we shall
mean by “cycle” only a curve (1) (a Euclidean parabola).

A cycle Z is characterized by the property that its inscribed angles
subtended by a fixed segment AB have a constant value o (cf. Figs. 70a and

31f b,=0, a0, then Eq. (2) reduces to the quadratic equation ax?+2byx+c=0.If b}—ac>
0 (i.e, if the roots x; and x, of this equation are real and distinct), then this equation is
equivalent to the pair of equations x = x, and x = x,, and so represents a circle. If b2—ac=0
(i.e., if the roots of the equation coincide), then this equation represents a special line (a circle
of radius zero). If b3 —ac <0 (i.e., if the equation has imaginary roots), then the equation
represents the empty set.
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Figure 70a : Figure 70b

70b, which refer to a Galilean cycle Z and a Euclidean circle S). This
implies that the angle between the chord AB of the cycle Z and a tangent to
Z at an endpoint of AB is also equal to a. For proof, note that if M tends to
A in Figure 70, then the chord AM tends to the tangent AT at 4 and the
chord MB tends to the chord 4B. Since all pairs of lines AM and MB form
the same angle a, the tangent AT and the chord AB also form angle a.
This result implies that the tangents PA, PB from a point P to a cycle are
equal; in fact, the triangle PAB has equal base angles (at the base AB) and
so is isosceles (see p. 51).

We shall now try to define the “radius” of a cycle Z. The usual
definition of the radius of a Euclidean circle as the distance from its center
to one of its points cannot be carried over to our centerless cycle in the
Galilean plane. The same is true of the definition of the radius r of a circle
S as the ratio

M
= ()
of the length s of an arc 4B of S to the corresponding central angle
@= £/ AQB measured in radians* (Fig. 70b). However, we can rephrase the
latter definition by replacing the central angle ¢ by the inscribed angle
a=¢/2 and say that the radius r of a circle S is the ratio of the length of an
arbitrary arc s =arc AB of S to twice the inscribed angle a subtended by s:

s

= % . (3a)

If we wish to adapt the above definition of radius to a cycle Z, then we
must show that for a given cycle Z and any arc AB of Z, the ratio s/ a of the
length s of arc AB to the inscribed angle a subtended by arc AB is constant.

“To be sure, the usual high school definition of radian measure relies on the equation p=s/r,
which is equivalent to (3). However, there are other definitions of radian measure. Thus, for
example, the radian measure of an angle can be defined by the condition lim,,_,o(sing/¢)=1.
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Figure 71a Figure 71b

But first we must define the length of an arc AB of a curve T' in the
Galilean plane. It is natural to rely on the corresponding Euclidean
definition, and to say that the length of an arc AB of a curve T is the limit of
the length AA\+ A4, A,+--- +A,_A,+A,B of a polygonal line AAA,...
A, B (Fig. 71a) inscribed in T as the longest link in the polygonal line tends to
zero. Since the Galilean length of any polygonal line 4A4,4,...4,B in-
scribed in the arc AB is equal to the length of the chord 4B, it is natural
to say that the length of an arc AB of a curve is equal to the length s=d,p of
the chord AB.

We can now evaluate s/a. Let AB be a chord of a cycle Z with
endpoints 4(a,,a,), B(b,,b,), and let a be the inscribed angle subtended by
AB. In view of Eq. (1a), we have

Thus s/a is indeed constant and, as in the case of a Euclidean circle, we
can define the “radius” r of the cycle Z as half the ratio of the length s of the
arc AB (or, equivalently, the chord AB) to the inscribed angle a subtended
by AB. In algebraic terms,

pels _lhima 1 (3b)

where a is the coefficient of x? in the equation (1) of the cycle. Unlike the
radius of a circle S, the radius of a cycle Z can be positive or negative
according as the (Euclidean) parabola representing the cycle opens up-
wards (Fig. 72a) or downwards (Fig. 72b).

SWe assume that the arc AB of the curve I' does not “go in reverse” (relative to the positive
direction of the x-axis which, as we know, is the direction of increasing time), i.e., does not
look like the arc in Figure 71b. [If a curve in the Galilean plane is smooth in the sense of
having an ordinary tangent line at each point, then it cannot look like the curve in Figure 71b
(since the tangent at P is special and special lines are excluded from the class of lines).]
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Figure 72a Figure 72b

In trigonometry, we speak of signed angles. If this usage is introduced into
Euclidean geometry, and the radius r of a circle S is defined by formula (3) [or
(3a)], then r is positive or negative according as S (and thus an arc of §) is
traversed counterclockwise or clockwise (see Figs. 73a and 73b); this convention
pertaining to the sign of the radius of a directed circle is often useful (see, for
example, [37), pp. 489-493; or [13], p. 260). In the case of a cycle Z in the Galilean
plane, matters are different in the sense that there is a “preferred” way of
traversing the cycle determined by the positive direction of the x-axis (the direction
of increasing time values). This preferred way of traversing the cycle determines the
sign of its radius

Figure 73a Figure 73b

It is clear that if the radius r of a Euclidean circle S increases beyond all
bounds, but S remains tangent to a fixed line /, then S tends to / (Fig. 74a).
(That, of course, is why we regard straight roads on the surface of the earth
as rectilinear in spite of the fact that they belong to circles of large radius
on the spherical surface of the earth.) On the other hand, if the radius of
the circle decreases, then the circle tends to be less linelike and more
“curved” (Fig. 74b). That is why we call the reciprocal p of the radius r of

Figure 74a Figure 74b
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the circle its curvature; in view of (3a) we have

p=l-22 @

r s

Similarly, in the case of a cycle Z we call p=1/r the curvature of Z; in
view of (3b) we have

pmy=2%-2a @)

Here, too, we can justify calling p the curvature of the cycle by noting that
as r—oo (that is, p—0) the cycle tends to a line (cf. Figs. 75a and 75b,
which represent cycles of large and small radius, respectively).® We note
that just as in the case of two circles of equal radius, it is always possible to
map a cycle of radius r=1/(2a) onto any other cycle of the same radius by
means of a suitable translation (since all parabolas y = ax?+ bx + ¢, a fixed,
can be obtained from the parabola y = ax? by means of translations).

¥
—
0

Figure 75a Figure 75b

We shall now give the mechanical interpretation of the concept of a
cycle. A curve I in the Galilean plane given by the equation

y=f(x) &)
corresponds to the motion of a (material) point P along the line o
described by the equation

x=f(1), (%)

where x denotes the position of P on o at time .

This terminology has the following precise meaning: Let S be a circle (or Z a cycle) passing
through a point 4, and let / be its tangent at 4. Let ® be any bounded region containing 4. If
the radius 7— o0, then S N ® (Z N ®) tends to / N P in the sense that the largest distance from
a point in § NP to / tends to zero (see Figs. 74a and 75a).

We note that if r—0 (i.e., p—>00), then the circle S tends to a point (Fig. 74b) and the cycle
Z tends to a ray of a special line (Fig. 75b).

"Here we again stipulate that the curve I never “goes in reverse”; see footnote 5.
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The form of (5") corresponding to a cycle Z is
x=at*+2bt+c. 1)

Such equations characterize motions with constant acceleration (or decel-
eration). In fact, the velocity v of the motion (1’) at time ¢ is given by

[a(z+At)2+2b(t+At)+c] —(at*+2bt+c¢)

o= lim 2% = {im

Ar—0 At A0 At
. 2atAt+a(Af)+2bAr
= lim = lim (2at+a-At+2b)=2at +2b,
At—0 At At—0

and its acceleration w is given by

2a(t+At)+2b|—(2at+2b .
w=lim—é£=lim[ ( ) ] ( )=lim*2aAt=
A0 At A0 At A0 At
Thus Eq. (1) describes the motion of a point on a line o with constant

acceleration

2a.

w=2a
equal to the curvature of the corresponding cycle Z in the Galilean plane.
Specifically, cycles with positive curvature (Fig. 72a) correspond to mo-
tions with constant positive acceleration, and cycles with negative curva-
ture (Fig. 72b) correspond to motions with constant negative acceleration
(i.e., constant deceleration).

It is possible to define the curvature p (and the radius of curvature ) for any
curve I in the Euclidean or Galilean plane. To do this, we first define the tangent
to a curve I' at a point 4 of T as the limiting position of the secant AM as M on T
tends to 4 (Fig. 76; the assertion that the line AM tends to the line AT means that
£ AMT—0). (This definition of a tangent line to a curve was used above in the
proof of the theorem on p. 80 about the angle between a chord of a cycle and the
tangent to the cycle at an endpoint of the chord.) It is natural to think of the
tangent as giving the “direction” of T' at A. Support for this idea comes from
mechanics (see p. 89 below): If a (material) point P is induced by certain forces to
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move along a (Euclidean) curve T, and if when P reaches A these forces cease to
act, then P moves “by inertia” along the line AT.2

We base the concept of curvature on that of the tangent. The intuitive notion of
“straightness” of a line / is that its direction is the same at all points, i.e., that all of
its tangents are the same (and coincide with / itself). Other curves have nonzero
“curvature,” i.e., their direction is not the same at all points. A numerical measure
of curvature is the angular rate of change of the tangent. More precisely, if 4 and B
are two points on I' such that the arc length of arc 4B is s and the angle between
the tangents AT and BT at A and B is ¢, then we define the average curvature p,,
of T on the arc AB as

pn=", wheres=arcAB and @=LTAT' (AT'|BT))  (6)

(Fig. 76). Intuitively, portions of T with large average curvature are more curved
than those with small average curvature. (The curve I in Fig. 76 has larger average
curvature between 4 and B than between 4, and B,.) The curvature p of T at A is
defined as the rate of change of the tangent at A, i.e., the curvature p of T at A is the
limit of the average curvature p,, on the arc AM as M tends to A along T":

A
= lim ——,
p As—0 As

(Fig. 76; see also p. 17 above).'® The radius of curvature r of T at A is defined as the
reciprocal of its curvature at A:

where AS=arc AM and Ag= /L TAT;, (ATy|MT,) (6a)

1

r S )
Now we consider a (Euclidean) circle S (Fig. 77a). The circle S “has the same
structure at all of its points” (the precise meaning of this intuitive statement will be
considered in the next section) and it is therefore natural to expect that the
curvature p has the same value at all points of a circle S (and is inversely
proportional to its radius; see p. 83 above and Figs. 74a and 74b). In more
rigorous terms, Eq. (6) implies that the average curvature p,, of a circle S of radius
r on an arc AB is ¢/s, where (see Fig. 70b above) o= £ TAT'= £ TPT, (here
AT’||BT)). Since ¢ is an exterior angle of the isosceles triangle APB, we have
¢=2/ PAB=2a; using this, we obtain s=arc AB=r(LAQB)=r(2LAMB)=r

2a=rg. Thus the average curvature

_?_9o _1
Pav™ T = —~=—

s rp r

of a circle S of radius r is the same for each arc AB. It follows that at each point 4
of the circle we have

p=

N | —

[see Eq. (4) above, which was used to define the curvature of a circle].

%In other words, if P moves along a curve I' in accordance with the law r=r(¢), where r=0M
is the position vector of P and ¢ is time, then the instantaneous velocity v=dr/dt of P at time
t is directed along the tangent to I'.

We assume that as we move from 4 to B along the arc 4B of T, the tangent to I turns
always in the same direction.

10Here and in what follows we restrict ourselves to sufficiently smooth curves I'. Such a curve
is assumed to have a tangent AT (a requirement which rules out corners) and a definite
curvature p at each of its points.
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We now turn to Galilean geometry. We define the average curvature p,, on an
arc AB of a curve T and the curvature p of T at 4 by Equations (6) and (6a) above,
except that we now use Galilean arc length s and angle ¢ (in ?articular, the length s
of the arc 4B is equal to the length d,, of the chord AB! ). In the special case
where T is a cycle Z (see Fig. 77b), the average curvature Pay On the arc AB is ¢/ s,
where s=arc AB and ¢= /£ TAT' = / TPT, (here AT’||BT;). From the “angle
formula” (12), Section 4, applied to A ABP, it follows readily that

¢=/LAPB=2/ PAB=2aq,

where, as we know, a= / PAB= / ABP is equal to the inscribed angle of the cycle
Z subtended by the arc AB. Hence

Pav= ; = T =2a
[see (1a) in Sec.7], where a is the coefficient of x2 in the equation (1) of the cycle Z.
It is clear from this that all arcs 4B of the cycle Z have the same average curvature
Pav=2a. This implies that the curvature p of Z has the same value

p=2a (7a)
at each point 4 of Z.
If, as in (7), we define the reciprocal r of the curvature as the radius of curvature
of the cycle, then we have
1
=34

Our definitions of curvature of a (Euclidean) circle and a (Galilean) cycle give
us a new approach to the concepts of curvature p and radius of curvature r at any
point of a curve I' (in the Euclidean or Galilean plane). Thus consider all circles
(cycles) passing through the point A of I and having the same tangent AT=1/ at A
as I'. From these circles (cycles), we select the circle S, (cycle Z,) which is closest
to I' (Figs. 78a and 78b), in the sense that for any other circle S (cycle Z) the
distance MM’ between points on I' and S (or T and Z) sufficiently close to 4
which project to the same point N on a is larger than the distance between the
corresponding points M and M; of T and S, (or I and Z). The circle S, (cycle Zg)
is called the osculating circle (osculating cycle) of T at A, its curvature p=1 /r (or
p=2a) is called the curvature of T at A, and the radius r of the circle S, (cycle Z,)
is called the radius of curvature of T at A.12

r=2 (T)

11Ct, footnote 5.

12If none of the circles S (cycles Z) is closer to T than the tangent AT=a, then the line /
plays the role of the osculating circle S, (osculating cycle Z) at A, In that case, the curvature
p of T at 4 is zero (and its radius of curvature r is infinite).
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Figure 78b

Figure 78a

1t is not difficult to obtain analytical expressions for the curvature p and the
radius of curvature r of a curve y =f(x) at a point A(x,y). The slope of the tangent
to the curve y=f(x) at the point A(x,y) is given by the derivative f'(x) of the
function f(x). Let AT and 4,7, be the respective tangents to our curve at its
neighboring points 4 and 4,. Let ¢ and ¢, be the Euclidean or Galilean angles
which AT and A4, T; make with the x-axis. Then Ap= ¢, — ¢ is the angle Z TPT, in
Figure 79a. Let As be the Euclidean or Galilean length of the arc A4;; our problem
is to compute p=lim, _, ,(Agp/As).

In the Galilean case, this is quite easy. Let 4;=(x+Ax,y+Ay). Since the
Galilean angle between two lines is equal to the difference of the slopes, we have

Ap=f"(x+Ax)=f(x).
And since the Galilean length of an arc is equal to the difference between the
abscissas of its endpoints, we have

As=(x+Ax)—x=Ax.

Hence
Bp _ f(x+8x0)—f(x)

As Ax ’
from which it follows that
. f(x+Ax)—f(x)
= lim 2— "/ 7“7/ _
P= Ax
For the radius of curvature r we have

f(x). )

1 1
= —= . 8
T ®)
The Euclidean case is somewhat more difficult. Here we have tang=f'(x) and
tang, =f'(x+ Ax). Hence

tang, —ta
tanAg=tan(p, — @)= ‘ﬂ%
_ F(x+Ax)—f(x)
T T+ A F(R)
Therefore,
lim tanAg T [fl(x""Ax) _f'(x)]/Ax _ F7(%)

a0 BX axs0 1HF(xHAN) (X)) 1+f(x)

From the definition of arc length, it is easy to see that for small arcs,
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A.vz\/(A,\r)2+(Ay)2 z\/l + f’(x)2 Ax (see Fig. 79b). More precisely, we have

. AS_ r 2
AI;EOE— VI+H/ @)

Hence
. Ap Ap tanAg Ax _ .. Ap . tanAgp . Ax
Al;lgo Bs ~ aSotandg Ax As AI;TO tanAg aroo  Ax Alﬂ»lo As
fr(x) . 1 A C))

=] 3 -
1+ Visf(x?  [+£(0

[Here we have used the fact that Ap—0 as Ax—0, and therefore lim,, (Ap/
tanAg) =lim,, ,o(Ap/tanAg)=1.] We have thus obtained the following formulas
for the Euclidean curvature p and the radius of curvature r:

____L(x_);_g_’ (8)
[1+f(x)]?
1 _ [P ,
SO @
y
0
y4 Ajlx+Ax,y + Ay)
o) > X

Figure 79b
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Equations (8,) and (8,) imply that the curvature of a circle x?+y?=7r? at each
of its points is 1/r and the curvature of a cycle y = ax?+ bx + ¢ at each of its points
is 2a. Also, starting with these formulas, we can show that Euclidean circles and
Galilean cycles are the only curves of constant curvature p. For this statement to be
accurate we must regard (ordinary) lines as limiting cases of circles (cycles) with
constant zero curvature (and “infinite radius of curvature). Thus, for example, it is
clear that if y=f(x) is a curve in the Galilean plane with

p=1"(x)=const.,
then the equation of the curve is
y=ipx’+cix+c,

with arbitrary constants ¢, and c,, ie., the curve is a cycle. Quite gqnprally, any
curve T in the Euclidean or Galilean plane is determined (up to position) by its
curvature, i.e., by the equation

p=p(s), ®
where p is the curvature of T at the (variable) point A and s is the length of the arc
QA of T measured from some arbitrary but fixed “origin” Q on T to A. This
statement is the so-called fundamental theorem on plane curves.® Equation (9) is
called the natural equation of the curve T'.

It is clear that in the mechanical interpretation of Galilean geometry, the
curvature p=y"(x) at the point A(x,y) of the curve I' defined by the equation
y =f(x) corresponds to the acceleration w=d?x/dt* (at time ¢) of a material point
moving along a line o in accordance with the equation x = f(¢). It is also clear that
the osculating cycle Z, of T at A corresponds to a motion with constant accelera-
tion of a material point whose (constant) acceleration, velocity, and position on o
at time ¢ coincide with the acceleration w (given by the curvature of the osculating
cycle Z,, i.e., twice the coefficient of x2 in the equation of Zg), velocity v, and
position f(#) on o at time ¢ of a point moving in accordance with the equation
x=f(). In this connection, note that the tangent a to the curve I' at the point 4 of
T corresponds to uniform motion with velocity v equal to the velocity at time .
(The value of v equals the slope of the tangent to I' at A4.) It follows that the slope
k=1v of the tangent to I’ is not invariant under Galilean motions. On the other
hand, the curvature p=w and the radius of curvature r=1/p of the osculating
cycle are Galilean invariants. (This is because the acceleration w is the same in all
Galilean reference frames, and therefore has second mechanical significance.)

In view of Newton’s second law of motion

Sf=mw,

where m is the mass of a material point and f is the force acting on the point, we
see that the curvature p=w differs from the force only by the constant factor m.
Hence the fundamental theorem on curves in Galilean geometry reduces to the
assertion that the motion of a material point on a line o is fully determined by the

13gee, for example, [36}, p. 26. [In Galilean geometry, in view of Eq. (8,), the curve y =f(x),
given by its natural equation f”(x)=p=p(s) [or f”(x)=p(x), since if Q=(0,b), then s=x] is
determined by the formula

y=f[fp(x)dx]dx=yo(X)+C|x+Cz,

where ¢; and c, are arbitrary constants. It is clear that all such curves are related by Galilean
motions.]
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forces_ [ acting on the point (f is proportional to the curvature p=w=f/m). The
significance of this fact in mechanics sheds additional light on the important role
played by the fundamental theorem on curves.

We conclude this section by noting that since the curvature p=1lim,, (Ap/As)
of a curve I' involves the ratio of angle to arc length, and the radius of curvature
r=1/p=lim,, ,((As/Ap) involves the ratio of arc length angle, it follows that
every transformation of the Euclidean plane which preserves angles and multiplies
distances by a factor k, multiplies the curvature of a curve by 1 /k and its radius of
curvature by k. An analogous statement holds for similitudes of the first kind of the
Galilean plane with coefficient k.!* For example, a dilatation with center O and
coefficient k takes a circle S (cycle Z) of radius r to a circle S’ (cycle Z’) with
radius kr (Figs. 80a and 80b). On the other hand, every similitude of the second
kind " of the Galilean plane with coefficient x preserves distances and multiples angles
by «; it therefore multiplies the curvature of a curve T by «, and its radius of curvature
by 1/k. For example, a compression with axis Ox and coefficient « takes a cycle of
radius r into a cycle of radius r/«x (Fig. 80c).

PROBLEMS AND EXERCISES

1 In Euclidean geometry, a curve can be described by a vector equation r=r(¢),
where r= OM is the radius vector of a variable point M on the curve, and ¢ is
the parameter. The “natural parameter” (arc length) s is defined by the
condition ¥ =dr/ds=t, where t*=1. The curvature p is defined by the equa-
tion t'=pn, where m=0 and n?=1 (this implies that n'= —pt). From these
relations we can easily compute the curvature of the curve, find its natural
equation and determine all curves of constant curvature (cf. [36]). The devel-
opment of the elements of plane Galilean differential geometry follows the
same pattern. The reader should try to carry out this program.

2 View a curve in the Galilean plane as a “one-parameter family of lines”
(tangents to the curve). Let R=R(f) be the equation of the curve, where
R=om is a variable doublet (cf. Chap. 1, Sec. 6). Develop a theory of curves
based on the calculus of doublets and dual to that sketched in Exercise 1.

3 What can you say about evolutes and involutes of curves (cf. [36] or Chap. 17
of [19]) in Galilean geometry?

!4See p. 53.
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I  In Euclidean space, a curve is characterized by its curvature and torsion (cf.
[36] or Chap. 17 of [19]). Develop elements of the differential geometry of
curves in three-dimensional Galilean geometry. Investigate curves that are
invariant under glide rotations (analogues of helices).

II Solve Problem I in three-dimensional semi-Galilean geometry (cf. Sec. 3,
Problem II).

III By a developable surface (in Euclidean as well as in non-Euclidean space) we
mean a surface which is generated by lines, and which has a constant tangent
plane along each of the generating lines. Such a surface may be thought of as
a one-parameter family of planes, the tangent planes to the surface. Develop
elements of the differential geometry of developable surfaces in three-dimen-
sional semi-Galilean geometry (cf. Problem II) dual (in the sense of the
principle of duality in Problems VII and X, Chap. I) to the differential
geometry of curves in that geometry (cf. Problem II; in this dual theory, the
role of the calculus of vectors is played by the calculus of doublets. For some
of the issues to be considered, see Exercise 2).

IV Consider the surfaces of three-dimensional Galilean geometry (see Exercise §
in the Introduction) which are the analogues of Euclidean spheres. Find the
equations and form of such surfaces. Sketch various possible approaches to
their study (including the approach via the differential geometry of the space
under consideration).

V  Consider the same problem for three-dimensional semi-Galilean geometry (cf.
Problem II).

VI Which of the problems and exercises in this section are meaningful in the
Poinceau geometry (see p. 30)?

8. Cyclic rotation; diameters of a cycle

Euclid’s “Elements” (see footnote 23 of the Introduction), whose role in
the history of geometry we discussed above, opens with “definitions” of
the basic geometric entities such as point, (straight) line, curve, and
surface.!® In particular, Euclid’s definition 4 states that

A straight line is a line [i.e., a curve] which lies evenly with the points on itself.

As a definition this vague phrase is entirely inadequate, but as a descrip-
tion of the “most important” property of a line it is excellent. After all, a
fundamental property of a line is its “homogeneity,” i.e., the essential
sameness of any two of its segments of equal length. In this sense, no point
on a line is different from another. However, this property of a line does

15Today these definitions are viewed as the least fortunate aspect of the otherwise remarkable
work of Euclid. The author of the Elements seems not to have been aware of the fact that
without any explicit knowledge of geometry it is not possible to give acceptable definitions of
anything, and that the initial geometric notions suggested by intuition must remain undefined
(just as the initial assertions of geometry, the axioms, must be accepted without proof).
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not characterize it, i.e., it does not set lines apart from all other curves in
the (Euclidean) plane. Indeed, a circle also “lies evenly with the points on
itself,” i.e., it is also homogeneous: any two of its arcs of equal length are
congruent, so that nothing distinguishes one of its points from another.
The homogeneity of a line and of a circle manifests itself in the existence
of a “linear glide” and a “circular glide,” defined respectively as a motion
which takes a point 4 on a line / to a preassigned point A’ on / and maps /
to itself, and a motion which takes a point 4 on a circle S to a preassigned
point 4" on S and maps S to itself. For a line /, such a motion is a
translation along / (Fig. 81a), while for a circle S it is a rotation about the
center Q of S (Fig. 81b).

We turn next to Galilean geometry.

Since a translation (Fig. 81a) is a motion of Galilean geometry, it is
clear that a line / in the Galilean plane admits a “linear glide.” Also, it is
not difficult to show that a cycle Z in the Galilean plane admits a “cyclic
glide.” In fact, the shear '

X, = Xx,
yi=vx+y (10a)
[cf. (14a), Sec. 2], which can be written as
x= X0
V=YX, (102)
maps the cycle Z given by the equation
y=ax? (11)

(Fig. 81c) to the cycle Z, given by the equation
Y —ox =ax},

which can be written as

2 2
vx v v
2 2 1
= =a| xi+ + -
y1=axy+ox,; ( i 2 4a2)
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or as

v? v \2
yl+ﬂ=a(x,+—2—‘;) . (lla)

It is clear that the cycle Z in (11) and the cycle Z, in (11a) are congruent.
Specifically, Z is the result of the application of the translation

x'=x+ % ,
X (10b)
’ J— + v—
Yy N1 4a 4
to Z,. It follows that the transformation
X=x o,
. (12)

- v
y=vxty+ g,

which is the composite of the translation (10b) and the shear (102) maps
the cycle Z to itself; (10a) takes a point A of Z to a point 4, of Z, and
(10b) takes A, to a point 4’ of Z (Fig. 81c). A motion (12) of the Galilean
plane which maps the cycle Z to itself is called a cyclic rotation (de-
termined by the cycle Z) with coefficient v (or a “cyclic rotation of the
cycle Z'9). Since the shear (10a) moves each point 4 a distance zero, (i.e.,
it takes A to A, such that d,, =0) and the translation (10b) moves each
point a distance v/2a (ie., it takes 4, to A’ such that d, , =v/2a), it
follows that a cyclic rotation (12) moves each point a distance v /2a; it takes
a point 4 to a point A’ such that
0

d 44 = % .

This implies that by choosing an appropriate value for the coefficient v of
a cyclic rotation we can move a point 4 of a cycle Z an arbitrary (positive
or negative) distance d; specifically, we need only put v/2a=d or v=2ad.
In other words, there exists a cyclic rotation (12) which takes any point A of
a cycle Z to a preassigned point A’ of Z. It can be shown that just as the
only curves in the Euclidean plane with this kind of homogeneity are lines
and circles, so, too, the only curves in the Galilean plane with such
homogeneity are lines and cycles (cf. p. 89).

A rotation of the Euclidean plane which maps a circle S to itself moves
each point of the plane along a circle concentric with S (Fig. 82a).
Similarly, a cyclic rotation of the Galilean plane determined by the cycle Z
in (11) moves each point of that plane along a cycle “parallel” to Z, i.e., a
cycle obtained from Z by a “special” translation (meaning a translation in

1$Every (direct) motion of the Euclidean plane is a rotation or a translation [see Exercise 3(a) in
the Introduction]. Similarly, it can be shown that every (direct) motion of the Galilean plane
[see (1), Sec. 3] is a cyclic rotation or a translation [see Problem IX(a) in the Introduction].
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the vertical direction). In fact, the shear (10a) [or (107a)] takes the cycle
y=ax*+c (11)
parallel to Z to the cycle
yi—ox;=ax+c,
or, equivalently, the cycle

2 2

v° ., v _ 0 \?
y,+74;—ax,+ox,+5+c—a(x,+ﬂ) +c

[see (11a)]. The latter is taken by the translation (10b) to the cycle
y'=ax*+c,

i.e., the initial cycle (11). This shows that the cyclic rotation (12) carries

each of the cycles (11') (where c is an arbitrary constant), as well as Z, to

itself. Thus (12) moves each point of the plane along a suitable ¢ycle (11')

(Fig. 82b). The analogy between concentric circles and parallel cycles will

be carried further in the sequel.

Cyclic rotations are a very convenient tool for proving a variety of
properties of cycles. The first theorem which we shall prove using cyclic
rotations is the familiar theorem which asserts that the tangents PA and PB
Jfrom a point P to a cycle Z are congruent (see p. 80). We assume that the
cycle Z (Fig. 83) is given by Eq. (11)"7; this is no loss of generality, for
whatever the cycle, there always exists a coordinate system in which it is
described by Eq. (11). We apply the cyclic rotation (12) which maps Z to
itself and takes P to P’ on the y-axis. [In the general case, we apply the
cyclic rotation which maps the cycle Z to itself and takes P to P’ on the
axis of symmetry of the (Euclidean) parabola Z.] Our cyclic rotation takes
the tangents PA and PB of Z to tangents P’4’ and P’ B’; this follows from
the fact that tangency is preserved under Galilean motions. Since the
parabola y = ax? is symmetric with respect to the y-axis, it is obvious that
the segments P’4’ and P’B’ are congruent in the Fuclidean as well as in

'"We shall assume that the axes of our coordinate system are Euclidean—perpendicular. This
will make our proof “basically non-Galilean” inasmuch as we shall use facts and ideas which
have no meaning in Galilean geometry (cf. footnote 1, Chap. I, Sec. 3).
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the Galilean sense (the latter means that the projections of P’'4’ and P’B’
on the x-axis are congruent). But the motion (12) leaves the (Galilean)
length of segments unchanged. Hence d,p=d, p=d, p.=dp g =dpp."*

We give another example of a similar kind. It is well known that the
midpoints of a family of parallel chords of a circle S lie on a line—a diameter
d of S (Fig. 84a). This assertion is just a reformulation of the fact that a
circle is symmetric with respect to each of its diameters. Now we consider
a family of parallel chords of the cycle Z with equation y=ax2 Such
chords belong to lines with a fixed slope k, (Fig. 84b). We note that the
shear (10a) [or (10’a)] maps the line

y=kx+s
with slope & to the line y, — vx,=kx, + s, or equivalently, the line
n=kx+s (ky=k+v)

18Note that dp, = — dpg. [We remark that if PA and PB are tangents from a point P to an
oriented circle S (i.e., a circle with clockwise or counterclockwise orientation), then it is also
natural to put PA=— PB.]
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with slope k;=k+ v, and the translation (10b) preserves the direction of
each line. It follows that the cyclic rotation (12) with coefficient v=—k,
maps the selected chords of Z to chords with slope 0, i.e., parallel to the
x-axis (Fig. 84c). Clearly, the midpoints of the latter chords are on the
y-axis, which is the axis of symmetry of the parabola y =ax? It follows
that the midpoints of the original chords must lie on a line d. Specifically, d
1s the preimage of the y-axis under our cyclic rotation. Since the image of d
under a Galilean motion is the special line Oy, it follows that d itself must
be special. The line d is called a diameter of the cycle Z (corresponding to
the chords with slope k).

Using this terminology, we can say that the midpoints of a family of
parallel chords of a cycle Z lie on a special line d, a diameter of Z.

It is not difficult to show that every special line is a diameter of Z. In
fact, consider the special line / with equation x=m. The cyclic rotation
(12) with coefficient v satisfying v/2a= —m, ie., with coefficient v=
—2am, maps ! onto the y-axis. This implies that / bisects all chords of the
cycle Z which our cyclic rotation maps onto lines parallel to the x-axis. (It
is easy to check that the diameter x=m of the cycle y =ax? bisects all
chords of Z that have slope k=2am.)

Now let us move a chord AB of Z which is bisected by a diameter d so
that it stays parallel to its original position and its length decreases. Then,
in the limit, the points 4, B and the midpoint C (on d) of the chord AB
coincide. We conclude that the tangent t to a cycle Z at the end of a
diameter d of Z is parallel to the chords bisected by d (compare Figs. 84b
and 84c with Fig. 84a, which refers to a circle).

We can now give a new justification for the use in Galilean geometry of
special lines as “perpendiculars” (see p.43 and Figs. 36 and 37 above). In
Euclidean geometry, a diameter of a circle is perpendicular to the tangents at
its endpoints. It follows that in order to draw a perpendicular to a line a at
a point A4 it suffices to draw a circle S tangent to a at 4; the radius QA4 of
S is the required perpendicular (Fig. 85a). By analogy, in Galilean geome-
try we say that a diameter of a cycle is perpendicular to the tangent at its
endpoint, i.e., the role of the perpendicular to a line a at a point 4 is

Figure 85a Figure 85b
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Figure 86

played by the diameter AP of a cycle Z tangent to a at A (i.e., the special
line AP through 4; Fig. 85b). If we define the angle between a line / and a
curve I' to be the angle between / and the tangent ¢ to T at the point of
intersection of / and T (Fig. 86), then we can say that the diameters of a
cycle Z are perpendicular to Z (just as the diameters of a circle S are
perpendicular to S; see Figs. 85a and 85b). We note that if PA and PB are
the tangents from a point P to a cycle Z, then the diameter d of Z passing
through P bisects the chord AB (this follows from the fact that 4 is an
altitude of the isosceles triangle PAB; see Figs. 70a and 70b).

Our discussion sheds new light on the analogy between concentric
circles and parallel cycles. Define the distance from a point A to a curve T
to be the distance from A to the point B on T nearest to A (in other words,
d,r=mind,p for all B on T). It is possible to prove that in Euclidean
geometry this distance (at least for a smooth curve I' without endpoints) is
measured along a perpendicular AB to T; in other words, the line 4B is
perpendicular to the tangent to I' at B (Fig. 87a)." In Galilean geometry
the distance from 4 to T is generally equal to zero. In such cases, we
measure the distance from 4 to I in terms of the special distance 8, from
A to B on I (Fig. 87b). We shall say that a curve I, is parallel to.a curve T’
(in symbols: T,||T) if the points of T', are equidistant from I' (it can be
shown that in that case T is parallel to T, i.e., I',||T=T)|T)). In Euclidean

A
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B 1
.
\” A
A 0 z
Figure 87a Figure 87b

15See, for example, [36], pp. 275-277.
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geometry, if I' and T, are lines, this is equivalent to the usual definition of
parallelism (Fig. 88a). A parallel to a circle S is any circle S, concentric
with S; in the case of parallel circles S and S, the distance from a point A
of §; to § is measured along the common diameter of S and S, through 4
(Fig. 88b). In Galilean geometry, a parallel to an (ordinary) line / is any
line /, with /,||/ (Fig. 88c), and a parallel to a cycle Z is any cycle Z,
parallgl to Z in our earlier sense of the term (cf. p. 93); in the case of
parallel cycles Z and Z, the distance from a point 4 on Z to Zis
measured along the common diameter of Z and Z, passing through 4 (Fig.
88d).

The fact that the midpoints of a family of parallel chords of a cycle Z
lie on a diameter of Z has a reasonably simple mechanical interpretation.

We select a frame of reference in which the parallel chords are horizon-
tal. Then they correspond to fixed points on the line o (i.e., to states of
rest). We assume o to be vertical and Z to open downwards, and consider
a part W of Z symmetric with respect to the special line 7 through the
maximum M of Z. Then W may be thought of as a representation (in
space-time) of the path on o of an object tossed vertically upward which
eventually returns to the launching point. (The acceleration of the moving
object has constant absolute value and opposite signs on the two legs of
the journey.) The endpoints of each horizontal chord AB are the two
events where the moving object is at the same point of 0. The two times
when it is at this point are symmetric about the moment when it reaches its

Figure 88a Figure 88b
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Figure 89a Figure 89b

maximum (represented by M on Z). It follows that this moment is the time
coordinate of the points of 7. But then T bisects AB.

We shall give another illustration of the use of cyclic rotations to prove a
property of cycles.

It is easy to show that the midpoints of all chords of a Euclidean circle S passing
through a fixed point M form a circle (or circular arc) s. For proof, note that the line
QP joining the center Q of S to the midpoint P of a chord AB through M is
perpendicular to AB. Therefore, P is a point of the circle s with diameter MQ
(Figs. 89a and 89b). This proof relies on the concept of the center of a circle, and
therefore cannot be adapted to cycles in the Galilean plane.

However, the above result can be proved differently. On each chord AB of S
which passes through M, we select a point N such that AN = MB. All such points N
lie on the circle S| concentric with S and passing through M (since, by symmetry,
each chord MN of S intersects S at points A and B such that AN = MB; see Figs.
90a and 90b). On the other hand, the midpoint P of the chord AB is also the
midpoint of the chord MN. This means that P is the image of N under the central
dilatation with center M and coefficient ;. Hence the totality of such points P
belongs to the circle s which is the image of the circle S, under this dilatation.
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The latter argument can easily be adapted to cycles in Galilean geometry. We
note that if a line / intersects the cycle Z with equation y = ax? at points 4 and B,
and the cycle Z; with equation y=ax2+c at points M and N (Fig. 91), then
AM = NB. (To prove this, we perform a cyclic rotation (12) which maps / to a line
I’ parallel to the x-axis. Then, by symmetry, /' intersects Z and Z, at points 4’, B’
and M’,N’ such that 4’M’=N’B’)) Now let M be a point and Z a cycle. On each
chord AB of Z passing through M we choose a point N such that AN = MB (Figs.
92a and 92b). In view of the result just proved, all such points N belong to a cycle
Z, through M parallel to Z. Now the center P of AB is also the center of the
segment MN. Hence P is the image of N under the central dilatation with center M
and coefficient 1. But then the midpoints of the chords of Z which pass through the
point M form a cycle (or an arc of a cycle) z which is the image of the cycle Z,
under the central dilatation with center M and coefficient 1.

- We now return to the principle of duality discussed in Section 5, Chapter I. This
principle tells us that to each theorem of Galilean geometry there corresponds
another theorem, its dual, which is obtained by replacing in the original theorem
the terms “point,” “distance,” and “parallel lines,” respectively, by “line,” “angle,”
and “parallel points” (i.., points on the same special line), and conversely. In
particular, this procedure replaces concepts of Galilean geometry appearing in the
original theorem by their duals (for example, parallelograms are replaced by
coparallelograms). We shall now explain the concept of Galilean geometry which is
dual to the concept of a cycle.

Figure 92a Figure 92b
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Figure 93a Figure 93b

We defined a cycle Z as the set of points M from which a given segment 4B is
seen at a constant angle:

KAMB=8MA,MB=O(.

The dual of the segment AB is an angle aLb determined by lines a and b. The dual
of a point M is a line m. The duals of the lines MA and MB are the points A and B
in which m intersects a and b, and the dual of the angle 8y4 pp (6., ZAMB) is
the distance AB (=d, ). We are thus led to consider the set = of lines m on which a
given angle aLb cuts off a segment AB of fixed length

ﬁ=dAB=d

(Fig. 93a; note that if we take the length AB to be always positive, i.e., we work
with nondirected distances, then the condition 4B =const. defines a pair of cycles
—cf. Fig. 93b and 67c).

We know that there exist Galilean motions (cyclic rotations) which map the set
of points M (i.e., the cycle Z) to itself. By the principle of duality, there exist
Galilean motions which map the set of lines m to itself. (We recall that a motion of
the Galilean plane was defined as a mapping of the points and lines of the plane
preserving distances between points and angles between lines; therefore, the dual
of a motion is a motion.) From this we conclude that the lines m are the tangents of
a cycle. This result can also be proved without using the prmcxple of duality. To see
this, let m be a line which intersects the sides of the angle aLb in points A and B,
and let Z be the cycle tangent to a,b,m at the points D, E, F (Fig. 94).%° Since the
tangents from a point to a cycle are congruent, it follows that DA=AF and
FB= BE. This, and the fact that DE = DA+ AB + BE [see (11), Sec. 4] imply?' that

DE=AF+AB+ FB=2AB.

Thus the length AB (=d) of the segment of the tangent m to the cycle Z contained
between the sides of the angle aLb is equal to half the length of the chord DE of Z.
Hence the sides of the angle aLb determine a segment of constant length d
(=3 DE) on every tangent m of Z. It follows that the set of lines m from which lines
a and b cut off a segment of constant length d is the set of tangents to a cycle Z.

20Concerning the existence of such a cycle, see pp. 104—105.

2INote that in this argument we are using directed (i.e., positive or negative) lengths of
segments (see the lines AB and A, B, in Fig. 94).
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Figure 94

It is now easy to formulate the duals of the properties of cycles established thus
far. For example, consider the result that the tangents AP and PB from a point P to
a cycle Z are congruent. The dual of a cycle Z regarded as a set of points is a cycle
Z viewed as the set of its tangents.?? The dual of the point P is a line p. The duals
of the tangents P4 =a and PB =b through P are the points 4, B of Z on p. Finally,
the duals of the distances AP and PB are the angles Zadp and ZpBb (Fig. 95).
Hence the dual of our result is the result that every chord of a cycle Z forms
congruent angles with the tangents to Z at its endpoints. This theorem differs only in
form from the theorem stated on p. 80.

Next consider the result that the midpoints of parallel chords of a cycle lie on a
special line, (i.e., are parallel points). The duals of parallel lines / and /, are parallel
points L and L, (cf. Fig. 96). The duals of the points 4, B and A4,, B, in which / and

Figure 95

LStrictly speaking, the dual of a cycle of radius c is a cycle with curvature ¢ (i.e., with radius
of curvature 1/¢). This is so because the concept of radius of a cycle is dual to the concept of
its curvature.
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I, intersect the cycle Z are the tangents a,b and a,,b, from L and L, to Z. Finally,
the duals of the midpoints M and M, of the segments AB and A,B, are the
bisectors m and m, of the angles aLb and a,L,b,. Hence the dual of our result is
that the bisectors m and m, of the angles aLb and a,L,b, are parallel (cf. Exercise 7
below).

PROBLEMS AND EXERCISES

4

Give a direct proof (without using properties of cyclic rotations) of the
theorem on diameters of a cycle, i.e., the theorem that the midpoints of
parallel chords of a cycle lie on a special line.

Give other examples of the use of cyclic rotations to prove geometric
properties of cycles in the Galilean plane.

Describe the mapping on the set of ordinary lines in the Galilean plane dual
to a cyclic rotation.

Give a direct proof (without using the principle of duality) of the dual of the
theorem on diameters of a cycle (see pp. 102-103 and Fig. 96b).

Formulate the dual of the theorem on the midpoints of concurrent chords of
a cycle. Prove this theorem without using the principle of duality (cf. pp-
99-100. In particular, note Figs. 92a and 92b).

Give other examples of pairs of dual theorems involving cycles in the
Galilean plane.

Investigate glides along themselves of surfaces in three-dimensional Galilean
geometry which are analogous to Euclidean spheres (in connection with
such surfaces, see Sec. 7, Problem IV). Use such glides to obtain geometric
properties of these analogues of spheres.

Investigate the question discussed in Problem VII in three-dimensional
semi-Galilean geometry (cf. Problem V, Sec. 7).

Discuss the application of the principle of duality of three-dimensional
semi-Galilean geometry (see Problems VIII and X in Chap. 1) to Problems V
and VIII of the present chapter.
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9. The circumcycle and incycle of a triangle

Let ABC be a triangle in the Galilean plane with sides AB=c¢, BC=a,
CA = b; as usual, the letters a,b,c denote the (ordinary) lines AB, BC,CA
and also the Galilean lengths of the corresponding segments. It is clear
that there is a.unique cycle through the points 4, B, C; it can be defined as,
say, the set of points from each of which the segment AB is seen at a
Galilean angle equal to C. This cycle Z is called the circumcycle of the
triangle ABC. A kind of analogue of the circumcycle is the incycle z of the
triangle A BC, defined as the cycle tangent to the lines a,b,c. We shall now
prove the existence and uniqueness of the incycle of a triangle.

It is easy to see that if the incycle z of a triangle ABC exists, then it
must touch one side of the triangle (i.e., one of the segments 4B, BC,CA)
and the extensions of the other sides. Specifically, suppose our cycle is
tangent to the side AB at F, and the extensions of the sides CA and CB at
E and D (Fig. 97). The triangle DCE is isosceles (since the tangents CD
and CE from C to the cycle z in Fig. 97 are congruent). Hence its altitude
CP is also a median, so the special line CP through C intersects the
segments ED and AB. For this to happen, it is necessary that AB = be the
largest side of the triangle 4 BC, and therefore c=a+ b. Since

CD+ CE=(CB+ BD)+(CA+AE)
= CB+ BF+ CA+ AF=CB+ CA+(BF+ AF)
= CB+CA+ AB,

we have

CD=CE=2+2*C ey, (13)

Therefore,
AE=CE—-CA=a,
BD=CD—-CB=b. (13a)

Figure 97
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Since AF=AE and BF= BD, we have
AF=a, BF=b. (13b)

Equations (13)-(13b) determine completely the positions of the points
D,E,F on the sides of the triangle ABC. We shall now show that the
circumcycle z of the triangle DEF (which we know exists) is tangent to the
sides AB,BC, CA of the triangle ABC at the points F,D,E, and is thus the
incycle of the triangle ABC. In fact, the inscribed angle / DEF of the
cycle z is equal to the difference of the angles / DEC and / FEA. We
know the angles C and A of the triangles DEC and FEA, and we know
that these triangles are isosceles. Using the angle formula (12) of Section 4,
we conclude that

LDEC=%,

=4
LFEA=7%

and, therefore,

On the other hand, an application of the angle formula to the isosceles
triangle DFB with known angle B shows that

B

L FDB= ok

It follows that the line DB =a, which forms with the chord DF of the cycle

z the angle £/ FDB= B/2, equal to the inscribed angle subtended by that

chord, is tangent to z. Using a similar argument, we can prove that the

lines EA=b and FA=c are tangent to the cycle z at the points E and F.

We now consider the radii R and r and the curvatures P and p of the

circumcycle Z and incycle z of the triangle ABC. We regard all these

quantities and the sides and angles of the triangle as positive. In view of
the definition of the radius of a cycle, we have

a_b_c _sp (14)

this gives a geometric meaning to the coefficient of proportionality A in
(14), Section 4. Equations (14) enable us to express the radius R of the
circumcycle Z of the triangle ABC in terms of its sides and angles. These
expressions are simpler than the related expressions known as the “law of
sines” of Euclidean geometry:

a __ b __ ¢ _ ,
sind sinB sinC 2R. (14)

(Here R is the radius of the circumcircle of the Euclidean triangle ABC.)
Equations (14) and (17) in Section 4 imply that
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where S is the area of A ABC. In final form

- (15)

Curiously enough, the last equation is identical with the corresponding
equation of Euclidean geometry obtained from the relations R=a/2sin4
and S=3bcsin4 [cf. (14') and (17) in Sec. 4].

We now turn to the incycle z of the triangle ABC. We saw that this
cycle was the circumcycle of the triangle DEF in Figure 97, whose sides
EF=d, DF=e, DE=f and angles / EDF=D, / DEF=E, / DFE=F
can be easily computed. For example, we saw that E=/ DEF=B/2.
Similar computations show that

A B C
D_f’ E > F—2. (16)
From the isosceles triangles EAF (where EA = AF = a), DBF (where DB =
BF=b) and DCE (where DC= CE =c), we obtain the relations

d=2a, e=2b, f=2c.
Now from Egs. (14) we have

d_e_J_ 2r
D E F i
ie.,
a_b_c_r
We thus arrive at the remarkable relation
r=4R, (17)
which implies that
P=4p. (17a)

We note that the rather unexpected relations (17) and (17a), without analogues
in Euclidean geometry, follow directly from the duality principle. In fact, it is clear
that the dual of the circumcycle Z of the triangle 4BC, the cycle containing the
points 4, B, C, is the incycle z of AABC, the cycle with tangents a,b,c. Next, the
magnitudes of the angles of a triangle and the lengths of its sides are duals. Finally,
the radius r= Alim0 (As/A¢) of a cycle and its curvature p= Alj%(mp /As) are

P
duals. It follows that the dual of the formulas

a_b_c _

A=B-T 2R (19)
for the radius of the circumcycle of a triangle are the formulas

A_B_C_

R

L2 =L (14a)
A glance at Eqgs. (14) and (14a) yields the relation (17).
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In Section 4, Chapter I, we discussed the simple mechanical significance
of the side formula (11) and the angle formula (12) connecting the
elements of a triangle. We saw that (11) expressed the law of additivity of
time intervals, and Eq. (12) could be interpreted as the law of composition of
velocities (cf. pp. 48—49). We are now able to give a mechanical interpreta-
tion of Eq. (13), Section 4, which is the last of the three fundamental
relations connecting the sides and angles of any triangle. To do this, let
A(x,01), B(x,,y,) and C(x;,y,) be three points in the Galilean plane which
are vertices of a triangle ABC (Fig. 98a). To these points there correspond
three events A(t),x,), B(t,,x,), and C(t3,x,), no two of which are simulta-
neous. It can be shown (we do this below) that there exists a unique
motion with (positive, negative, or zero) constant acceleration w which
“joins” these three events. We know that the acceleration w has absolute
significance in the sense that it is independent of the choice of an inertial
reference frame. We choose an inertial reference frame so that two of our
events, say 4 and B, differ in time but not in their positions on the line o.
Also, we take the position of 4 on o as the origin of the coordinate (x),
and the time of 4 as the origin of the time coordinate. Then the events
A,B,C have space-time coordinates A(0,0), B(#,,0), C(t;,x,) (compare
Fig. 98b with Fig. 98a, which also shows the axes of the new coordinate
system corresponding to the imposed conditions).

We shall now determine the motion

x=at>+2bt+c (18)

with constant acceleration joining our three events (cf. pp. 83—84). Since
the event x =0, =0 satisfies (18), we have

c=0. (18a)

131

(\Ta;yg)

c (tj ) 1‘3)

Figure 98a Figure 98b
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Since the event x=0, =1, also satisfies (18), we have
at; +2bt,=0, ie,2b=—at, (18b)

(for #,70). To compute the last unknown coefficient a in (18), we sub-
stitute the values x = x; and ¢=1,. This yields the relation

X3=ats— atyt,,

which implies that

_ X X3
“ 22—yt B t(t—1) "
Since
1 1_ b
(-1 & b4 -1y’
we have

o= x3/(t— ) — X3/ 13
t, )

(18c¢)

We have thus determined the required unique motion with constant
acceleration. This motion is given by Eq. (18), where the values of the
coefficients a,b,¢ are given by (18a—c). We saw that the acceleration w of
the motion (18) is 2a. Hence

w_%/(—5)—x3/1
2 t )

Clearly ¢, is the time interval between the events B and 4, i.e,, ¢, is equal
to the side AB=c of the triangle 4ABC. Also, the velocity v, of the uniform
motion of a material point which leaves x=0 at time r=0 and reaches
X =x; at time r=1; is

and the velocity v, of the uniform motion of a material point which leaves
x=0 at t=t¢, and reaches x=x; at t=1; is

X3
v;=—".
(1)
It follows that the difference
X3 X3
— -2 =p -
L=t & b

is the relative velocity of the second uniform motion relative to an observer
moving according to the first uniform motion [see (8), Section 3], i.e., it is
‘equal to the magnitude of the angle C of triangle A BC. We may, therefore,
rewrite the formula which expresses the acceleration w in terms of the
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coordinates t,, £,, and x;, of the events 4,B,C as***

w_c
2 c’
By symmetry, we also have
v _4 v _B
2" W T

so that
£_£_£( M”

Note that (in the cgs system) the time intervals a,b,c are measured in
seconds, and the speeds A, B,C are measured in centimeters per second.
Hence the ratios 4/a,B/b,C/c are measured in cm/sec?, in agreement
with the fact that these ratios represent (the absolute value of) an accelera-
tion. In other words, since the sides of the triangle ABC have the dimen-
sion ¢ of time, and the angles have the dimension //¢ of velocity, the ratios
of angles to opposite sides have the dimensions //¢* of acceleration. Also,
in Galilean geometry the area S of a triangle has the dimension /f (cm-sec)
(cf. p. 46), so that the ratio 4S/abc has the dimension It/*=1/1* of
acceleration, and the ratio 24BC/ S has the dimension (//#)*/lt=1?/t* of
the square of acceleration [cf. Exercise 9(a) below].

We now consider the circle S, passing through the midpoints 4,, B,,C;
of the sides BC,CA,AB of a (Euclidean) triangle ABC (Fig. 99a) and a
cycle Z, passing through the midpoints 4,,B,,C, of the sides of a
(Galilean) triangle 4BC (Fig. 99b). In Figure 99a, the circle S, is circum-
scribed about the triangle 4;B,C, with BiA,=AB/2, C,B,=BC/2, A,C,
=CA/2 and angles £ B\A, C, LCAB=A4, LA,C,B,=C, LC,B,A,=B
(in fact, A4;B,C, is the image of A ABC under the central dilatation with
coefficient —% and center M at intersection of the medians of A ABC).
Hence the radius R, of S, has the value
R
2 b

R,= (19)

where R is the radius of the circumcircle of triangle ABC. An analogous
statement holds for the cycle Z,. In the case of the cycle Z,, we have the
additional relation R, =r/8, where r is the radius of the incycle of A ABC
[ef. Eq. (1T)].

The Euclidean circle S, also passes through the feet P,Q,R of the
altitudes AP,BQ,CR of the triangle ABC, and might therefore be called
the six-point circle®® of A\ ABC. In fact, since the midline 4,B, of A ABC

2aWe note that if c=AB=d, is the signed length of the side AB and C=8, cp is the
signed magnitude of the angle C of the triangle, then w/2=C/¢.

Bt can be shown that S, also passes through the midpoints of the segments joining the
intersection point of its altitudes to its vertices. This additional fact justifies calling S, the
nine-point circle of A\ ABC (cf., for example, [11], Problem 17(a), Section 1.7 of [19], or Chap.
XI of [33]). [Since the Galilean altitudes of a triangle are not concurrent, this fact is
exclusively “Euclidean.”]
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Figure 99a Figure 99b

bisects its altitude CR, the points C and R are symmetric with respect to
the line 4, B,. But then

L A,RB,= / ACB. (20)

Now £ A4,C,B,, which is an inscribed angle of S, subtended by the arc
A,B,, is also congruent to £ ACB.>* Hence R is on S, (Fig. 99a). Similar
arguments show that Q and P are on S,. It is easy to see that our
Euclidean argument carries over to Galilean geometry, where the triangles
B,RA, and B,CA, are also symmetric with respect to the line 4,B, (cf. p.
130) and therefore congruent. Thus here, too, Eq. (20), which implies that
the point R is on S,, remains valid. [In this case we need not rely on
symmetry with respect to a line. It is obvious (cf. Fig. 98b) that B,C= B,R
and CA,= AR, i.e., the triangles B,CR and A,CR are isosceles. Hence

LBIRA1= ABICAP

Therefore (just as in the Euclidean case), the point R belongs to the cycle
Z,.] Z, is called the six-point cycle of triangle ABC.

A remarkable theorem of Euclidean geometry asserts that the six-point
(or nine-point) circle S, of a triangle ABC is tangent to its incircle s and its
excircles s,,s,,s. (Fig. 100a). This theorem also carries over to Galilean
geometry: The six-point cycle Z, of a triangle ABC is tangent to its incycle z
(Fig. 100b). This fact is an indication of the far-reaching analogy between
Euclidean and Galilean geometry.

24For the arguments to be independent of diagrams we must use directed angles here (and in
what follows).
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Figure 100b
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We now give a proof of the theorem just formulated. Except as noted, the proof
holds for Euclidean and Galilean geometry (cf. also Exercise 10 below and pp.
138-141). For definiteness, we use the Euclidean terminology. At one point in the
proof we shall find it necessary to use results established in Section 10 below.

Let C, T be the tangent to the six-point circle S; (or the six-point cycle Z,) at the
midpoint C, of the side AB (Figs. 101a and 101b). Since

AAC1T= AACIBI_ L TC]B[
and
AAC1B1=AABc=B, LTC1B1=LC1A|B]=A,
_ we have
LAC,T=B—A.

We denote the points of contact of the circle s (cycle z) with the sides
AB,BC,CA of triangle ABC by F,D,E and the points of contact of the circle s,
with these sides by F|,D,, E;. We draw the diameter CWX of the circles s and s,
through C, (and similarly the diameter CR of the cycle 5);2° here W and R are on
AB and X is on the extension of CW beyond W. Through W and R we draw the

tangents WK, WK, to the circles s, s, (and similarly the tangent RK to the cycle z).
In view of the theorem on tangents from a point to a circle, we have

WK=WF and WK,=WF,

(in the Galilean case, FR = RK, that is, drg = dgx). In Figure 101a (bearing in mind
that WC is a diameter of s and s,), we have

L AWK=180°—2/ BWC= 180°—2(180°—B— %)
=2B+C—-180°=2B+C—(4+B+C)=B—A4,
and
LBWK,=180°— L AWK, =180° -2/ AWX=180°—-2/ BWC
=/AWK=B—A4,
so that KWK, is a single line parallel to C,T. ‘
The proof of the analogous result in the Galilean case is entirely different. Here
we can use the fact that AR=AC=5b and 4F=CB=a, so that FR=RK=b—a,

and thus FK= FR+ RK=2(b— a) (Fig. 101b). Hence the magnitude of the angles ‘
inscribed in the cycle z of radius r and subtended by the arc FK is

FK _2b—a)_b—a_1(b a\_1,, ,.. B—A4

3= 5 =tm = a5 &)= aes-20-25

[see definition (3a) of the radius of a cycle and formulas (17) and (14)], so that
/ KFR=/ RKF=2"4

2
Hence
LKRB=/ KFR+ /RKF=B—A (= L AC,T),
which implies that RK||C,T.
Finally, we draw the line C, K, and denote by L its second point of intersection

with the incircle s (incycle z). We also draw the line C,K; and denote by L, its
second point of intersection with the excircle s.. We claim that L is on the circle S,

25Thus in the subsequent argument the angle bisector CW of the Euclidean triangle ABC and
the altitude CR of the Galilean triangle play, quite unexpectedly, similar roles.
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Figure 101a

Figure 101b

(the cycle Z)) and that L, is also on S, (we shall soon see that s and S, as well as z
and Z,, are tangent at L, and that s, and S are tangent at L,).

By the theorem on the secant and tangent from C, to the circles s and S, We
have

C]K'C1L=C]F2 (21a)
and
C\K,-C,L,=C,F?. (21b)
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By the corresponding theorem of Galilean geometry (see pp. 119-120), the equality
(21a) also holds in Figure 101b. Now we again have different arguments for the
Euclidean and the Galilean cases, and the argument for the Galilean case is far
simpler. Since AF=a, AC,=c/2=(a+b)/2, and AR=b (Fig. 101b), we have,
obviously,

at+b b—a

FC]=—'— a= 3

a+b b—a
3 .

and C1R=b—T= 3

Hence the equality (21a) is equivalent to the relation
ClK'C|L= CIRZ, (22)

which implies that the circumcycle Z of triangle KLR (represented by dots in Fig.
101b) is tangent to AB at R. It follows that
LKILR=/KRB=B—-A

(an inscribed angle of a cycle is congruent to the angle between the chord and the
tangent). Since £ AC,T= B— A, the latter equality can be rewritten in the form

ARLC[ = AAC]T.

This last equality implies that L is on the cycle Z,. (In fact, Z RLC, is congruent to
£ ACT, so that £ RLC, is an inscribed angle.)

The Euclidean argument (Fig. 101a) is essentially quite similar to the one just
given, but is somewhat more difficult. We denote by R the foot of the perpendicu-
lar of triangle ABC passing through the vertex C, and prove that

CIK'ClL= Cl W‘C]R (223)
and
C]K]’C]L1=C| W'CIR. (22b)

(Note that the role of the two points W and R in Fig. 10la is played in Fig. 101b
by the single point R.) As usual, we denote the sides of triangle ABC by a,b,c.
Since

BF=BD
and
BD+BF=(a—CD)+(c—AF)=a+c—(CD + AF)
=a+c—(CE+AE)=a+c—b,
we have BF=(a+c¢—b)/2, and therefore
¢ a+c—b _ b—a
CF=3-———F—==5
On the other hand,
CE,=CD,,
and
CE,+ CD,=(b+ AE,)+(a+ BD,)
=a+b+(AE,+ BD,)
=a+b+(AF,+ BF))
=a+b+c,
so that

_atb+c a+b+c_b= atc—b

CE, 3, AF=AE =273 >
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and thus

_¢_atc—b_b-a

Gh=3-—5—=—3

This means that the products C,K-C,L (=CF?) and C,K;-C,L, (= C,F}) are

e;ual, and it therefore suffices to prove one of the equalities (22a) and (22b)—say
(22a).

We have
- BW _a
BW+AW=c¢ and W— b’
since CW is the angle bisector of the angle C of A ABC. Therefore,
_ a
B~ a+b©
so that

cow=C__a_ . b-ae
"2 a+b 2a+b)’

It is somewhat more difficult to compute the length x of the segment C,R. Since
x—<=CR-C,B=BR

2
and
x+%=ClR+AC,=AR,
we have
2 (e SV p2—(x+ SV (=CR?
a (x 2) =b (x+2)( CR?),
and thus
(x4 5 ~(sm ==
x+3 x—75)= as,
ie.,
2cx=b2—a>
Consequently,
2_ 2
CR=x="2 ZC" ,
and hence
o p_(b—a)c B*—a® _(b=a) _ . 2 &
C‘WC‘R_Z(a+b) e = 4 C\F*=C,K-C\L, (23)

which is what we wished to prove.

We note that Egs. (22a) and (22b) imply the existence of the circle § through
K,L,W,R and the circle S, through K,,L,, W,R (these circles are represented in
Fig. 101a by dots). The existence of the circle § implies that

ZRLK=180°— LKWR=180°-/TC,B= /L TC\A,

i.e., the angle Z RLC; is congruent to the angle between the chord RC;, of S; and
its tangent C,T. This means that Z RLC, is an inscribed angle of S, i.e., L lies on
S). From the existence of the circle S, we deduce by a similar argument that L,
also lies on S|.



116 I. Circles and Cycles

Figure 102

We have now nearly completed the proof. It remains only to show that the
circles s and §; intersect—in fact, are tangent—at L, and that the circles s, and S,
are tangent at L;. But this follows immediately from the fact that the tangents KW
and C,T to the circles s and S, at the endpoints K and C, of the chords LK and
LC, are parallel. Indeed, since the tangents to these circles at the other endpoint L
of these chords form the same angles with them as the tangents at K and C,, it
follows that the tangents at L coincide, i.e., S; and s are tangent to L. Similarly, the
parallelism of the tangents K; W and C,T to the circles s, and S, at K; and C,
implies that these circles are tangent at L,.

It is of interest to formulate the dual of the theorem on the six-point cycle. This
theorem asserts that the incycle of the triangle formed by the angle bisectors a,, b, ¢,
of triangle ABC (which is the dual of the triangle 4,B,C, whose vertices are the
midpoints of triangle ABC) is also tangent to the lines p,q,r passing through the
vertices A,B,C and parallel to the opposite sides. This “six-line cycle” z, (whose
radius is twice the radius of the incycle z of triangle ABC) is tangent to the
circumcycle Z of the triangle (Fig. 102; cf. Exercise 11 below).

PROBLEMS AND EXERCISES

10 (a) Show that if R and P are the radius and curvature of a circumscribed
cycle of a triangle in the Galilean plane with sides a,b,c, angles 4, B, C, and
area S, then R?=S/24BC, P=4S/abc, and P>=24BC/S. (b) Without
using relations (17) and (17a), derive the connection between the radius (or
curvature) of the inscribed cycle of a triangle and its sides, angles, and area.
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11 (a) Prove that the inscribed cycle z of AABC is mapped to its circumscribed
cycle Z by the dilatation y with coefficient + and center Q on the special line
m through the intersection point M of the medians of triangle ABC with
dy, =4dp,, where a= BC, t||a is the tangent to Z, and A lies between a and .
(b) Using (a) and the fact that the dilatation y, with center M and coefficient
—1 maps Z to the six-point cycle Z,, show that z is mapped to Z; by the
dilatation vy, with coefficient —; and center at the point L of m with
LM = MQ/3. (c) Using (b), prove that z and Z, are. tangent. (Hint: Prove that
L lies on Z,.)

12 Without using the principle of duality, prove: (a) the theorem on the six-line
cycle of a triangle (cf. p. 116 and Fig. 102); and (b) the theorem that the
six-point cycle z, is tangent to the circumscribed six-line cycle Z of a triangle.

X Discuss the problem of inscribed and circumscribed “spheres” (surfaces dis-
cussed in Sec. 7, Problem IV) of a tetrahedron in three-dimensional Galilean
geometry. Does an analogue of the theorem on the six-point cycle hold in this
geometry?

XI Consider Problem X in three-dimensional semi-Galilean geometry (cf. Sec. 7,
Problem V).

10. Power of a point with respect to a circle
or a cycle; inversion

We recall that if a line I through a point M intersects a (Euclidean) circle S
in points A and B (Figs. 103a—c), then the product MA-MB depends only on
M and S, and is independent of I. The product MA-MB is usually signed.
Specifically, MA-MB is taken as positive if the directions of the segments
MA and MB coincide, and negative otherwise. The signed product

MA-MB (24)

is called the power of the point M with respect to the circle S. It is clear that
the power of M with respect to S is positive when M is outside S (Fig.
103a), zero when M is on S (Fig. 103b), and negative when M is inside S
(Fig. 103c). When M is outside S, its power with respect to S is equal to
the square of the tangent MT from M to S (for we may take / to be the
tangent line MT, in which case the points A and B coincide with the point
of tangency 7).

Figure 103a Figure 103b Figure 103c
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If MQ=d, where Q is the center of the circle S with radius r, and the
line / passes through Q and intersects S in points 4, and B, then the
length of one of the segments MA, and MB, is d+ r and the length of the
other segment is |d— r|. The sign of the product MA-MB is the same as the
sign of the difference d— r. Thus in all cases the power of the point M with
respect to the circle S is equal to

dr—r. (25)
In terms of the coordinates (x,y,) of M and (a,b) of Q, the power of M
with respect to S is
(xo—a)’+(yo—b)'~r%
Since the equation of S is
(x—a)’+(y—b)’—r*=0, (26)
or equivalently,

x2+y2+2px+2qy +f=0, (26)

where p= —a, g= — b, f=a’+b?—r? [see Eqgs. (2)-(2a), Sec. 1], it follows
that the power of M(xy,y,) with respect to S can be obtained by replacing x
and y on the left side of the equation of S [(26) or (26")] by the coordinates x,,
and y, of M. This implies that if S is the circle given by Eq. (26), then the set
of points whose power with respect to S is k is given by the equation

(x—a)’*+(y— by’ —r*=k,
or
(x=a)’+(y—b)*~(r*~k)=0,

1.e., the set in question is a circle concentric with S. [Incidentally, this
follows directly from (25)]. If S is a circle given by Eq. (26'), and S, is a
circle given by the equation

x2+y2+2p,x+2q,y +f,=0, (26”)
then the set of points with the same power with respect to S and S, is given
by the equation

X2+ yr+2px+2qy + f=x1+y2+2p,x+2q,y +,

or

2(p—p)x+2(q—q)y+(f—£)=0.

This set represents a line r, the so-called radical axis of S and S, (Fig.
104).2° [An exception is the case where p=p, and g=g,, i.e., when S and
S, are concentric. In this case, the radical axis is the empty set.] It is not
difficult to see that the radical axes r,,r,,r,, determined by three circles S,
S, and S, are either parallel or concurrent (Fig. 105; in fact, if two of the

26This fact, called the radical axis theorem, is easy to prove without using the equation of a
circle (cf. Sec. 1 of [13] or Chap. III of [33]).
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radical axes intersect in a point R, then R has the same power with respect
to all three circles, and so belongs to the third radical axis). The intersec-
tion point of three radical axes is called the radical center of the three
circles.

We now turn to Galilean geometry. It is obvious that if / is an
(ordinary) line passing through a point M and intersecting a Galilean circle
S in points A and B, then the product MA-MB depends only on M and S,
and is independent of I; indeed, for every line through M the distances MA
and MB are the same (Fig. 106). The product

MA-MB (24)
(which can be positive, zero, or negative since MA and MB are directed
distances) is called the power of the point M with respect to the circle S. It is
clear that the power of M with respect to S is positive if M is outside S
(Fig. 106a), zero if M is on S (Fig. 106b), and negative if M is in the
interior of S (Fig. 106¢). If d= MQ is the distance from M to a center Q of
S (this distance does not depend on the choice of Q) and r=A4AQ= QB is
the radius of S, supposed for convenience to have the same sign as d, then
one of the segments MA and MB is d+ r and the other is d—r. It follows
that in Galilean geometry, just as in Fuclidean geometry, the power of a
point M with respect to a Galilean circle S is

d*—r2. (25)

Figure 106a Figure 106b Figure 106¢
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Figure 107a Figure 107b Figure 107c

The corresponding argument for cycles is more involved. Let / and /, be
two lines passing through a point M and intersecting a cycle Z in points
A,B, and A, B, (Fig. 107). It is clear that if M is on Z (Fig. 107b), then
MA-MB=MA,-MB,=0.If M is not on Z, then Z ABB, and / AA,B, are
inscribed angles of Z subtended by the same arc and, therefore, congruent.
Similarly, Z/A4,AB= / A,B,B. It follows that the angles of the triangles
MAA, and MB| B are pairwise congruent.”’ Since the sides of a triangle are
proportional to the opposite angles (see [13], Sec. 9), we conclude that

MB
MA _MB MA-MB= MA,-MB,.

This proves that the product (24) is independent of the line /. This product
is called the power of the point M with respect to the cycle Z. It is clear that
the power of M with respect to Z is positive if M is outside Z (Fig. 107a;
by taking / to be the tangent MT from M to Z we see that in this case the
power of M with respect to Z is MT?), zero if M is on Z (Fig. 107b), and
negative if M is inside Z (Fig. 107¢). [We say that a point M not on Z is
inside Z if every line through M intersects Z; all other points M not on Z
are said to be outside Z. If M is outside Z, then we can draw a tangent to
Z through M. This cannot be done if M is inside Z.]

If M has coordinates (xo,y,), and S is a pair of (special) lines x = x, and
X = Xx,, then the segments M4 and MB have Galilean lengths x, — x, and
X, — Xq, and therefore the power of M with respect to S is

(31— x0) (% — xg) = (o~ x1)(xo— x,).
Since, in this case, the equation of § is
(x = x)(x = x;) =0, (27)
or equivalently,
x2+2bx+c=0, 27)

where 2b= —(x; +x,), ¢ = x,x,, it follows that the power of a point M with
respect to a circle S is the result of replacing x and y on the left-hand side of
Eq.(27) [or 27")] of S by the coordinates (x,,y,) of M.

2TThese triangles are “1-similar,” i.e., they are related by a similitude of the first kind (see p.
53).
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Now let Z be a cycle with equation
x2+2b,x+2b,y+c=0 (28)

[which is the same as Eq. (2), Sec. 7, with a=1], and let / be a line through
M(x4,y) with equation

Y =yo=k(x—x,). (29)
Then the coordinates (x,,y,) and (x,,y,) of the intersection points 4, B of /

and Z are determined from the system of simultaneous equations (28) and
(29). From Eq. (29), we have

y=kx+(po—kxo).
Substitution of this value of y in (28) yields
x242(by+ kby)x + [ 2by(yo— kxo) + ¢ ] =0,
so that
x,+x,=—2(b,+ kb,), X %, =2b,(yo— kxg) + c.
It follows that the power of M with respect to Z,
MA-MB = (x, — xo) (X, — xp) = x5 — (X, + X,) Xg + X, X5,
is equal to
x§+2(by + kby) xo+2b,( yo— kxo) + ¢ = x3 +2b,xy+2b, yo + c.

In other words, the power of M with respect to a cycle Z is obtained by
replacing x and y in the equation of Z [Eq. (28)] by the coordinates(xy,y,) of
M.

It follows immediately that the equation of the set of points whose power
with respect to the circle (27" is k, is

x2+2bx+c=k, e, x*+2bx+(c—k)=0,

so that the set in question is a circle “concentric” with (i.e., having the same
line of centers as) the given circle [this, incidentally, follows directly from
(25)]. Similarly, the equation of the set of points whose power with respect to
the cycle (28) is k, is

x2+2bx+2byy+c=k, e, x?+2bx+2byy+(c—k)=0,
so that the set in question is a cycle parallel to the given one. Also, it is easy
to see that the set of points that have the same power with respect to two
circles S and S, with Egs. (27) and
x2+2bx+¢;=0, 277)

or a circle S with equation (27") and a cycle Z with equation (28), or two
cycles Z and Z, with Egs. (28) and

x2+2bVx +2bPy + ¢, =0, (28)

is a (special or ordinary) line r; it is natural to call this line the radical axis
of the relevant pair of curves (two circles, circle and cycle, or two cycles).
Thus the radical axis of two (nonconcentric) circles (27°) and (27”) is the
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special line
2 2 . G—¢
x“+2bx+c=x*+2b,x+c;, 1e, xX=——r0.
! ! 2(b-b))

(Two concentric circles have no radical axis.) The radical axis of two
(nonparallel) cycles Z and Z, of the same radius [for such cycles we have
b,=b{V in Egs. (28) and (28')%] is the special line

= Cl —C
2(b,— M)

(Fig. 108a; two parallel cycles have no radical axis). In all remaining cases
the radical axis (if nonempty) is an ordinary line (Figs. 108b and 108c); for
example, the equation of the radical axis of the cycles (28) and (28') with
unequal radii is

x?+2b,x+2b,y+c=x2+2bVx+2b,y+¢c,, e,

x2+2b,x+2byy+ c=x*+2b{Vx +2by + ¢,,
or
BO-b, e
= x+ .
by—b5"  2(b,—b5V)

It is clear that if two curves 2 and =, (each either a cycle or a circle)
intersect in two points P and @, then the radical axis of = and Z, is the
line PQ (for P and Q have power 0 with respect to = and 2,, and thus
belong to the radical axis of = and =,; cf. Fig. 1086).

The analogy between the study of Euclidean circles and the study of
Galilean circles and cycles can be carried further. Thus, for example, just
as in Euclidean geometry, we can prove that if each of the curves 2,2, =,
is a circle or cycle, and if two of the radical axes r,r,,r,, of the three pairs of
curves (2,,2,), (2,,2)) and (Z,,3,) intersect in a point R (which obviously
has the same power with respect to all three curves), then the third radical
axis passes through R (Figs. 109a and 109b). It is natural to call R rhe
radical center of the curves =, =, and Z,.

since Eq. (28) can be rewritten as y = —(1/2b,)x2—(b,/b,)x —(c/2b,), the radius r of the
cycle (28) is — b,.
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It is not difficult to establish the mechanical significance of the power of
a point relative to a cycle. Thus consider the motion of a material point
along a line o which moves with constant acceleration w=2a and is at
x=0 at time 1=0. The equation of the motion of this point is
x=at*+2bt (30)
[cf. (I'), Sec. 7). An example of such a motion is the motion of a stone
thrown vertically upward. The acceleration of the stone is the gravitational
acceleration w= —g with g~9.8 m/sec’ (cf. Figs. 110a and 110b). We
select an inertial reference frame in such a way that the line / in Figure
110b represents a state of rest. Then this line determines a definite point
x=x, of the (vertical) line 0. Let M be the point of the Galilean plane
which corresponds to the point x = x, of 0 and the moment =0 at which
the motion begins. Then the segments MA and MB in Figure 110b
represent the time intervals between the beginning of the motion and the
moments when the moving point (stone) passes the point x = x,,. It is clear
that these time intervals are determined by the equation

at?+2bt=x, or at*+2bt—x,=0,
so that

Figure 110a Figure 110b
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This shows that the product MA-MB=t,-t, depends only on the accelera-
tion w (=2a) of the moving point and the value of x,, and is independent
of the choice of the inertial coordinate system. This means that if we
choose another coordinate system, for example, one in which the role of
the “fixed point” x=x, in Figure 110a is played by the line /, in Figure
110b, then the product MA,-MB, (see Fig. 110b) has the same value
— X,/ a as before.

We now turn to the study of inversions. Recall that in Euclidean
geometry an inversion with center Q and coefficient k>0 (or the inversion
in a circle S with center Q and radius r= Vk ) is a map which associates to
each point A# Q the point A’ on the ray QA such that

04-Q4'=k (31)

(Fig. 111). The following is a slightly different description of this map. The
inversion leaves the points of the circle S pointwise fixed, it maps a point A
exterior to S to the point A’ of intersection of the diameter QA of S with the
chord KL, where K and L are the points of contact of the tangents from A to
S, and finally, it maps A’ to A. This follows from the fact that the right
triangles QKA4’ and QAK are similar (since they share the acute angle Q)
and, therefore,

3/11(' = %, or QA-QA'=QK?*(=r*=k).

To determine the image A’ of A #Q under inversion in .S we can also
proceed as follows. We draw all possible circles s (including the line = QA)
through A perpendicular to S—in other words, all circles s such that the
tangents to S and s at their intersection points K and L are perpendicular
(i.e., s must be tangent to the radii QK and QL of S). All such circles s and
the line | intersect in a second point A', which is the image of A under
inversion in S (Fig. 112a). To justify this assertion (which can serve as
another definition of inversion) we can use the concept of the power of a
point with respect to a circle, as applied to Q and s. Specifically, if 4" is the
second intersection point of Q4 and a circle s, then

QA-QA'=QK? (=r*=k)
(where QK is tangent to s). If 4 is a point of S, then all circles s (and the

Figure 111
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line /) are tangent at A and it is natural to make the convention that
A’=A. This description of an inversion is very similar to that of a reflection
in a line m, where we say that the image of a point 4 is the point 4’ of
intersection of all circles s (and the line /) passing through 4 and per-
pendicular to m (Fig. 112b). This analogy justifies calling inversion in S a
reflection in S.

The most important property of an inversion is that it maps each circle
in the plane (including lines, which are regarded as “circles of infinite
radius”), fo a circle (or line). This assertion is most easily proved analyti-
cally. Thus the inversion with center at the origin 0(0,0) and coefficient k
maps the point 4(x,y) to the point 4’(x’,y")=A’(Ax,\y) on the ray OA
(Figure 113), such that

04-04'=k, e, Yx*+y? -y)’+N) =k

Hence
A= k ,
x? +y2
and we have
, kx , ky
X = , 5 S5
x2 +y2 Y x2+y2
YA
Azl
A(z,y)
0(0,0) T

Figure 113
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or

kxl _ lg’/

X=———, y .
er +yf2 x/2 +y/2
(The latter assertion follows from the fact that the inversion maps 4’ to 4.)

It follows that the inversion (32) maps the circle (or line) s given by the
equation

(32)

a(x?+y?)+2b,x+2b,y+c=0 (33)
[see (2), Sec. 7] to the curve s’ with equation
2 ’ 4
oK pap R gy B Lo,
x/2 +y/2 x/2 +y/2 xr2 +y/2
1.., to the circle (or line)
a' (x> +y?)+2b;x+2byy +¢'=0 (33)
(here we write x and y in place of x’ and y’), where
a=c, by=kb, by=kb,, c'=k%. (33a)

We note that if in (33) we have

(a) a=0, ¢c=0 (i.e., s is a line through O);

(b) a=0, ¢#0 (i.e., s is a line not through 0);
(¢) a#0, ¢=0 (i.e., s is a circle through 0);

(d) a#0, ¢#0 (i.e, s is a circle not through O);

then in (33') we have

(a) a'=0, ¢'=0 (ie., 5" is a line through O);

(b) a’#0, ¢'=0 (i.e., s is a circle through O);

(¢) a’=0, ¢’#0 (i.e., s’ is a line not through O);
(d) a’#0, ¢’#0 (i.e, s’ is a circle not through O).

This purely analytic argument can be replaced by a synthetic one. It is
clear that an inversion with center Q maps a line s through Q to itself. Now
let s be a line which does not pass through Q. Let M and A be two points on
s with images M’ and 4’ (Fig. 114a). The equality

QA4-QA’'=QOM-QM’ (=k)
implies that

04 _ oM’
oM~ 04"
It follows that the triangles Q4’'M’ and QMA are similar and, therefore,
LQA'M' =L AMQ. (34)

We now fix the points M and M’, and let the point 4 range over s. The set
s’ of image points 4’ is determined by the condition (34). This means that
the points of s are characterized by the constancy of the angle Q4'M’
subtended at A’ by the segment QM’. Therefore, s' is a circle passing
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Figure 114a Figure 114b

through Q and M’. Conversely, if A’ in Figure 114a ranges over a circle s’
passing through the center of inversion Q, then the set s of images 4 of 4’ is
again characterized by the condition (34). This implies that ZAMQ=
£ QA’ M’ =const. Hence s is a line which forms the angle Z QMA with the
line QM. This angle is congruent to the inscribed angle of the circle s
subtended by the chord QM’?

Now let s be a circle which does not pass through the center Q of
inversion. Let I be a line through Q intersecting s in points M and N, 4
another point of s, and M’,N’,A’ the images of M,N,A under the
inversion (Fig. 114b). The equalities

QA-QA'=QM-QM’ (=k) and QA-QA’=QN-ON'(=k)
imply the proportionality of the sides of the triangles Q4AM and QM’'A4’,

QAN and QN'A":

o4 _ oM and o4 _ OV

oM oA ON 04"’
and thus the congruence of their angles:

LQA'M'=/ AMQ,; L QA'N'= L ANQ.
This and the theorem on the exterior angle of a triangle imply that
LN'AM=/LQAM —LQA'N'=/LAMQ— LANQ= /L MAN.

It follows that as A ranges over the circle s characterized by the constancy
of the inscribed angle Z MAN subtended by the chord MN, A’ ranges over
the curve s’ characterized by the constancy of the angle ZN'A'M’, ie., a
circle.

Finally, we show that inversion is a conformal mapping, i.e., it preserves
angles between curves. In fact, let T” be the image of a curve I" under the
inversion with center Q and coefficient k. Let A and A’ be points on I and
I” which correspond under the inversion, B a point on I close to 4, and B’
its image on I" (Fig. 115a). Since

'=OB-OB' (= o, 24 _0B
Q4-Q4'=0B-QB' (=K), ie, Gp="7

2In this argument we must use directed angles, as discussed on p. 77.
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it follows that the triangles QAB and QB’A’ are similar, i.e., Z BAQ=
L QB’A’. Now if B tends to A4, then the line AB tends to the tangent AT
to I' at 4, and the line A’B’ tends to the tangent 4’7" to I" at 4’ (see Fig.
115a). Hence in the limit the equality Z BAQ= / QB’A’ becomes the
equality

LTAQ= /L QA'T,

ie., the angles at 4 and A4’ between the line Q4 and the curves ' and I"
are congruent (but oppositely oriented; cf. Fig. 115a). This implies that if
an inversion maps two curves I' and T, intersecting at a point 4 to two
curves I'" and I} intersecting at a point 4’ and if AT and AT, are the
tangents to I and T'; at 4, while 4’7" and 4’7} are the tangents to I and
I’} at A’ (Fig. 115b), then
LTAT,= L TA'T'.

Since the angle between two intersecting smooth curves T .and T, is defined to
be the angle between their tangents at their point of intersection, the latter
equality asserts that the angle between T and T, is congruent to the angle
between I" and T'). In particular, the conformal nature of an inversion
implies that an inversion maps tangent curves T and T (curves which form a
zero angle; Fig. 115¢) to tangent curves T" and T} (for example, tangent
circles to tangent circles).

After this considerable Euclidean detour, we return to Galilean geome-
try. In this geometry it is natural to define an inversion of the first kind with
center Q and coefficient k > 0 (inversion with center Q and circle of inversion
S of radius r=V'k *) as a mapping which associates to each point A (at a

3The center Q of inversion must coincide with the center of S, the circle of inversion. [In
Euclidean geometry, the circle S fully determines an inversion. On the other hand, in order to
determine an inversion of the first kind in Galilean geometry we must specify not only the
circle S but also one of its (infinitely many) centers, which is to play the role of the center of
inversion.]
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nonzero distance from Q) the point A’ on the ray QA such that
QA4-QA'=k (31)

(Fig. 116). Using the circle S we can give the following equivalent descrip-
tion of an inversion of the first kind. To determine the image A’ of a point A
(at a nonzero distance from Q), draw a cycle z through A intersecting S in
points K and L such that the radii QK and QL of S are tangent to z at K and
L, respectively. Then A’ is the second point of intersection of all such cycles.
(Among the cycles z we include the line / =QA “tangent” to the rays QK
and QL,, which join Q to the intersection points K, and L, of / and S.) To
prove the equivalence of the two definitions of an inversion of the first
kind, we use the concept of the power of a point with respect to a cycle (as
applied to the point Q and any of the cycles z). From the definition of this
concept we see that if A’ is the second intersection point of the line Q4
and the cycle z, then
0A4-04'= QK (=r*=K),

since QK is tangent to z. If A is on S, then all the cycles z tangent to the
ray QA at A are tangent to each other at 4. In this case, it is natural to
make the convention that A’=A. [We note that, just as in Euclidean
geometry, the curves S and z are “perpendicular” at their intersection
point K. However, in Galilean geometry this property has no special
significance in view of the fact that § is perpendicular to every curve I'
which intersects S non-tangentially.]

Figure 116
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In Galilean geometry we sometimes call an inversion of the first kind
with circle of inversion S and center Q a reflection in the circle S with
center Q. Another analogue of Euclidean inversion in Galilean geometry is
the so-called inversion of the second kind with cycle of inversion Z, also
referred to as a reflection in the cycle Z. This transformation is defined as
follows. An inversion of the second kind with cycle of inversion Z leaves each
point of Z fixed, maps each point A in the exterior of Z to the point A’ where
the diameter d of Z through A meets the chord KL joining the points of
contact of the tangents to Z from A, and maps A’ to A (Fig. 117a).
Equivalently, an inversion of the second kind with cycle of inversion Z takes
a point A to the point A’ on the special line through A (a diameter of Z ) such
that Z bisects the segment AA' (i.e., takes A to a point A’ of the special line
d such that

AP=PA’,
or, in other words, such that

84p="0p4,
where P is the intersection point of 4 and Z). For proof, note that
AK=AL, i.e., d bisects the segment KL. Hence the line ¢ tangent to Z at P
is parallel to KL (cf. p. 96 above). Now if M is the intersection point of ¢
and AK, then PM = MK, since the tangents to Z from M have the same
length. In other words, the special line e through M is equidistant from the

special line d and from the special line f through K. In turn, this implies
that if N is the intersection point of e and KL, then

PA'=MN=144"

(since MN is a midline of triangle K4A4’; here all the distances are special
distances).

The last formulation of a reflection in a cycle relates it closely to a
reflection in an (ordinary) line I, which we define as a mapping of the plane
which takes each point A to the point A’ on the special line d through A such
that | bisects the segment AA’ (Fig. 117b; cf. p. 43 above). In what follows,

y 44 d

=

-
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Figure 117a Figure 117b
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we shall view a reflection in a line as an inversion of the second kind, since
an (ordinary) line may be viewed as a limiting case of a cycle (a “cycle of
infinite radius™).

It is clear that an inversion of the first kind (reflection in a circle) as well
as an inversion of the second kind (a reflection in a cycle) maps a special line
p in the Galilean plane to a special line; specifically, an inversion of the
second kind maps p to itself, and an inversion of the first kind maps p to a
special line p’ such that the product of the distances from the center of
inversion Q to p and p’ is equal to the coefficient of inversion k. It follows
that an inversion (of the first or second kind) maps a circle in the Galilean
plane (i.e., a pair of special lines) fo a circle. We shall now establish a
deeper property of inversions (of either kind); inversions map cycles (in-
cluding ordinary lines, which we regard as cycles of infinite radius) to
cycles.

The simplest proof of this fact makes use of analytic geometry. Thus, an
inversion of the first kind (a reflection in a circle) with center 0(0,0) and
coefficient k maps the point A(x,y) to the point A'(x’,y")=A'(Ax,\y) of
the ray OA such that

QA-QA'=k or x-Ax=k
(Fig. 118). It follows that A=k /x?, so that

_k ,_ky
x—xa y—x2’
or
_k b
x_xr) _xlz (35)

(since A’ is mapped to A). Hence the inversion of the first kind (35) maps the
cycle (or line) z with equation

y=ax*+2bx+c 1)
to the curve z’ with equation
’ 2
L S S S
x?  x? x
i.e., to a cycle (or line)
yh
l
Alziy)
Alz,y)
0 z

Figure 118
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where

’

a= b'=b, '=ka. (36a)

<
k b
In particular, if in Eq. (1)

(@) a=0, c=0 (i.e., z is a line through 0O);

(b) a=0, c#0 (i.e., z is a line not through 0);
(©) a#0, c=0 (i.e, z is a cycle through O);

(d) a#0, c#0 (i.e., z is a cycle not through 0);

then in Eq. (36)

(a) a’=0, ¢'=0 (i.e., z’ is a line through 0);

(b) a’#0, ¢’=0 (i.e, z’ is a cycle through O);
(c) @’=0, ¢'#0 (i.e, z’ is a line not through 0);
(d) a’'#0, ¢’#0 (i.e, 2z’ is a cycle not through 0)

(see Figs. 119a and 119b; also, cf. p. 126 above).
On the other hand, if Z is a cycle with equation
y=ax?
then a reflection in Z (an inversion of the second kind) maps the point
A(x,y) in the Galilean plane to the point A’(x’,y")=A’(x,y’) of the special
line / through 4 such that the midpoint of the segment A4’ is the point
P(x,ax?), where / intersects Z (Fig. 120a). Hence
y/ _ axZ = axZ -y,
ie.,
x'=x, y=2ax*-y
or

x=x, y=2ax?-y 37

(since A’ is mapped to A). It follows that the inversion of the second kind
given by (37) maps the cycle (or line) z with Eq. (1) to the curve z’ with

1,z y

| 1
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| ] |
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Figure 119a Figure 119b
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Figure 120a Figure 120b

equation
2ax?—y' =ax?+2bx'+ ¢,
i.e., to the cycle or line
y=a'x*+2b'x+c, (36)
where
ad=2a—a, b'=-b  =-—c (36b)
Hence the image of a cycle z with curvature p=2a under reflection in a cycle
Z with curvature P=2a is a cycle z' with curvature
p'=2P—p (38)

(since p’'=2a’=4a—2a). In particular, reflection in Z maps cycles of
curvature p=2P to lines (cycles of infinite radius), and lines to cycles of
curvature 2P (Fig. 120b).>!

All of these results can also be deduced synthetically, without the use of
analytic geometry. In the case of an inversion of the first kind (reflection in
a circle), one can almost copy the arguments used in the Euclidean case
(compare Figs. 121a and 121b with Figs. 114a and 114b). For example, in
the Galilean case, just as in the Euclidean case, the equality

QA-QA'=QM-QM"  (=k)

implies that the sides of the triangles QAM and QM’A’ in Figure 121a as
well as in Figure 121b are proportional:

o4 _ oM’
oM~ o4
In view of Egs. (13), Section 4, it follows that
LOMA  LQA'M’
LMAQ LAMQ

31We leave it to the reader to show that if reflection in a cycle Z maps a cycle z to a line z/,
then z’ is the radical axis of the cycles Z and z.
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Figure 121a Figure 121b

Since ZAMQ=-/.QM'A" and LQA'M'=—/M'A’Q, we have
LMAQ/ /L QMA=LQOM'A’/ L M'A’Q. Now [ MAQ+ LQMA =
LOM'A'+ L M'A'Q (= L MQA). Hence, adding 1 to both sides of this
last proportionality, we obtain Z MQA//Z QMA=/ MQA// M’'A’Q, or
finally

LM'A'Q= /L QMA. (34)

This implies that an inversion of the first kind maps the line z in Figure
121a to the cycle z’ and conversely. Similarly, in Figure 121b the cycle z is
mapped to a cycle z’, and conversely. Finally, just as in the Euclidean case,
we can prove that (with the notation of Fig. 122a) if an inversion of the
first kind maps the (smooth) curve T to the curve I, and A and 4’ are
corresponding points, then the angles between the line 94 and the curves
I' and T” are congruent (but their directions are opposite), i.e.,

LQAT=/T'A'Q
(cf. Fig. 122a). It follows easily that an inversion of the first kind is a
conformal mapping. This is a brief way of saying the following. If an

inversion of the first kind maps the curves T and T, intersecting in a point A
to the curves I" and T\ intersecting in a point A’, then the angle / TAT,

Figure 122a Figure 122b
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between the tangents AT and AT, to T and T, at A is congruent to the angle
LT|A'T’ between the tangents A'T’ and A'T{ to T" and T} at A’ (Fig.
122b). In particular, an inversion of the first kind maps tangent curves (for
example, tangent cycles) to fangent curves (tangent cycles).

In the case of an inversion of the second kind (reflection in a cycle Z)
we must argue in a completely different manner. Suppose reflection in a
cycle Z maps points 4,M,N to points A’,M',N’. Let P,Q,R denote the
intersection points of Z with the special lines 44’,MM’,NN’, and let
X, Y, U denote the intersection points of the special line NN’ with the lines
AM,A’M',PQ (Fig. 123). Since the line PQ joins the midpoints of the
bases of the trapezoid 44’ M’ M, it bisects the segment XY parallel to these
bases. It follows that

N'Y=N'U+ UY=(N'R- UR)+ UY
=RN— UR+XU=(UN— UR)— UR+XU
=(XU+ UN)—2UR=XN—2UR.

If we divide both sides of the equality N'Y=XN—2UR by the Galilean
length of the segment A’N’=AN = PR) and use the fact (implied by the
definition of angle in Galilean geometry) that

N'Y XN _
T = LNAM, o = L MAN
and
UR
PR~ LOPR

Figure 123
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then we obtain the equalities
LN'A'M'= /. MAN—-2/ QPR,
LM'A'N'=2/ QPR— / MAN.
Now suppose M and N are fixed, and let 4 traverse a cycle (or line) z
through M and N. Then we claim that 4’ traverses a cycle (or line) z’. For
proof, note that Z MAN=a=const. (inscribed angle of the cycle z sub-

tended by the chord MN), and Z QPR=A=const. (inscribed angle of the
cycle Z subtended by the chord QR), so that
LM'A'N'=a=2A—a=const.

Bearing in mind the definition of curvature given by (4'), Section 7, we see
that the curvatures p, p’ and P of the cycles z, z’, and Z are 2a /s, 2a' /s,
and 2A /s, (where s is the length of the arcs MN, M’N’, and QR, i.., the
length of MN). This fact the last equation above yield the relation (38). To
prove that an inversion of the second kind is a conformal, i.e., angle-pre-
serving, mapping, we assume that the points 4 and N in (39) are fixed, and
that M tends to 4 along some curve y (Fig. 124a). Let y’ be the image of y
under the inversion. In the limit we obtain the relation

LVA'N'=2/ TPR— /AN,
where At is tangent to y at 4, A’¢’ is tangent to Y’ at A’, and PT is tangent
to Z at P. It follows that if two curves y and vy, intersect at a point A, if their
images ' and v\ under an inversion of the second kind intersect at a point A’,
if t and t, are the tangents to y and v, at A, and t' and t| are the tangents to
Y" and | at A’ (see Fig. 124b), then
LUVA't;=LUA'N'— L{jA'N’
=(Q4TPR— LtAN)—(2LTPR— L t,AN)
=/t AN~ L tAN

(39

@
=
o«

Figure 124a Figure 124b




10. Power of a point with respect to a circle or a cycle; inversion 137

Figure 125a Figure 125b

(the lines AN, A’N’ and PR are not shown in Fig. 124b; cf. Fig. 124a). In
particular, an inversion of the second kind maps tangent curves to tangent
curves. One instance of the latter result is that an inversion of the second
kind maps tangent cycles to tangent cycles.

We illustrate the many applications of inversion to Euclidean geometry
(a large number of which can be found in [13]) and to Galilean geometry
with an example. Specifically, we use inversion to prove the following
Euclidean result and its Galilean analogue: Let S;,S,,S3,S4 be four circles
in the Euclidean plane (Z,,2Z,,Z,,Z, four cycles in the Galilean plane). Let
each of S, and S, (Z, and Z5) be tangent to each of S, and S, (Z, and Z,).
In the case of the circles, we make the additional assumption that S, and
S, as well as S, and S, are disjoint®* (Figs. 125a and 125b). Then the points
A,B,C,D of contact of these four curves belong to a single circle (single
cycle).

We now give the proof of the Euclidean theorem. The proof of the
corresponding Galilean result is entirely analogous, with the circles
S, S, 85, S, replaced throughout by the cycles Z,,Z,,Z,; Z,, and
(Euclidean) inversion by inversion of the first kind.

We apply an inversion with center A, where 4 is the point of contact of
S, and S,, and arbitrary coefficient k. Since S, and S, pass through the

32The figures below show the need for the nonintersection requirement. [Actually, the
theorem deals with oriented circles. While it complicates the statement of the theorem, the
condition of nonintersection of the circles guarantees the possibility of orienting them in a
manner compatible with their tangency. This is another illustration of the fact that Galilean
geometry, for whose cycles there is a “natural” traversal direction, is simpler then Euclidean
geometry.]
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Figure 126a Figure 126b

center of inversion, their images are lines /, and /,. The images of the
tangent circles S; and S, are tangent circles S; and S; with S} tangent to /,
and S; tangent to /,. (This follows from the fact that S, is tangent to S,
and S, is tangent to S,.) Since S, and S, have no common points other
than 4, and 4 is inverted to infinity, it follows that the lines /, and /, are
parallel (Figs. 126a and 126b). We draw the tangent ¢ to S; and S at their
point of intersection C’, and denote the point of contact of S; and /, by B/,
and the point of contact of S; and /; by D’. Also, we denote by M and N
the intersection points of ¢ with /, and /,. The triangles MC’D’ and NC'B’
are isosceles (since tangents from a point to a circle are congruent), and
the alternate interior angles £ C’MD’ and £ C’NB’ formed by the paral-
lel lines /;,/, and the transversal ¢ are congruent. It follows that Z D'C’M
=/ B’C’N, which implies that B’C’D’ is a line. Since inversion with
center A maps the points B,C,D to collinear points B’,C’,D’, it follows
that B, C, D are points of a circle through 4, i.e., the points A,B,C,D all lie
on the same circle.

Here is another example of the use of inversion to prove a theorem. We wish to
prove that the six- (nine-) point circle of a triangle in the Euclidean plane is tangent
to the incircle and three excircles of the triangle, and the six-point cycle of a triangle
in the Galilean plane is tangent to the incycle of the triangle (cf. p. 110 above). The
proof is as follows. Let F be the point of contact of the side 4B of a triangle ABC
and its incircle s (incycle z). In the Euclidean case, let F,; be the point of contact of
the side AB and the excircle s.. Let C, be the midpoint of the side AB (Figs. 127a
and 127b; the notations are those used on pp. 109-116). It is easy to see that in the
Euclidean case C,F= C,F,=(b—a)/2, where a,b,c are the lengths of the sides of
triangle ABC (cf. p. 114), and that in the Galilean case we also have FC,=|b—a|/2
(cf. p. 114). We now apply an inversion (of the first kind) with center C, and
coefficient k=(C,F)?=(C,F,)>. Suppose a line / through C, intersects the circle s
(cycle 2) in points M and N (and the circle s, in points M, and N,). Then, in view
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Figure 127a

Figure 127b
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of the definition of the power of a point with respect to a circle (cycle), we have
C\M-C,N=(C\F)’ [and CMCN =(G,F)),

which shows that our inversion interchanges the points M and N (M, and N - But
then our inversion maps each of the circles s and s, (the cycle z) to itself. On the other
hand, the six-point circle S, (cycle Z,) passes through the center of inversion o
and the midpoints B, and A4, of the sides 4C and BC. It follows that our inversion
maps the circle S, (cycle Z,) to the line A} B;, where A} and B; are points of the arcs
ClB] and C]A] such that™3 7

ook _[(b=a)/2F _ (b—a)
B‘CI—B,C.— a‘/12 N 2aa

and

__k _[(b—a)/2] _(b—a)’
Cli=g7 = b;2 =5

i.e, B{ and A] are the images of B, and A, under our inversion. We shall now prove
that the line A}B; is tangent to the circles s and s, (cycle z). In turn, this will prove
that the circle S, is tangent to the circles s and s, (the cycle Z, is tangent to the cycle
z).

We denote by K and L the intersection points of the line A B; and the sides BC
and AC of the triangle. The pairs of triangles 4,4;K and C\A\B{, BB{L and
C\B1A] yield the relations

4,K  B|C, 4 BiB, B{C,
44, - ¢ M BLTCAY

Now
B{C, (b—a)*/2a
CAi  (b—a)Y/2b
and (cf. Figs. 127a and 127b)

b

Qo

2 2_(h_ )2 _
4id,=Cot, - Caj= b o) Y =(boa)_ aQb—a)

2b b 26’
p o mr _(b—a)’ a_(b—a)i-a* _b(b—2a)
BiBi=BiC =B C= = =
In this way we obtain the relations
_b a@b—a) _, a —a b(b—2a) b _
AK=T =3 =b-3, Bil=p == =5-q
which imply that
a b b
CK=CAy+A4,K=5+(b-2)=b and LC=B,C—B,L=7—(5—a)=a.

From this point it is convenient to argue differently in the two cases represented
by Figures 127a and 127b. In the Euclidean case, the reflection in the angle
bisector CW of the angle ACB interchanges the triangles CAB and CKL (where

33We assume that the lengths a,b,¢ of our triangle are positive. Also, the computations below
reflect the situation in Figures 127a and 127b, where b>2a. As a result, all the expressions
below (lengths of various segments) are positive. (To insure independence of the argument
from drawings we would have to use directed segments.)
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CK=CA=b and CB= CL=aq). However, since CW passes through the centers of
the circles s and s,, this reflection maps each of these circles to itself. Since AB is
tangent to s and s,, this implies that KL is also tangent to s and ..

In the Galilean case, we can use the fact that the lines CB and CA are tangent
to the cycle z at points D and E with CD= EC=c [cf. (13), Sec. 9]. We now draw
tangents KX and LY, different from KD and LE, from K and L to the cycle z. It is
clear that

XK=KD=CD—-CK=c—b=a and LY=EL=EC—LC=c—a=b.
Since
LK=CK+LC=a+b,
it follows that

LY+ XK=LK,

which shows that the points X and Y coincide. (Actually, this equation merely
shows that X and Y lie on the same special line; but, each special line is a diameter
of the cycle and intersects it in just one point.) Our argument proves, moreover,
that the line LK in Figure 127b is tangent at X =Y to the cycle z, which is what we
set out to prove.

We conclude this chapter with a discussion of some basic matters
pertaining to inversive mappings. We know that a Euclidean inversion
maps each point 4 of the plane other than the center Q of inversion to
some point A4’, and that no point is the image of Q (for Q4 =0, the
equality

04-04'=k (31)

implies the meaningless “equality” QA’=c0). Thus the domain of defini-
tion of an inversion with center Q is not the full Euclidean plane but rather
the plane “punctured” at the center Q of inversion. This fact complicates
arguments concerning inversive mappings. So far we have simply passed
over these difficulties. Thus, for example, it is not quite correct to say that
an inversion with center Q maps a line / not through Q onto a circle
through Q, since Q is not the image of any point of / (cf. pp. 126-127, in
particular, Fig. 114a). The correct statement is that an inversion with center
Q maps a line not through Q onto a circle punctured at Q (Fig. 128a). Again,
it is not quite correct to say that the image of a line through Q is the line
iteself. The correct statement is that the image of a line punctured at Q is
the punctured line (Fig. 128b); Q is not mapped to any point and is

Figure 128a Figure 128b
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“nonexistent” from the point of view of an inversion with center Q. When
a sequence of inversions I,1,,...,1, is applied (which is often the case
when inversions are used to solve problems), it is necessary to puncture the
plane at a number of points. For instance, if we apply three inversions I I
I, and I,, we must first remove their centers Q,, Q,, and Q5. Then we must
remove the point P; mapped onto Q, by I;, the point P, mapped onto 0
by I, and finally the point N, mapped onto P, by I,.

To avoid these difficulties it is best to proceed as follows. Rather than
remove various points of the plane we supplement the plane by a single
“point at infinity” @, and suppose that the inversion with center 0
interchanges the points Q and Q. This convention fits in with the equality
(31) in the sense that if Q4 =0 then QA4’'= o0, and conversely. Now the
domain of definition of our inversion is the “extended” plane (including
the center of inversion Q and the point at infinity ), each point 4 has a
definite image 4’ which, in turn, is mapped to 4. An inversion of this so
called (Euclidean) inversive plane maps circles (more precisely, ordinary
circles and “circles of infinite radius,” i.., lines) to circles.’* Since an
inversion with center Q maps a line / not through 0 to a circle s passing
through Q and Q is the image of the point at infinity €, it is natural to
suppose that every line “passes” through Q. The image of / supplemented
by the point & is a (complete) circle. Our convention also applies to lines
through @ and surmounts the difficulties associated with such lines.
Specifically, let /; be a line through Q extended by the addition of £. Our
inversion maps /; onto itself, and interchanges Q and Q.

To visualize the inversive plane we use a stereographic projection—i.e., a
central projection of a plane 7 to a sphere ¢ from a center Q on o. It is
convenient to assume that o is tangent to 7 at the point O antipodal to Q
(Fig. 129). It is clear that the stereographic projection associates to each
point A of 7 a unique point 4’ of ¢. The inverse correspondence from o to
7 is incomplete in the sense that it fails to associate any point of 7 to the
point Q of 6. We note that if we move “to infinity” along a curve T in ,
then the image A’ of the moving point 4 on T tends to the center of
projection Q. Thus, when we view our stereographic projection as a
mapping of o to =, it is natural to associate to Q the point at infinity £ of
7. In this way the stereographic projection becomes a mapping of the
inversive plane m onto the sphere o and o becomes a natural model of the
inversive plane.

A remarkable property of stereographic projection is that it carries
circles in the plane (including lines viewed as circles of infinite radius) to
circles on the sphere (i.e., to sections of the sphere by planes). Also, lines
are carried to circles through Q, the image of the point at infinity Q in .
The latter fact sheds additional light on our convention that all lines
(circles of infinite radius) in 7 pass through £.

34Cf. [14], pp. 51-53.




10. Power of a point with respect to a circle or a cycle; inversion 143

Figure 129

The simplest proof of these properties of stereographic projection uses
coordinate geometry. Consider a coordinate system Oxyz and let o be the
sphere given by the equation

2
x2+y2+(z——;-) =% or x2+y*+:z2—z=0. (40)
Then o has radius § and is tangent to the plane xOy (which we think of as
the plane =) at the origin O (0,0,0). We denote by 4'(X, Y, Z) the image of
A(x,y) under the stereographic projection of 7 to ¢ with center Q(0,0,1)
antipodal to O (see Fig. 129). Since the (right) triangles QOA and QA’O
with common angle Q are similar, the altitudes OA4’ and A'P of these
triangles are proportional to their hypotenuses Q4 and QO. Now

A'P=VX?>+Y? and 04'=VX*+Y2+2Z2.

Also

Q0=1 and QA=\042+Q0? =\x*+y*+1 .
Hence

VX2+12+22 _ Vx*+y2+1 X2+ Y24+Z2_ 5. o,
5 = = 1 , or 2 > =Xty +1,
VXi+Y X°+Y
and therefore
2
x2+y2 (41)

X2+y?2

Since the projection of the ray PA’ to = is the ray OA, we have X =Ax,
Y =M. Substitution of these expressions in (41) yields the relation

Z=\(X2+ Y2)(x*+y?) =Nx*+?).
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The coordinates (X, Y,Z) of A’ satisfy Eq. (40). Hence
A2 A2 NN (2 +p? P —A(x2 42 =0, e, A=—»D
(x2+y?)" =A(x%+y?) Tryirl
In summary,
=__X
x24+y24+1’
Yy
= 42
x2+yr+1 “2)
_ x*+ y2
xX+y?+1 '
But then, in particular,
1
X2+y2+1’
Equations (42) and (42a) imply that the circle (or line) s in « given by the
equation

1-Z= (42a)

a(x*+y?)+2b,x+2b,y+c=0 (33)
is mapped by the stereographic projection to the set s’ of points A'(X,Y,2Z)
of o such that

aZ+2b,X+2b,Y+c(1-2)=0,
Le., to the circle of intersection of the sphere o given by Eq. (40) with the
plane

az+2b,x+2b,y+c(1—2)=0. (43)
If, in Eq. (33), =0, i.e., if our circle s is a line, then Eq. (43) reduces to
2b,x+2b,y—cz+c=0, (43a)

which shows that the corresponding circle s’ contains the point Q(0,0, 1).

\4 z

Figure 130
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Figure 131b

The purely geometric counterpart of the above argument is somewhat more
complicated. What is quite clear is that if / is a line in the plane =, then its image on
the sphere under stereographic projection is the intersection of o and the plane
determined by / and the center of projection Q, i.e., a circle I’ on o passing through
Q (Fig. 130). Conversely, the image of a circle /’ on o passing through Q, is the line
! on = in which the plane of /' intersects .

Now let s be a circle in 7 with center K, A an arbitrary point of s, and 4’ its
image on o (Fig. 131). Let K, denote the intersection point of the line QK and the
plane 7 tangent to o at 4’ (Fig. 131a; we shall treat separately the case depicted in
Fig. 131b when 7 is parallel to QK). Let my and 7, be planes through Q and K,
parallel to 7. Finally, let K, and A, be the intersection points of these planes with
the lines 4’K; and QA. In view of the similarity of the triangles QK4 and QK;4,,
we have

K]Al - KA . QKI

_ s 2K
ﬁ— Q_I<’ 1.6, KIAI—W

KA= W”
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where r is the radius of 5. On the other hand, the triangle X 1A' A, is similar to the
isosceles triangle Ko4'Q (KoAd’ and K,Q are tangents from K, to o). This implies
that the triangle K; 4’4, is also isosceles:

K
KA'=KA = %?‘r.

The last relation shows that the length of the tangent X, 14’ from K| to o is
independent of the choice of 4 on s. But then K; must be the same for all 4 on KH
indeed, if K; moves along the line QK, then the length of the tangent from KX, to o
changes regardless of whether K; moves towards o or away from ¢. Thus the points
A’ on ¢ corresponding to the points of s are the points in which the lines through a
fixed point K, touch . It is clear that the totality of such points is the circle of
contact of o and the cone X of tangents to o from K,. Conversely, suppose s’ is
any circle on ¢ except a great circle, and suppose Q does not lie on s’. Then s’ is the
circle of contact of o and a cone K of tangents to o from a point K;. By reversing
the above argument, we can show that the image of s’ under stereographic projection
is a circle s in m, whose center is the point K where the line QK intersects 7.

If the plane 7 is parallel to the line QK then matters are even simpler. We
denote by B and C the points where the planes 7 and 7y (see above) intersect the
line through A’ parallel to QK. Since A’B||QK, B is on the line AK (Fig. 131b). The
similarity of the triangle BAA4’ and the isosceles triangle CQA’ (CA’ and CQ are
tangents from C to o) implies that BA’=BA, and the similarity of the triangles
ABA’ and AKQ implies that KQ = KA. Conversely, the equality KQ= KA (which is
obviously independent of the choice of 4 on s) implies that if BC is the line
through A’ parallel to KQ, then C4’=CQ (Fig. 131b), i.e., CA’ is tangent to o.
Hence, in this case (which is characterized by the equality KQ = K4 =r), the set s’
of points 4’ is the curve of contact of ¢ and the cylinder Z with generators parallel
to QK, ie., a circle. Reversing our argument, we can show that the image under
stereographic projection of a great circle s' on o not passing through Q is a circle s in
7 with center K such that QK is parallel to the generators of %, and with radius
r=QK. '

The property of a stereographic projection established above can be
used to represent so-called circular transformations of the plane, i.e.,
transformations with a circle-preserving property analogous to that of
inversions. Consider, for example, the reflection of a sphere o in the
equatorial plane , i.e., the transformation which associates to each point
A, of o the point 4] of ¢ with 4,4; 1§ (Fig. 132). It is clear that this
transformation of o maps circles to circles. But then the induced transfor-
mation of the plane = which associates to the point 4 corresponding to A,

Figure 132
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the point 4’ corresponding to A}, is also circle-preserving. The nature of
the induced transformation of  is clear: the point A’ lies on the line 04 of
intersection of « with the plane e L 7 passing through QO and 4, 4]. If P,
and Pj are the projections of 4, and 4} onto QO, then the similarity of the
triangles QA,P, and QAO and of the triangles Q4 P{ and Q4’0 implies
that

, Q0 P4,

Qo0 P4,
Ap=="2L and 04'=P] -
''op, QP “topPl PO

(since QO =1, P{4;=P,A, and QP{= P,0). On the other hand, Q4,0 is a
right triangle (since Z Q4,0 is subtended by the diameter OQ of o).
Hence (4,P,)*>= QP,-P,0. But then

0A=P,

(P A,y

04-04'= op 55 =

1.
In other words, if A} is the image of A, under the reflection of the sphere o in

the plane 8, then A’ (corresponding to AY) is the image of A (corresponding to
A,) under the inversion of the plane w with center O and coefficient 1.

Representation of an inversion of the plane 7 as a reflection of the sphere o with
« mapped to ¢ by means of a stereographic projection simplifies the study of the
properties of the inversion. If, as is sometimes done, this representation is taken as
the definition of an inversion, then the circle- and angle-preserving properties of an
inversion can be deduced from the properties of stereographic projection. Stereo-
graphic projections are also very useful in the study of circular transformations, i.e.,
transformations of an (inversive) plane # that carry lines and circles to lines and
circles. Using stereographic projection it is possible to prove the so-called funda-
mental theorem on circular transformations, which asserts that every circular
transformation of an (inversive) glane w is a similitude possibly followed by an
inversion (cf. Exercise 17 below).’

We now turn to Galilean geometry. Here matters are more involved
than in the case of Euclidean geometry. An inversion of the first kind with
center Q and coefficient k cannot be viewed as a transformation of the
Galilean plane, since the inversion assigns no images to points at zero
distance from Q, i.e., to all points on the special line ¢ through Q. This
complicates all considerations involving inversions of the first kind. For
example, strictly speaking, such an inversion is a transformation of the
Galilean plane with deleted line ¢ which maps an (ordinary) line / not
through Q with deleted point L=gn/ to a cycle z with deleted point
Q=¢qnz (Fig. 133a; cf. Fig. 119a). Similarly, our inversion maps a line m
through Q with Q deleted to itself, and a cycle z not passing through Q
with N=gn z deleted to a cycle z/ with P=gnNz’ deleted (cf. Figs. 133b
and 119b). In the case of a product of two or more inversions, the
complications are horrendous.

35Cf. for example, Chap. 6 of [19] or Section 4 of [13].
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Given our experience with Euclidean inversions, it is not difficult to see
how to surmount the present difficulties. We supplement the Galilean
plane with “points at infinity,” which we regard as the images of the points
of g under our inversion of the first kind; the term “point at infinity”
accords with the fact implied by the relation

QA-QA'=k (31)
that the smaller the distance from 4 to ¢ the larger the distance from 4’ to
Q. Since our inversion maps all cycles (and lines) through Q to lines, it is
natural to say that all (ordinary) lines of the Galilean plane pass through
the point  at infinity, which is the image of Q. Further, let N be the point
of intersection of a cycle z with the line g, and let QN=n. If Q coincides
with the origin O of the coordinate system xOy (Fig. 134), then our cycle is
given by an equation

y=ax*+2bx+c (D

with ¢=n [since N(O,n) is on z]. An inversion of the first kind with
coefficient Kk maps z to a cycle z’ given by the equation

y=a'x*+2b'x+c, (36)
z
q
N
n
X
Q=0

Figure 134
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Figure 135

with

’

a =

BT
EES

[cf. Egs. (36)—(36a)), i.e., to a cycle 2’ with curvature p’=2n/k, and z’ to z.
It is therefore natural to say that all cycles with curvature p pass through the
same point at infinity §,, and the inversion with coefficient k maps the point
N on g with 8y =n to the point L, ;.

We see that it is convenient to supplement the Galilean plane with
points at infinity, which are the images under an inversion of the first kind
with center Q of the points on the special line ¢ through Q. Since an
inversion preserves special lines, it is natural to speak of the “special line at
infinity.” Its points are denoted by {3, where p is any real number. All
cycles with curvature p pass through the point €,; in particular, “cycles
with curvature 0,” i.e., lines, pass through the point £,=. It is natural to
call the Galilean plane supplemented with points at infinity 2, or, equiv-
alently, with a special line at infinity, the inversive Galilean plane.*® The
inversive Galilean plane provides a convenient setting for the study of
cycles. In this connection, we note that an inversion of the second kind,
i.e., a reflection in a cycle Z with curvature P, maps a cycle with curvature
p to a cycle with curvature p’=2P—p [cf. (38)]. Hence such an inversion
maps §, to &yp_, (in particular, it maps 2=, to 2, and Qyp to ), and so
fixes each special line (including the special line at infinity).

To visualize an inversive Galilean plane, we map the Galilean plane 7 to
a circular cylinder { by means of a stereographic projection. Specifically, we
suppose { tangent to 7 along the special line ¢, choose O on ¢ and Q on {

361t follows that the inversive Galilean plane, like the projective plane, (see the references
listed in footnote 22 of Chap. 1), is obtained from the Galilean plane by the addition of a
“line at infinity.” (The two planes are nevertheless completely different. Thus, in contrast to
the projective plane, all lines in the inversive Galilean plane pass through the same point.) On
the other hand, the Euclidean inversive plane is obtained from the Euclidean plane by the
addition of a single “point at infinity.”

The concept of an infinite plane is a mathematical abstraction rather than a “physical”
object. Depending on the problem, we may use any of the Euclidean, projective, inversive
Euclidean or Galilean planes (all of which are different mathematical concepts), or indeed
any other “plane” defined by suitable axioms.
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diametrically opposite to O, and thus on the “upper generator” o of { (Fig.
135), and project { to = from Q. This projection establishes a one-to-one
correspondence between the points of 7 and the points of { exclusive of the.
points of the generator o. As A’ on { tends to some £’ on o, the distance
between g and the image A of A’ increases beyond all bounds. This
suggests that we regard the points at infinity of the Galilean plane as the
images of the points of o. Since our projection maps generators of { to
special lines of =, it is natural to say that it maps all of { to 7 supplemented
by the special line at infinity, the image of the generator o of {. By now it
is clear in what sense the cylinder { may be regarded as a good model of
the inversive Galilean plane.

We claim that the stereographic projection of the Galilean plane 7 to the
cylinder { maps circles and cycles of w to plane sections of {. It is easiest to
prove this assertion analytically. We denote the coordinates of points of «
by x and y, and the coordinates of points in space by x, y, and z. We take
q as the y-axis, put the diameter of { equal to 1, and choose the point
0(0,0,1) of ¢ diametrically opposite to O(0,0,0) as the center of the
stereographic projection (Fig. 136). The equation of the circle in which the
xz-plane intersects the cylinder ¢ is

x2+(z—%)2=§ or x*>+z2—z=0. (40")

The points of { are precisely the points (x,y,z) whose x and z coordinates
satisfy (40"). Let A(x,y) in 7 and 4’(X,Y,Z) on { denote points which
correspond under our projection. Also, let B'(X,0,Z) be the point of { in
which the generator through A4’ meets the xOz plane, and let B(x,0) in =
correspond to B’ under our projection (Fig. 136). In view of the similarity
of the right triangles QOB and QB’O with common angle Q and with
altitudes OB’ and B’P dropped to their respective hypotenuses QB and

Figure 136
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QO, we conclude that OB’/PB'=QB/0Q, or, since 0Q=1, PB'=X,
QB=V\0B>+0Q? =Vx*+1, and OB'=VPB*+0P* =VXx2+22
(cf. p. 143 above), that

2, 72 2 2, 72
VX+z: _VZ+l o X422
X 1 X2
But then
Z_x and Z=xX. 41)
X
Since the coordinates (X,Y,Z) of A’ satisfy Eq. (40"), we see readily that
X2+ x2X2—xX=0, andso X= 2x .
x“+1

But then Z=xX=x2/(x*+1). Finally, since 4 and A’ lie in the same
plane through Oz and therefore X/Y=x/y, we have Y=(y/x)X=
y/(x*+1). In summary,

y x>

X=—2 Y= , Z= , 42

x2+1 x*+1 x2+1 “2)
and in particular,
1

1-Z= . 42'a

x2+1 (422)
It is now clear that the image of a circle or cycle

ax?+2b;x+2b,y+c=0 2)

under the stereographic projection (42") is the section of the cylinder (40')
by the plane

az+2b,x+2b,y+c(1—2z)=0. (43)

If in Eq. (2) b,=0, i.e., if the curve (2) is a circle s (or a special line), then
its image under the stereographic projection is the section of { by a plane
(43) with b,=0, i.e., by a plane A parallel to the y-axis (parallel to the axis
of {; see Fig. 137a). On the other hand, if the curve (2) is a cycle z (or an
ordinary line; in other words, if b,70), then the stereographic projection
maps this curve to the section of { by a plane g not parallel to the axis of {
(Fig. 137b).3" The images of the cycles of fixed curvature p, i.e. the cycles
(2) with b,= —1 and a=p, are the sections of { by the planes

pz+2bx—2y+c(1—2)=0.

Since these planes intersect the line o given by the equations x=0, z=1 in
the point R(0,p/2,1), it is natural to regard R as the image {; of the point
at infinity £, in the inversive Galilean plane 7. In particular, Q(0,0, 1) =,
This is a brief way of saying that the lines of the Galilean plane (cycles of
curvature 0) are mapped to plane sections of { passing through Q(0,0,1).

"The intersection of a cylinder and a plane not parallel to its axis is an ellipse (or a circle).



152 II. Circles and Cycles

Figure 137b

This property of stereographic projection from the plane 7 to the
cylinder { makes this projection a very useful tool in the study of cyclic
transformations of =, i.e., transformations of the inversive Galilean plane
which map cycles (including lines that can be viewed as cycles of infinite
radius or of zero curvature) to cycles. As an example we consider the
transformation of = induced by the reflection of ¢ in its (horizontal)
equatorial plane §, so that each point 4, and its image A4} lie on a line
perpendicular to 8 (Fig. 138a). It is clear that this transformation of { maps
plane sections to plane sections. But then the induced transformation of =,
i.e., the transformation of = which associates to the stereographic image A
of 4, the stereographic image 4’ of 4], maps cycles to cycles. Since the
orthogonal projections of the rays Q4, and QA4 to = coincide with the ray
OA, it follows that A’ is on the ray OA. Figure 138b represents a section of
the configuration in Figure 138a by means of the xOz plane (B, and Bj in
Fig. 138b are the points in which the generators of { through 4, and 4]
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Figure 138a

Figure 138b

meet the xOz plane, and B and B’ are their stereographic images in 7).
Comparison of Figure 138b with Figure 132 shows that

OB-OB’'=1,
or, in view of the fact that AB||Oy and A’B’||Oy (bear in mind the
definition of length of a segment in Galilean geometry!), that

04-04'=1  (ordyydpy=1).

Hence the transformation of = which associates 4 to A’ is an inversion of
the first kind with center O and coefficient 1.

Next we consider the transformation of 7 induced by a reflection of the
cylinder { in a plane e parallel to the xz-plane. It is obvious that if 4, and
A7 are points of { symmetric with respect to the xz-plane, then the points 4
and A’ in 7, their images under the stereographic projection with center Q,
are symmetric with respect to the x-axis (Fig. 139a). Thus a reflection of {
in the plane xOz induces a reflection of 7 in the line Ox. In the more
general case, when 4, and A4 are points of { symmetric with respect to a
plane ¢ parallel to the xz-plane and given by the equation y =p (Fig. 139b),
then Egs. (43) and (2) (p. 151) show that the stereographic image in 7 of
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Figure 139b
the section of { by the plane
y—p=0
is the curve
px*>—y+p=0 or y=px’+p, (44)

ie., a cycle with curvature 2p. Further, if B, is the point of intersection of
the line 4,4} with the plane ¢, then the points 4,,B,,4 of the generator
A,47 of { are projected from Q to collinear points A, B, A’ of = such that
AA’||Oy, and (in view of the equality 4,B,=B,A}) AB=BA’'. In other
words, the midpoint B of the segment A4’ of a special line in = is its
intersection point with the cycle (44). Thus the reflection of { in the plane &
induces an inversion of the second kind, i.e., a reflection in a cycle Z of .

The connection between inversions of the first and second kind of the Galilean
plane and reflections of a cylinder { in planes § and ¢ is very helpful in the study of
inversions. Using such representations of inversions and properties of the stereo-
graphic projection of the Galilean plane to a cylinder, it is possible to prove what
might well be called the fundamental theorem of the theory of cyclic transforma-
tions: Every cyclic transformation of the (inversive) Galilean plane is a similitude,
possibly followed by an inversion of the first or second kind. In this connection, we
note that a similitude of the Galilean plane with first similarity coefficient £ and
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second similarity coefficient k is defined as a transformation of the plane which
carries points to points and lines to lines, and multiplies distances by k and angles
by «; in other words, if 4 and B are mapped to 4’ and B’, and a and b are mapped
to @’ and &, then

A'B’_dup L(ab) by

AB " dp 5 Z(ab) 0w

here k and k can be positive or negative. [An example of such a transformation is
the product of a central dilatation with center O and coefficient k and a compres
sion with axis x and coefficient « (Fig. 140).]

We conclude with the observation that the principle of duality (cf. Sec. 5, Chap.
I) enables us to obtain many new results dual to the results obtained in this
chapter. We leave it to the interested reader to carry this out. However, we will at
least suggest the duals of some of the concepts underlying our development. Thus
the dual of the power of a point M with respect to a cycle Z is the power of a line m
with respect to a cycle Z, i.e., the product

LalLm- L bLm, (24a)

where a and b are tangents from a point L on m to Z [Fig. 141a; the product (24a)
is independent of the choice of L on m]; the dual of an inversion of the first kind is
an axial inversion of the first kind, i.e., a transformation which associates to each
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Figure 141a Figure 141b Figure 141¢
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line a of # the line @’ passing through the point A, where a intersects the fixed “axis
of inversion” ¢, and such that ’

LqAa- LqAad =k, (31a)
where k is the fixed “coefficient of the axial inversion” (Fig. 141b); the dual of an
inversion of the second kind is an axial inversion of the second kind, or an axial
reflection in a cycle Z. It associates to each line a the line @’||a such that the tangent
t to the cycle Z parallel to a and a’ is equidistant from a and a’ (Fig. 141c). The
suggested theory is far simpler than the theory we are led to in Euclidean geometry
when, say, we view a circle not as a set of points but rather as a set of lines.*®

PrROBLEMS AND EXERCISES

13 Let 4,B be two points on a Fuclidean circle (Galilean cycle) =. Draw all
possible pairs of circles (cycles) o,,0, tangent to = at 4 and B respectively,
and tangent to each other at a point M. Describe the set of points M.

14 Let 2,2,,3,,3, be four Euclidean circles (four Galilean cycles) such that
ZNZy={A4,,B}, Z,NZ3={42, B>}, Z3NZ;={A43, B3}, 24N Z,={A44Bs}.
Prove that if 4,,4,,445,4,4 lie on a circle (cycle), then the same is true of
B,,B,, B;,B,.

15  Give examples of the use of inversion to prove (Euclidean and Galilean)
geometric theorems.

16  State the duals of Exercises 13-15 and give their direct proofs (i.e., proofs
independent of the principle of duality). In the proofs, make use of axial
inversions of the Galilean plane; cf. pp. 155-156.

17  Prove the fundamental theorem (a) on circular transformations of the
Euclidean plane of (cf. p. 147); (b) on cyclic transformations of the Galilean
plane (cf. p. 154).

XII (a) “Transplant” the theory of pencils and bundles of circles in the
Euclidean plane (discussed in Chap. 6 of [19], Chap. 3 of [31}, Chap. 3 of
[33], Section 3 of [13], and in part A of [29]) to the Galilean plane. (b)
Dualize the theory developed in (a).

XHI (a) Discuss “linear cyclic transformations” of the Galilean plane; such
transformtions map lines to lines and cycles (including points, which may be
viewed as cycles with zero radius) to cycles. This topic is hinted at in pp.
155-156. (b) Outline the theory of the “most general” cyclic transformations
of the Galilean plane which map cycles, including lines (viewed as cycles of
zero curvature) and points (viewed as cycles of zero radius) to cycles, and
preserve contact of cycles (cf. Part C of [31] dealing with plane Euclidean
geometry; [31] contains references to the literature).

XIV Discuss the concepts and results of this section in the setting of three-dimen-
sional Galilean geometry (cf. Exercise 5 in the Introduction).

XV  Discuss the issue of Problem XIV in the setting of three-dimensional semi-
Galilean geometry (cf. Exercise 5 in the Introduction).

38Cf., for example, Part B of [29]; Problems VIII and X in Chap. I; Chap. II, Section 5 of [13];
or Appendix 6.I in [32]. For the suggested constructions in Galilean geometry, see [35].
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XVI Outline the theory of quadric curves in the Galilean plane (i.e., curves given
by equations of the form F(x,y)=0, where F(x,y) is a quadratic poly-
nomial). List the various types of such curves and describe them geometri-
cally.

XVII Outline the theory of quadric surfaces (a) in three-dimensional Galilean
space; (b) in three-dimensional semi-Galilean space (cf. Exercise 5 in the
Introduction).



Conclusion

11. Einstein’s principle of relativity
and Lorentz transformations

In Section 2 of the Introduction we formulated the Galilean principle of
relativity as follows. No mechanical experiments conducted within a physical
system can disclose a uniform motion of this system (cf. p. 18). This implies
that no experimentally observable property of the system is changed when the
velocity of the system is changed by the addition of a uniform velocity. When
we deduced the formulas describing a Galilean transformation we used
this principle and, implicitly, another fundamental condition which we
propose to discuss in detail.

The Galilean principle of relativity put an end to the concept of
“absolute” space, fixed by its very nature, relative to which it would be
possible to determine the position and velocity of material bodies. Galileo
declared an equivalence of all reference frames moving relative to each
other with uniform velocity which rendered meaningless the concept of
“absolute” rest. Isaac Newton wrote in his immortal “Principia” that
“Absolute space, in its own nature, without relation to anything external,
remains always similar and immovable.” But he then went on to say, in
what is virtually a quotation from Galileo, that “...because the parts of
space cannot be seen, or distinguished from one another by our senses,
therefore in their stead we use sensible measures of them,” i.e., measure-
ments carried out in the “relative,” moving space. Newton then deals a
final blow to the concept of absolute space: “For it may be that there is no
body really at rest to which the places and motions of others may be
referred.”! Thus Newton’s absolute space is a figment of the imagination;
it cannot be apprehended by observation or experiment and is superfluous
for a precise formulation of the laws of nature.

1See Newton [16].




11. Einstein’s principle of relativity and Lorentz transformations 159

Figure 142

Matters are different when it comes to time, the second basic concept
connected with our perception of the universe. True, Newton deliberately
links the two concepts: “Absolute, true, and mathematical time of itself
and from its own nature flows equably without relation to anything
external, and by another name is called duration...” (compare this for-
mulation with his formulation of the concept of absolute space); but he
adds almost immediately that “It may be that there is not such thing in
nature as an equable motion, whereby time may be accurately measured.”?
Nevertheless, both Galileo and Newton always asumed the existence of
absolute time not linked to any frame of reference (we are ignoring the
freedom of choice of the initial moment for which 7=0) and flowing the
same way at all points of the universe. Following A. EINSTEIN (1879-1955),
we shall now analyze the assumptions underlying the belief in the absolute
nature of the concept of time.

Let A and B be two points on a line o which are at rest with respect to
each other (Fig. 142). Relative to a given reference frame, 4 and B may
either be at rest or in motion. However, this is of no consequence, for the
very choice of a reference frame is arbitrary and cannot be motivated by
physical considerations. Observers at A and B have clocks which enable
them to measure time at these points. OQur problem is to establish the
absolute nature of time, independent of A or B after “absolute synchroni-
zation” of the clocks of our observers.

There are two ways of synchronizing the clocks at 4 and B. One is to
synchronize the clocks at A4, say, and to transfer one of them to B; this
imitates the procedure followed by ships, which are equipped with chro-
nometers whose movements are regulated before leaving port by compari-
son with a land-based “standard” clock. This method of synchronization
of clocks is basically unsatisfactory, since it merely establishes the fact that
the clocks were synchronous when they were both at 4 but not that they
are synchronous when they are at 4 and B, respectively (after all, it is
conceivable that mechanical displacement affects the movement of a clock
and that while the clock is transferred from 4 to B it slows down or speeds
up). The other way is to set a clock at B by means of signals from A4 (just
as the time indicated by a clock on a ship is checked against “standard
time” readings radioed from land). But it takes time for a signal from A4 to
reach B. Accurate determination of that time requires knowledge of the
distance from 4 to B and of the speed of propagation of the signal. For
accurate determination of the speed of propagation of the signal we must
have synchronized clocks which give the time at different points. Thus our

2See Newton [16].
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second method of synchronization of clocks also leads to logical circularity
and is just as unsatisfactory as the first.

We could, of course, agree to transmit a signal from the midpoint S of
the segment 4B and set the clocks when the signal reached 4 and B.
However, this procedure assumes that 4 and B are at rest. If both points
moved in the direction indicated, say, by the arrow in Figure 142, then the
signal from the “midpoint” S would reach 4 before reaching B. Now our
earlier discussion stressed the fact that the assertions “4 and B are at rest”
or “4 and B move uniformly” have no physical meaning, i.e., the validity
of one or another of these statements cannot be checked by means of a
physical experiment. This being the case, the problem of whether the
clocks at A and B are synchronous or not remains unresolved.

A related difficulty is involved in the determination of the order of
events which take place at different points A and B of the line o. Earlier we
associated to each point of 0 a “time axis ¢.” We represented these axes as
parallel lines (cf. Fig. 143). We assumed that we could associate to a
moment §" at 4 a number 7 on the time axis t®. It is then natural to
regard moments at B preceding £§®) as preceding 1§ and, similarly,
moments at B following #§%’ as following £{". Now we might ask, how well
founded is the assumption implicit in the above procedure about the
possibility of “absolute ordering” in time of two events which take place at
different points of o.

Let us consider the issue in some detail. If a signal (or letter or telegram)
is sent from B to 4 at time #{®) and arrives at 4 at £§", then any event at B
preceding #{®) must be thought of as preceding #{* (otherwise an observer
at A might receive information about an event at B before its occurrence,
and this would violate the principle of causality which asserts that a
consequence of an event cannot precede the event). Similarly, if a signal is
sent from A to B at ¥ and arrives at B at #{%), then an event at B
following #£# must be thought of as following £{. This leaves unde-
termined the time order of events at B between #{%) and #?® relative to the

Figure 143
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event which occurs at 4 at £§". If we had at our disposal a faster signal,
then we could shorten the interval of indeterminacy (#£&),£%) at B
associated with the moment £§® at A (the broken lines £%§" and ¢§V£® in
Fig. 143 correspond to the faster signal). Given signals or arbitrary speed,
we could order in time any two events occurring at different points 4 and
B of o and reduce the interval of indeterminacy to the single moment 5%.
In this way, we arrive at the concept of simultaneity of events implicit in
the preceding part of the book (see, in particular, Sec. 2 of the Introduc-
tion). On the other hand, if there is a signal of maximal speed, then the
corresponding interval of indeterminacy (£%, %)) (see Fig. 143, where the
broken heavy lines £2%§" and {6 correspond to the signal of maximal
speed) cannot be shortened, i.e., Newton’s absolute (place-
independent) time is just as much a figment of the imagination as his
absolute space.

A ray of light is the fastest known signal. But is it also the fastest
possible signal? This question was answered by a physical experiment.

It is clear that in the mechanics of Galileo and Newton there can be no
signals of maximal speed. In fact, the classical law of composition of
velocities (cf., in particular, Sec. 4, pp. 48—49) shows that if a signal moves
from A4 along o with speed ¢ and a signal receiver B moves along o towards
the signal with speed v (cf. Fig. 144), then the speed of the signal relative to
B is ¢+ v, which is greater than c. In particular, the speed of light would
vary depending on whether the light receiver moved towards or away from
the signal or was at rest.

In view of these considerations, the results of refined experiments
carried out in 1881 by the eminent American physicist A. A. MICHELSON
(1852-1931), [and repeated in even more conclusive form in 1887 by
Michelson and his colleague, the chemist E. W. MoORLEY (1838-1923)]
were truly astonishing. These experiments showed that the speed of light is
the same in all inertial systems and is independent of the direction of the
motion of the (moving) reference frame relative to the ray of light.> The
Michelson—-Morley experiment undermined the view of the universe based
on the principles underlying the mechanics of Galileo and Newton.

In 1905, Einstein explained the results of the Michelson—Morley experi-
ment by postulating a new foundation for mechanics. Specifically, Einstein
accepted the Galilean principle of relativity in the form in which we
restated it in the beginning of this section, but completely rejected the
existence of absolute (i.e., space-independent) time and replaced it with the

£ o <Y
A B o
Figure 144

3A description of the Michelson—Morley experiment is found in virtually every book dealing
with the special theory of relativity (cf. the Bibliography).
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Figure 145a

assumption of constancy of the speed of light (i.e., its independence of the
selected inertial reference frame). Thus Einstein’s principle of relativity
consists of two postulates, one of which asserts the equivalence of all
inertial reference frames (a postulate first advanced by Galileo), while the
other asserts the constancy of the speed of light in all inertial reference
frames.* The latter postulate is inconsistent with the mechanics of Galileo
and Newton based on the Galilean transformations (13), p. 23. The
transformations associated with the mechanics of Einstein are the so-called
Lorentz transformations, first obtained (in another connection) by the
eminent Dutch physicist H. A. LorRENTZ (1853-1928).

We shall now derive the Lorentz transformations. We shall retain the
geometric setting used in deriving the Galilean transformations of classical
mechanics, and thereby introducing Galilean geometry. Specifically, we
choose a reference frame on the line o and associate to each (space—time)
event of one-dimensional kinematics (kinematics on the line ¢) the point of
the plane with coordinates x (the abscissa of the appropriate point on o)
and ¢ (time); as before, the axes Ot and Ox are assumed to be horizontal
and vertical, respectively (Fig. 145). We choose units OX, and OT, of
length and time so that the speed of light ¢ is 1. This means that if the unit
of time is one second, then the unit of length is about 300,000 kilometers
(since the approximate speed of light is 300,000 km/sec). The line / in
Figure 145 whose equation is

x=t or x—t=0

represents the trajectory (or “world line) of a ray of light propagating with
speed ¢=1 in the direction of increasing x from the event O(0,0) corre-
sponding to the initial moment =0 and the origin x=0 on o.

In addition to the inertial coordinate system {x,}, we consider another
inertial coordinate system {x’,#'} whose origin coincides with the old
origin at £=0 but moves along o with velocity v. Thus the origin x’=0 of
the new coordinate system is given in the old coordinate system by the line
Or', whose equation is

x=uvt.

4Similarly, Galileo’s principle of relativity consists of two postulates, of which one asserts the
equivalence of all inertial reference frames and the other asserts the absolute nature of time.
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Figure 145b

In the mechanics of Galileo and Newton, the transition from the reference
frame {x,t} to {x’,#'} is characterized by the transition from the axes
0Ot,0x to Ot,0x’= Ox (Fig. 145a). The transition from the coordinates
(x,1) to (x',¢) is given by the Galilean formulas®

x'=x—uvt,
r'= t (1)

[here we ignore the constants @ and b in Eqs. (13) of Sec. 2, which reflect
the possibility of changing the initial point x=0 on o and the initial
moment ¢=0]. However, in the new reference frame the speed of light (the
Galilean angle between the line / in Fig. 145a and the ¢’-axis) is no longer 1
but 1—v, and this contradicts the outcome of the Michelson—Morley
experiment.

If our transformations are not to contradict the postulate of the con-
stancy of the speed of light, then we must eliminate the concept of absolute
time, which is expressed geometrically by the invariance of the x-axis (the
axis t=0). In other words, a Lorentz transformation must involve a
transition from a coordinate system {x,¢} to a coordinate system {x’,#'}
where both new axes Ot and Ox’ have directions differing from those of
the old axes Ot and Ox (Fig. 145b). The invariance of the speed of light
means that if the unit segments OX; and OT; on the axes Ox’ and O¢
have, as before, the same (Euclidean) length, then the world line of a ray of
light is given by the same line /. This implies that the axes O and Ox’
must form equal (Euclidean) angles with the axes Ot and Ox, i.e., Z tOt' =
£ x'Ox=g. The latter conclusion follows from the equivalent require-
ments: the line / must bisect the angle # Ox’; the equation of / must be of
the form

’ 4

x'=t or x'—¢=0;

SHere v denotes the velocity of O relative to O. On p. 23, v denotes the velocity of O relative
to O’. (Translator’s note.)
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the speed of light in the {x’,1'} reference frame must have the value 1.

We shall now derive the connection between the old coordinates (x,7) of
an event S and its new coordinates (x’,#’) (Fig. 145b). The coordinate x is
equal to the length d(MS) of the segment MS measured in terms of the
unit of length OX,, on Ox. The coordinate x’ is equal to the new length
d’(M'S) of the segment M’S measured in terms of the unit of length 9).¢4
on Ox". If we recall that the equation of the line Ot in the coordinate
system {x,r} is x=vt, then it is clear that d(M,S) (the length of M,S
measured in terms of the unit OX,) is x—vt. Further, the ratio
d'(M’S)/d(M,S) depends on the angles Z M'SM,=/ x'Ox (=¢) and
LMM'S= /¢ 0x'5 and on the units OX, and OX} on Ox and Ox’ but is
independent of the event S. Hence if we denote by k the quotient
d'(M’'S)/d(M,S) (i.e., x’/x—vt), then we have’

x'=k(x—ot). (22)

The connection between the new time coordinate ¢ of an event S and
its old coordinates (x,7) is found in much the same way: Figure 145b
shows that

t=d(NS), t¢=d'(N'S),
where the lengths d(NS) and d’(N’S) are measured in terms of the units
OT, (= OX,) and OT; (= OXy). The similarity of the triangles ONN, and
OMM, (these are right triangles in Fig. 145b) implies the equality
d(NN,) _d(MM,)
d(ON) = d(oM)’

where all lengths are measured in terms of the same unit OX,= OT,. This
equality can be written as

d(NN,) ot
X t’
Hence
d(NN,)= thx=vx,

and therefore
d(N,S)=d(NS)—d(NN,)=t—ox.
In view of the similarity of the triangles SN'N, and SM’'M, (and the
equalities OT;= OX; and OT,= OX,) we have
d'(N'S) _d'(M’S) t
= = =k.
AN:s) ~ds)

t—ox

0f course, in Figure 145b, we have /1#Ox'=x/2—2¢, so it is redundant to say that
d'(M’S)/d(M,S) depends on both / x’Ox and Z ¢ Ox’. Presumably, the author is anticipat-
ing the general case, where Ox is no longer perpendicular to Ot. (Translator’s note.)

"We note that Eq. (2a) differs from the first of the formulas (1) which give the classical
Galilean transformation by the factor k. (In general, this factor depends on the velocity v of
the new reference frame with respect to the old. In turn v determines the “angle” ¢ between
Ot and O¢'))
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This yields the second equation of the Lorentz transformation:
t'=k(t—ovx). (2b)
Before going further, we note that Eqgs. (2a) and (2b) imply a surprising
fact. Consider a rod of length § at rest in the reference frame {x,¢}.
Suppose one end of the rod is at the point x =0 of the line ¢ and its other
end at the point x=4§ of o. In Figure 146, the world lines of these two
points are represented by the lines Ot and e, where e||O¢ and e intersects
Ox at E(8,0). Let us now measure the length of our rod in the reference
frame {x’,#'} relative to which it moves with speed v (with velocity — v if
we take into consideration the direction of motion). To determine the new
length of the rod we must determine the x’-coordinates of both its ends at
the same moment ¢, say, at #'=0. This amounts to finding the x’-coordi-
nates of the points O and E’ in Fig. 146. The coordinates (x’,¢) of O are
(0,0). To determine the coordinates of the event E’, we put # =0 in (2b)
and obtain ¢= vx. Further, for E’ we have x=4§ (x=4 is the equation of
the line e), and therefore ¢=0vd. Substituting these values for x and 7 in
(2a), we obtain

x' = k(x—vt)= k(8 — v%8) = k(1—v?)8.

Thus at =0 the space coordinate of our rod is x’= k(1 —v?)8. Therefore,
its length &’ in the reference frame {x’,#'} is
&' =k(1-10%)8. 3)

The above argument shows that the length of a rod depends on the
reference frame in which it is measured.

Suppose that {x’,#'} is the reference frame of a physicist’s laboratory,
while {x,¢} is a reference frame fixed in the rod R. Then R is at rest with
respect to {x,¢}, but is moving with speed v with respect to {x’,¢'}. We
have just seen that if R has length 8 with respect to {x,¢}, then it has
length k(1 — v%)8§ with respect to {x’,#'}. In other words, if 8 is the length of
a rod R when at rest, and if R moves with speed v relative to an observer
in a laboratory, R will appear to him to have length k(1 —v?)8. Here k is a

z z!
EJE
e
' /d,/rt'
0 ~i

Figure 146



166 Conclusion

constant which depends solely on v. We will determine the precise value of
k in a moment, and in particular we will show that k(1 —v?)<1. This
means that a moving rod appears to be shorter than the same rod at rest.
The possibility of contraction of moving objects was first envisaged by the
Irish physicist G. F. FirzGeraLD (1851-1901), who thought of it as a
formal way of reconciling the results of the Michelson—Morley experiment
with Galilean mechanics. Accordingly, the change by the factor k(1 — v?)
of the length of an object moving with speed v is known as the Fitzgerald
contraction.

We now invert Egs. (2a) and (2b), i.e., we express the old coordinates
(x,7) of an event in terms of its new coordinates (x’,#). Leaving (2a)
essentially unchanged and multiplying both sides of (2b) by v, we obtain
the equations

x'=kx — kot, ot’ = kot — ko>x.
Addition of these equations yields

x'+ot' =k(1—0*)x.
Hence
1
x=——(x"+0t). 2'a
e @2)
Multiplying both sides of (2a) by v and leaving (2b) essentially unchanged,
we obtain the equations

vx'=kox—ko*,  t=kt—kox.
Addition of these equations yields
ox'+t'=k(1—0)t.

Hence

p— 1 ’ x' ’
t= _———k(l—uz) (¢ +ox). (2'b)

We compare Equations (2a) and (2b) with their inverses, (2’a) and (2'b).
If we write Egs. (2') in the form

x=k'(x'=0vt), t=k'(f—0v'x),

then ¢’, the velocity of {x,7} relative to {x’,#'}, is the negative of v, the
velocity of {x’,¢'} relative to {x,7}. On the other hand,

1
kK= —— 4
k(1-0% @)
The length of a rod R at rest with respect to {x’,#'} is multiplied by
K (1-v?) (3)

with respect to {x,¢} (relative to which R moves with speed v). But we saw
earlier that when a rod moves with speed v, its “rest length” is multiplied
by k(1—v?). Hence k(1 —v%)=k’(1—v?), so that k=Kk’. Substituting this
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into (4), we obtain
1 1
k= , k= ——7—. &)
1-0? V1-1v?
In particular, the Fitzgerald contraction coefficient in (3) is less than one,
since

1
k(1—02)=; =Vi-v*.
Thus the length of a moving rod is actually less than its rest length:

8=VI1-0?-4. (62)
Substitution of the value (5) of k in (2) yields the Lorentz transforma-
tion formulas

, x— vt
x'= —
l1-v
7
p —ovx+1t ()
1-0?

In 1905, Einstein adopted Egs. (7) as the foundation of mechanics. The
change from the Galilean transformation (1) to the Lorentz transformation
(7) implied many baffling physical phenomena which were a serious
obstacle to the general acceptance of the theory of relativity. One such
phenomenon was the Fitzgerald contraction (6a) of moving objects.
Another was the stretching (or contraction) of time as a result of motion.
The latter hypothesis, which we are about to discuss, was due to Lorentz,
who thought of it as a complement to the Fitzgerald contraction hypothe-
sis. Both hypotheses antedated the theory of relativity and thoroughly
confused physicists and philosophers. Coming before Einstein’s rejection
of the concept of absolute time, the formal constructs of Fitzgerald and
Lorentz were entirely baffling.

To clarify the effect of stretching (or contraction) of time we consider
two observers H and H’ whose frames of reference are {x,¢} and {x’,¢'},
respectively. Each observer has a clock indicating time in his own frame of
reference. Let (0,7) be a time interval of length 7 in {x,¢}. The time =0 is
given by the world line Ox (Fig. 147a) and the time t=r by the world line
f11Ox which intersects Ot at F(0,7). Suppose that at ¢ =0 the observer H’
is at the point x =0 of o. This means that the space—time position of H’ is
given by the point O in Figure 147a. In {x’,#'}, the time #'=0 is repre-
sented by the world line Ox’ whose points correspond to all events that are
simultaneous with O from the point of view of H’. Similarly, from the
point of view of H’, the events simultaneous with F are represented by the
points of the line f* passing through F and parallel to Ox’. The coordinates
of Fin {x,t} are (0,7) and its coordinates in {x’,7'} are

, - o7 T

xX'=——————— and ¢=

1-v?
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[cf. (7) above]. Thus from the point of view of the observer H’, F occurs at
time 7/V 1-10? >, i.e, later than from the point of view of the observer

H. This means that the time interval separating the events O and F, which
has length T for H, has the greater length

1
R — O (6b)
V1-v?

Jor the observer H' moving with velocity v relative to H.

The seemingly paradoxical relation (6b) can be deduced in another way.
Consider a thin rod 4B of length 7 moving with velocity v in the direction of the
line o perpendicular to AB (cf. Fig. 147b representing the plane xOy of the motion
of the rod; our figure does not include a time axis). For an observer H at rest
relative to the rod, a light signal will traverse the rod from 4 to B in time 7 (the
speed of light is taken as 1). From the point of view of an observer H’ at rest with
respect to the reference frame relative to which the rod is in motion, the path of the
light signal from 4 to B (or rather to B’, the position of B when it is reached by the

light signal from 4) is
AB'=\[(4B)*+ (BB} =\Jr*+(vr')’ ;

here BB’=uvt’ is the path traversed by the point B moving with velocity v during
the time 7’ which elapses, in view of the observer H’, between the moment the light
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11. Einstein’s principle of relativity and Lorentz transformations 169

signal leaves 4 and the moment it reaches B. [It should be noted that since the rod
does not move in the direction 4B, its length is the same for both observers; cf.
(10), p. 173.] Since the speed of light has the same value 1 for the observers H and
H’, the time 7’ (as measured by the clock of H’) taken by the ray of light to
traverse the path

AB' =\ 72+ 0%

is numerically equal to that path. Thus

=Vri+o%?, e, t?=1+0%"?

or

= (6b)

The above argument is particularly surprising when presented in the
form of the so-called “twin paradox” which even today, after a detailed
explanation given by Einstein more than half a century ago, is sometimes
subject to false interpretations. Thus suppose that our observers H and H’
are twins and that H stays at the point x =0 of o associated with the origin
of the reference frame {x,¢}, while H’ moves with respect to H with
“cosmic” velocity v. Let Ot in Figure 147a be the world line of H', i.e., the
line x=vt. At time 7 by the clock of H, i.e., beginning with the point
F,=0¢'nf, H' changes the direction of his motion and begins to approach
the (fixed) observer H with velocity v. Equivalently, H' now moves relative
to H with velocity —v. Now the world line of H’ is F, ¥, which is parallel
to Ot,, the mirror image of O¢ with respect to Ot¢. The twins meet at the
point x =0 of o. The corresponding space—time moment is ¥'= 0tN F,V in
Figure 147a.

It is clear that by the clock of H the time elapsed between the events O
and V is

7+ 7=27 units of time.
If we go by the clock of H’, the corresponding time interval is different.
Specifically, the time coordinate of F, in {x,¢} is t=7 and, since it lies on
Or¢', its space coordinate is
X =0T.
But then the second equation in (7) implies that the time coordinate of F,
in {x',t'} is

02,

V1i-10? V1—19?

i.e., the time coordinate of F, from the point of view of H' is TV 1—0? .
The time of passage from the world point F, to the world point ¥ must “fit
in” with the frame of reference {x,,#,} (Fig. 147a) relative to which H" is
now at rest. Considerations of symmetry show that in passing from the
world point F, to the world point ¥ the observer H' ages by

7V 1—0? units of time

2 2
, vir+r _ (1 v)___T =
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(check by a direct computation). Thus the trip of H’ from the world point
O to the world point V takes

1-0v?2 +7V1—=02 =27V 1—0? units of time.

Since 27V 1—0v? <21, it follows that after his return H’ is younger than
his twin brother.

It is clear that actual experimentation along these lines would require
spaceships moving with speeds close to that of light and physiques capable
of sustaining the stresses caused by the tremendous accelerations involved
in launching, stopping, and almost instantaneously reversing direction at

“the world point F,. However, a far more important point is that the above
result cannot in principle be used to lengthen the human lifespan. This is
due to the fact that all physical and physiological processes in a “moving”®
medium transpire in accordance with the “indigenous time” of the

medium; the trip takes precisely 27/=27V 1—v? time units of the life of
H'. One faulty interpretation of our result invokes the equivalence of all
inertial systems. Careless opponents of the theory of relativity tend to
argue that “H also moves with respect to H’, and when they meet it is
equally correct to argue that it is H who is younger than H’.” This
argument overlooks the fact that the frame of reference of H’ is not an
inertial reference frame, as witness his instant change of direction at the
world point F, (see the above discussion of the resulting acceleration and
the associated inertial stress). It is thus simply incorrect to speak of the
equivalence of the reference frame {x,7} of H and the “reference frame”
{x',)={x,,2,} of H' 2

8The quotation marks are intended to emphasize the relative nature of the term which is
meaningless without involving a reference frame; here we use the term to reflect the view of
the twin H.

821t seems difficult to find two people who agree as to the correct explanation of the twin
paradox. So it is perhaps not surprising that the editor finds himself uneasy over the remark
about physiological process in a “moving” medium transpiring in accordance with the
“indigenous time” of the medium. With considerable trepidation, he offers the following
alternative explanation of the paradox. It at least has the merit of remaining within the
framework of the special theory of relativity, which deals only with unaccelerated motions.

. Let us imagine three observers H,, H,, and H;. For convenience we will carry out our
calculations in a reference frame in which H, is stationary and situated at the origin. Suppose
that in this frame H, moves according to the equation x=uv¢ (v>0), while H; moves
according to the equation x = —v(t—2T), where T is a constant. Then at time :=0, H, is at
the origin, while H, is at a point 207 units to the right of the origin. Moreover H, moves to
the right with speed v, while H; moves to the left with speed v. Suppose that as H, moves past
H, at time ¢=0, they synchronise their watches. From the viewpoint of H,, observers H, and
H; meet at time ¢=T. (This is found by setting vf=— (¢ —2T) and solving for t.) At this
moment the reading on H,’s watch is 7V 1—v? . Now suppose that H; synchronizes his
watch with H,’s as they pass one another; thus Hj sets his watch at a reading of TV1—102.
Then H; continues moving to the left, and after the elapse of an additional time of T units in
H,’s frame, he passes H,. The reading on his watch at this moment is TV1—0? + TV1—1¢?
=2TV1-9v%.

This formulation does not really seem very paradoxical. For one thing the observer who
“comes back” is not the same as the observer who “went away.” Also, there is no problem
with symmetry since we are dealing with three observers, not two. (Editor’s note.)
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We shall now discuss the Einsteinian law of composition of velocities.
First, however, we remind the reader of the corresponding relation in
Newtonian mechanics. Let {x,¢} be a fixed reference frame and let {x’,'}
move relative to {x,¢} with velocity . Let 4 be an object moving with
velocity v in {x’,#'}. We wish to determine the velocity w of 4 relative to
{x,t}. The quantities v,u,w are, respectively, the “relative velocity,”
“transport velocity,” and “absolute velocity,” of A. In the mechanics of
Galileo and Newton these velocities are connected by the relation (cf. pp.
48-49)

w=u+o. (8)
To determine the corresponding law in the theory of relativity we argue
as follows. Let a (Fig. 148) be the world line of 4. Let O and S be the
positions of 4 whose coordinates in {x’,#'} are (0,0) and (§’,7"). Since
the velocity of 4 in {x’,#'} is v, we have 8§’ /7' =0, and thus 8’=vr’. The
coordinates of the point (event) O in {x,¢} are also (0,0) and the coordi-
nates of S in {x,¢} can be determined from (7) by setting x'=48’, ¢'=7/,
v=u, and solving for x,y. This yields
8 +ur’ ud’ + 1
x=——— and f=———.
V1-u? V1-u?
These relations imply that in time 7=(u8’+1)/V1—u?, A traverses the

distance § =(8"+ur")/ V' 1—u? . It follows that the velocity of 4 in {x,}
is

_(8'+ur)/V1-uw? _ §4ur’ _or'+ur’ _ u+tv
h (u8’+‘r’)/\/i_:—u—2 T ub+7  wor'+7 w+l’
Thus the relativistic counterpart of Eq. (8) is the equation
we ut+o
w+1’
In particular, if 4 is a ray of light for which v=1, then

u+l
wl+l1

4
W= —
T

©)

=1

Figure 148
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In other words, the speed of light is invariant in all inertial reference frames.

We note that the presence of the term V' 1—0? in the Egs. (7) of a Lorentz
transformation shows that there can be no signals whose speed of propaga-
tion exceeds the speed of light (i.e., signals for which v >1).

We conclude this section with a further exploration of the topic of
simultaneity and of the concepts of “before” and “after” in the theory of
relativity. Since the velocity of an inertial frame {x’,#'} relative to an
inertial frame {x,¢} is subject to just one restriction (namely, that its
absolute value must be less than the speed of light, 1), the axis Ot of the
“moving” frame can occupy any position in the angle mOn (Fig. 149). Two
events S and S, in some reference frame {x’,#'} are simultaneous if they lie
on a line parallel to Ox’. Hence an event R represented by a point
belonging to one of the two shaded angles nOm, and n,Om is simultaneous
with O relative to a suitably selected (inertial) reference frame {x’,#'}. For
a different choice of reference frame, R may either precede O (this applies
to the frame {x,,#} in Fig. 149) or follow it (this applies to the frame
{x2,1,} in Fig. 149). On the other hand, mOn and m,On, represent the
“absolute future” and “absolute past” of O, respectively. Two events R,
and R, can be causally connected only if one of them (the “cause” R,)
absolutely precedes the other (the “effect” R,; cf. Fig. 149). In particular, if
Ot and p,p,||Ot are the time axes corresponding in some frame of
reference {x,7} to the origin and to some point M of the line o, then,
relative to the event O, all events at M belong to one of three classes: the
class of points of the ray P,p, representing the events preceding O, the
class of points of the ray P, p, representing the events following O, and the
class of points of the segment P,P, representing the events that are
“time-neutral” relative to O. Depending on the choice of reference frame,
each of these last events may occur before O, at the same time as O, or
after O (compare Figs. 149 and 143). It is clear that the causes of O are just
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the events represented by the points of the ray P,p, and the effects of O are
Jjust the events represented by the points of the ray P, p,.

Experimental verification of relativistic effects in the range of com-
monly encountered speeds is difficult because of the fact that for such
speeds the coefficient k=1/V1-0? in Equations (2a), (2b) or in (7), and
the Fitzgerald contraction coefficient V1—0? are very close to 1 (the

value we have assigned to the speed of light). Thus, for example, if v~1000
km/hr~.3 km/sec~.000001 of the speed of light (which is the speed of

some jets), then k=1/V1—0? ~1.0000000000005 and V1-v* ~
.9999999999995. But in nuclear and particle physics, as well as in astro-
physics, we routinely encounter speeds close to the speed of light, and in
such cases ignoring Einstein’s theory of relativity may lead to serious
errors. We shall return to this issue in Section 13.

It should be noted that in classical physics the Galilean principle of relativity
applies solely to mechanical phenomena. This is connected with the fact that the
fundamental laws of mechanics (Newton’s famous laws of motion) are invariant
(i.e., retain their form) under Galilean transformations (1). On the other hand, the
fundamental laws of electromagnetics, i.e., the laws (or equations) of Maxwell, first
stated in 1864 by the great English physicist J. C. MAaxweLL (1831-1879) and
forming the cornerstone of his “Treatise on Electicity and Magnetism” (1873), are
invariant with respect to Lorentz transformations (7) but not with respect to
Galilean transformations (1). It follows that the Galilean principle of relativity is
not applicable to electromagnetic phenomena (including the propagation of light,
which Maxwell’s theory linked to electromagnetism). Such considerations were the
basis of the thinking of the great French mathematician and physicist H. POINCARE
(1854-1912), who arrived at some of the ideas of the (special) theory of relativity
independently of, and simultaneously with, Einstein (i.e., in 1905).

A final observation. So far we have discussed the Einsteinian principle of
relativity and Lorentz transformations only in the context of “one-dimensional”
kinematics, i.e., kinematics of motions on a fixed line o. Clearly, the Einsteinian
principle of relativity as formulated on p. 162 is applicable to plane-parallel
(two-dimensional) as well as to arbitrary (three-dimensional) motions. The transi-
tion from one inertial frame of reference to another is governed by more complex
Lorentz transformations of a three- and four-dimensional space of events, respec-
tively. In the special case when the “moving reference frame” {x’,y’,z’,#'} and the
“fixed reference frame™ {x,y,z,¢} are at all times related in the manner illustrated
in Figure 150 (Ox=0'x’, O'y’|| Oy, O’z'||Oz), the corresponding Lorentz transfor-
mations take the simple form

, 1 v
X = X - t,
1—ov? 1-0?
y'= Vs
Z'= z, (10)
v 1
r=———x +—,
V1—10? V1-1?

where v is the velocity of the moving reference frame relative to the fixed reference
frame.
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PROBLEMS AND EXERCISES

1 A square is moving in the direction of one of its sides with velocity 0.9 (in terms
of the units adopted in this section). Compute the angle between the diagonals
of the (moving) square.

2 A solid moves in space with uniform velocity v. What is the effect of this
motion on the volume of the solid?

3 In the theory of relativity, a “distance” between two events A(x,t) and B(x,,t))
is defined as the quantity v,p=V82—12, where §=x,—x is the “space
distance” and r=|¢, |, the “time distance” between 4 and B. Show that » is
independent of the inertial frame in which 4 and B are considered.

4 A scientist aged 50 left for an interstellar voyage. After 41 years (relative to a
reference frame tied to the fixed stars) he landed on a planet 40 light years away
from the earth. Compute the age of the scientist at the time of his arrival on the
planet. [Hint: use the result of Exercise 3.]

I Consider the three-dimensional Galilean geometry defined in Exercise 5 of the
Introduction. Its motions are given by Equations (12) or (12) (pp. 20 and 30,
respectively). Compare this geometry with three-dimensional Minkowsian ge-
ometry (See Supplement A; in particular, pp. 221 and 227). Now discuss the
geometry of plane-parallel motions in classical Newtonian mechanics and in the
(special) Einsteinian theory of relativity. (Newtonian plane-parallel motions are
discussed in Section 2 of the Introduction.)

12. Minkowskian geometry

We saw above that the transition from the Galilean to the Einsteinian
principle of relativity amounts to replacing the elementary Galilean trans-
formations of classical mechanics

x'=x—uvt,

= 1, (1)
which govern the transition from one inertial frame of reference to
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another, by the somewhat more complicated Lorentz transformations

,_ xX—vt

1—v? (7
—ox+t
V1-—1¢?
We devoted the first ten sections of this book largely to the study of the
geometric system consisting of the plane {x,¢} and the motions (1). We
called this system “Galilean geometry” and pointed out that each of its
theorems could be interpreted as a fact about (Newtonian) kinematics on a
line o. Given the significance of the Lorentz transformations (7), it is quite
natural for us to study the geometric system consisting of the plane {x,¢}
and the motions (7). This geometric system, usually referred to as (pseudo-
Euclidean) Minkowskian geometry,” was first investigated by the eminent
German mathematician and physicist H. Minkowsk1 (1864—1909) who in
the years 1907—1908 suggested its use for the description of the phenomena
of relativistic mechanics.

The motions of the Galilean plane are given by the transformations

(1)

The differences between (1) and (1) are a change of notation (z,x are
replaced by x,y with x playing the role of time ¢ and y playing the role of
the abscissa x of a point on the line 0) and also a difference in scope, in
that the transformations (1’) include the translations

r'=

xX= x +a.
y'=vx+y+b

x'=x+a, (1a)
Y'=y+b,
which correspond to changes in the “time origin” and “space origin” on o.

Similarly, Minkowskian geometry is defined as the study of the properties of
figures in the x,y plane which are invariant under the motions

1 v
x'= —x— —y+a,
Vl_vz vl—02 (ll)
, v

y'= y+b,

1
V1-10? V1-—10?

where v, a, and b are arbitrary parameters of the motion. Again, the
differences between (7) and (11) involve notation (¢,x are replaced by x,y
with x playing the role of time ¢ and y playing the role of the abscissa x of
a point on the line 0) and scope, in that the transformations (11) include
the translations (la), which correspond to changes in the time origin and

9The term “pseudo-Euclidean” reflects the closeness of Minkowskian and Euclidean geome-
try. We shall see below, however, that the assertions of Euclidean geometry are sometimes
altered in Minkowskian geometry in a singular manner.
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space origin on o. The rest of this section is devoted to a sketch of
Minkowskian geometry with hardly any mechanical interpretations of this
remarkable geometry in terms of special relativity.

In Minkowskian geometry we use two types of point coordinates, (x,y)
and (X, Y), connected by the relations

1 1
= , Y=——(— ,
X 7 (x+y) v (—x+y)

or equivalently,
1
V2

(Fig. 151). Addition and substraction of the equations in (11) enables us to
express the motions of the Minkowskian plane in terms of the coordinates
X and Y. Specifically,

(X- ), y=-—\/%(X+ Y) (12)

\/EX/= 1_0 X_Y+ 1_0 X+Y+(a+b),
Vi-p?2 V2 Vi-o? V2
VIy=-_1tv X-Y_ _ I+o X+Y —a+b),

Vi V2 Vice va T4t
or
X'= AX +4,
Y'= 1Y +B, (11a)

where A=VI-0 /VI+0o =(1—-0)/V1-02 (so that 1/A=
Vito /VI—0o =(1+0)/V1-02), A=(a+b)/V2, and
B=(—a+b)/ V2. The motion (11a) can be regarded as the transforma-
tion

X,=\X,
(13a)

Figure 151
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Figure 152

which represents a product of two compressions'® [a compression with axis
OY and coefficient A and a compression with axis OX and coefficient 1/A
(cf. Fig. 152, where A <1< 1/A)] followed by the translation

X'=X,+4,

Y'=Y,+B. (13b)
The transformation (13a) plays the role of a rotation in Minkowskian
geometry. For reasons given below, when viewed as a transformation of

the Euclidean coordinate plane { X, Y}, (13a) is called a hyperbolic rotation.
In terms of the {x,y} coordinates, it takes the form

, 1 v
x'= x— Vs
V1-v? V1-—10? (13)
1
y'=

= ° x+

V1-1v? V1-—1v? g
[compare (13) with Egs. (7) of a Lorentz transformation].

By an argument similar to that employed in Section 3, Chapter 1 in
connection with shears (cf. p. 54), one finds that a compression, and thus
also the transformation (13a), maps lines to lines and parallel lines to parallel
lines, and preserves the ratio of collinear (or parallel) segments. Thus the
concepts of a line, of parallel lines, and of the ratio of collinear (or parallel)
segments are meaningful concepts of Minkowskian geometry. Also, Equa-
tions (11a) imply that a motion (11) or (11a) maps a line parallel to the OY
or OX axis, i.e., a line

X=const. or Y=const.,

to a line with the same direction. This means that in Minkowskian geometry
we have two families of “special lines”; the image of a special line / under

19A compression with axis OY and coefficient A maps the point A(X, Y) whose distance from
OY is X, to the point 4,(AX, Y) on the perpendicular AP from A to OY whose distance from
OY is AX. If A>1, it would be more appropriate to speak of a stretching rather than a
compression (cf. text on p. 53 and Fig. 47b).
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Figure 153a Figure 153b

any motion is parallel to /. Through each point of the plane there passes
exactly one line of each of the two families. Finally, a motion (11a) maps a
square whose sides are parallel to the OX and OY axes to a rectangle of
the same area (if the sides of the square are &,e, then the sides of its image
are Ae,(1/A)e). But then a net of squares of the same size is mapped to a
net of rectangles of the same area. This suggests the result that a motion
(11) or (112) maps a figure F to a figure F’ of the same area (Figs. 153a and
153b; cf. Sec. 3, Chap. 1, in particular Fig. 28). It follows that the area of a
figure is also a meaningful concept of Minkowskian geometry .

We now consider an arbitrary segment which we first assume is not
parallel to one of the axes OX and OY. Let AKBL be the rectangle whose
sides are parallel to the axes OX and OY and whose diagonal is the
segment AB (Fig. 154a). A motion (11) or (11a) maps this rectangle to a
rectangle A’K’B’L’ (Fig. 154b) whose sides are also parallel to the axes
OX and OY and whose area is the same as that of AKBL. If A and B are
close to each other, then the area of AKBL is small. Hence it is not
unreasonable to regard S(4KBL) (i.e., the area of AKBL) as a measure of
separation of the points 4, B which tends to zero as 4 tends to B and has
the same value for pairs of points A4, B and A’, B’ which are congruent in
the sense of Minkowskian geometry. This allows us to think of S(4KBL)
as the “Minkowskian distance” between A and B. Since area is measured

Figure 154a Figure 154b
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Figure 155

in square units rather than linear units,!! it is convenient to suppose that in
Minkowskian geometry the distance d, g between A and B is proportional
to the square root of the area of the rectangle AKBL, ie., equal to
k\V/ S(AKBL) . The choice of the coefficient & is dictated by the choice of
units of length and area. We shall find it convenient to put

d,s=V2S(AKBL) . (14)
It is clear that if C is a point of the segment 4B, then
dyp=dc+dcp

(for the areas of the similar rectangles AKBL, AK,CL,, and CK,BL, in
Fig. 154a are proportional to the squares of the diagonals AB, AC, and BC
of these rectangles).

Let us now rotate the segment 4B about 4 while preserving its
Euclidean length (Fig. 155). It is clear that as 4B approaches the position
ABy||OX (or AB°|0OY), the area of AKBL decreases, and when 4B
coincides with A4B,||OX (or AB°||OY), the corresponding “rectangle”
reduces to a segment, so that its area vanishes. That is why the length of a
segment on a special line is assigned the value zero. When in the process of
rotation about A the segment AB passes the position ABy||OX (or
ABY)|0Y), the area of the rectangle AKBL begins to increase again, but its
orientation (determined by the ordering A—K—B—L; here AK||LB||OX
and AL||KB||OY) is reversed (cf. the rectangles AKBL and AK,B,L, in
Fig. 155). In view of this fact, it is convenient to regard segments in the
plane as being of two different kinds; two segments AB and CD of
different kinds are viewed as not comparable in length. A segment or line
is said to be of the first (second) kind if it is parallel to a line through the
origin located in the pair of vertical angles formed by the axes OX and OY
and containing the axis Ox (Oy). Special lines and segments of such lines
are called null lines and null segments, respectively. A motion (11) or (11a)
maps each segment to a segment of the same kind. Two segments are

In other words, if the linear dimensions of a figure are multiplied by r, then its area is
multiplied by r2.
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congruent [i.e., are related by a motion (11) or (11a)] if and only if they have
the same length and are of the same kind (if AB and A’ B’ are null segments -
then, in addition, they must belong to the same family of special lines, i.e.,
they must be parallel).

Now let 4 and B have coordinates (X,,Y,) and (X,, Y,) in the coordi-
nate system {X,Y} and coordinates (x,,y;) and (x,,y,) in the coordinate
system {x,y}. It is easy to see that the sides of the rectangle AKBL are
|X,—X,| and |Y,— Y,| (Fig. 156). Hence S(AKBL)=|(X,— X ) Y,— Y))|,
and thus

dAB=\/2|(X2_X1)(Y2" Y)l. (15)
Using Eqgs. (12) to go from the coordinates (X, Y) to the coordinates (x,y)

we see that the distance between the points 4(x,,y,) and B(x,,y,) is equal
to

V2 [ (o= 2+ (=) [ (= %) — (=30 |
=V — %)= (7= 207

ie.,

dAB=\/|(x2_xl)2_(J’2")’1)2| (15a)
[compare this with the corresponding Euclidean formula (1) in the In-
troduction]. It is clear that if we ignore absolute value signs, then the
radicands on the right-hand sides of (15) and (15a) are positive if AB is of
the first kind and negative if AB is of the second kind. With this fact in
mind, we often put

dip=\2X,— X))(Y,- 1)) , (15

or equivalently,

dAB=\/(x2“xl)2-()’2 —J’1)2 . (15'a)
Then we see that the lengths of segments of the first and second kind are

Figure 156
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measured in different (and unrelated) units. Specifically, the length of a
segment of the first kind is given by a real number and the length of a
segment of the second kind by a complex number.

Fix an inertial reference frame, and let Ox be its time axis and Oy its space axis
(i.e., the line o at time x =0). Then the endpoints of a segment of the first kind are
two events which occur at the same point of o relative to a suitably chosen inertial
(in the sense of Einstein’s theory of relativity) reference frame, and the length of
this segment is simply the time interval between the two events relative to that
frame. Similarly, given a segment of the second kind, we can choose an inertial
reference frame so that the endpoints of the segment correspond to simultaneous
events. Then the length of the segment, measured in the sense of Minkowskian
geometry, is the distance between the corresponding points of 0. We may, there-
fore, assume that the length of segments of the first kind is measured in units of
time (sec), while the length of segments of the second kind is measured in units of
distance (cm). That is why, in Minkowskian geometry, lines of the first kind are
called timelike and lines of the second kind are called spacelike.

In Minkowskian geometry, it is natural to define a circle S with center
Q and radius CD (where CD is a segment of the first or second kind) as the
set of points M such that the segment QM is congruent to CD. We shall
denote the coordinates of the center Q of S relative to the coordinate
systems {X,Y} and {x,y} by (4,B) and (m,n), respectively, and the
coordinates of the endpoints C and D of CD by (X,,Y,) and (X,,Y,) and
by (x,,¥,) and (x,,y,), respectively. We shall call the quantity

2(X,— X (Y, — Y2)=(x2—x1)2—(y2—y1)2
(which can be positive or negative) the square of the radius of S, and

denote it by =+ r? (where r>0). It is clear that the equation of the circle S
with center Q and radius of square *r? is

2X—-A)Y-B)==r, (16)
(x—m)*—(y—n)*==£r? (16a)

[cf. Eq. (2), Sec. 1, of a Euclidean circle]. The latter equation can be
rewritten in the form

x2—y2+2px+2qy+f=0 (16b)
(where p=—m,qg=n,f=m?>—n’>+r?), or in the form
a(x*—y?)+2b,x+2b,y +c=0, (16)

which includes circles (if a#0) as well as lines (if a=0). In particular, the
equation of a circle with center at the origin 0(0,0) is

XY=const. a7
or
x?—y?=const. (17a)

It is clear that from the point of view of Euclidean geometry the circle
given by (16) or (16a) represents a hyperbola whose asymptotes are the
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Figure 157

special lines passing through its center (Fig. 157). We say that the circle S
is of the first or second kind according as its radius is of the first or second
kind. The circles S and § in Figure 157 (of the first and second kind,
respectively) with common center Q and radii of square r* and —r? are
said to be conjugate. The “cross” consisting of the special lines QU and QV
is the locus of points at zero distance from Q. This set of points is
sometimes referred to as a circle of radius zero (or a null circle). It is easy
to see that three points of the Minkowskian plane determine a unique line (of
the first or second kind or a null line) or a unique circle (which may be a
circle of the first or second kind or a null circle).

The transformations (13) and (13a) are called hyperbolic rotations for
they map the Minkowskian circles (17) or (17a), i.e., the Euclidean hyper-
bolas with center 4, onto themselves (cf. Figure 158; the transformation
X,=AX, Y,=Y maps the hyperbolas S and § given by the equations
XY=+ to hyperbolas S, and S,, and the transformation X'=X,, ¥’'=
(1/A)Y, maps the hyperbolas S, and S, back to the initial hyperbolas S
and S).

We now consider the concept of angle between lines. If / and /; are two
lines in the Minkowskian plane which intersect in a point Q, then it is
natural to define the angle §, between I and I, as the Minkowskian length
of the arc NN, between / and /, belonging to the “unit circle” S with center

Figure 158
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Figure 159a Figure 159b

Q; here the term unit circle refers to a circle within radius of square +1 or
— 1. We note that our definition makes sense only if / and /, are both of
the first kind (Fig. 159a) or both of the second kind (Fig. 159b), for only in
those cases do the lines intersect the same unit circle and thus determine
an arc NN, of that circle. The Minkowskian length of the arc NN, can be
defined as the limit of the lengths of polygonal lines NM\M,...M,N,
inscribed in NN, whose longest edges approach zero. In this connection, it is
of interest to point out that all edges of a polygonal line inscribed in a
circle of the first kind are segments of the second kind, and conversely. It
is convenient to replace this relatively complicated definition of an angle
(involving Minkowskian arc length and thus a new limiting process) by the
following simpler (and equivalent'?) definition: the magnitude 8y, of the
angle between lines | and I, intersecting at Q is equal to twice the ( Euclidean)
area of the sector NQN, of the unit circle with center Q (cf. Figs. 159a and
159b). We can also speak of the directed angle §,, between the (ordered)
lines / and /; by regarding §, as positive or negative according as the

21 defining the arc length of a curve y=f(x) in Euclidean geometry, we start with the
relation As’=Ax2+Ay?=[1+(Ay/Ax)*)Ax? and are led to an integral of the form

f2V 1+y? dx. In Minkowskian geometry, we start with the relation As?=|Ax?—Ay?|=

[1—(Ay/Ax)*|Ax? and are led to an integral of the form 5V |1—y? dx. In pamcular,
Flgure 166a, the (positive) Minkowskian length of the arc AM of the hyperbola S:x2—y?=1,

is
x X 2 x  dx
=, Var-1 J Var-1

and twice the shaded area (“area” has the same meaning in Minkowskian geometry and in
Euclidean geometry; cf. p. 178) is

EAM"Z(%—j;xydx)=2(x—-x;—_l——f]xVx2—l dx)=log(x+ Vxi-1),

which shows the asserted equality ¢ =L,,,= E,,,. (Translator’s note.)

=log(x+ Vx*-1),
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Figure 160

rotation which carries the ray QN to QN, is counterclockwise or clock-
wise."”> Two angles APB and CQD, each formed by lines of the same kind,
are congruent in the sense of Minkowskian geometry [i.e., related by a
motion (11) or (11a)] if and only if the segments PA, PB, QC and QOD, are
all of the same kind and 85, pp= 804,0c- The question of the magnitude of
the angle between lines of different kinds and the congruence of such
angles will be discussed below.

Now let / and /, be two lines of, say, the first kind intersecting at Q, and
let NN, be the arc of the unit circle S with center Q cut off by / and /,
(Fig. 160). Consider the hyperbolic rotation which maps the ray QN to
ON,. This rotation maps the ray QN, to a ray QN,, ON, to a ray QN,,
ON; to a ray ON,, and so on; here N,N,,N,,N;,N,,... are points of S.
Since the lines QN (=/), ON, (=l,), ON,, ON;,ON,,... are of the first
kind, it follows that the rays QN,QN, (k=1,2,3,...) belong to the interior
of the angle UQV bounded by the special lines QU and QV passing
through Q and separating lines of the first kind from lines of the second
kind. It follows that in Minkowskian geometry we can rotate a ray about Q
through an arbitrarily large angle (since Son,on, =k-8gy on,) Without ever
reaching the line QU, which forms an “infinitely large” angle with ON.
Similarly, a line of the second kind can be rotated through an arbitrarily
large angle, and the angle it forms with special lines is infinite.

Next we define the distance from a point to a line and the distance
between parallel lines. For this we must first define perpendicularity of
lines in the Minkowskian plane. A line / through the center of a
Minkowskian circle S either does not intersect S at all or intersects it in

BFor a different approach start with footnote 12 and define the magnitude of the negative
angle — ¢ in Figure 166a by the equation —@=L,,, = — Ly, or by the equation —p=—
E4p, twice the signed area of the image of the shaded area in Figure 166a under reflection in
the x-axis. Obviously —@=—L,,,=—E,,,.

We leave it to the reader to establish the asserted equality for a general angle ¢ (see Fig.
187¢). (Translators note.)
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Figure 161a Figure 161b

exactly two points P and Q. In the latter case, we call the segment d= PQ
a diameter of S. Following the example of Euclidean geometry, we shall
say that each diameter d of a circle S is perpendicular to the tangent t at the
endd points of d on S; here by a tangent ¢ to S we mean a line of the first or
second kind (but not a special line!) which has just one point in common
with S.!% It is, therefore, natural to say that / is perpendicular to /, if there -
is a circle S such that / is parallel to a diameter of S, while /; is parallel to
the tangent to S at an end point of d (see Fig. 161b; compare this figure
and Fig. 161a, which refers to Euclidean geometry). It is easy to see that a
line perpendicular to a line of the first kind is of the second kind, and
conversely. [It is a simple exercise in calculus to show that if we can
establish the perpendicularity of two lines / and /; (more exactly, of two
directions) using some circle S, then we can do so using any circle of the
same kind as S. (This shows that our definition of perpendicularity is
sensible.) In particular, we may choose S so that its center coincides with
the point /N /; (see Figs. 161a and 161b).]

If a line / rotates about one of its points Q and approaches a special line
QU then, in distinction to Euclidean geometry, the line /, through Q such
that /L /; (we use the same perpendicularity symbol in Minkowskian and
in Euclidean geometry) rotates in a direction opposite to that of / (Fig.
161b), and / and /, simultaneously approach the line QU. [The latter
assertion also follows from the fact that two lines I and I, perpendicular in
the sense of Minkowski are symmetric in the sense of Euclid relative to the
special lines QU and QV passing through their point of intersection Q (cf.
Exercise 5 below)]. It is therefore natural to say that every special line in the
Minkowskian plane is perpendicular to itself.

141t is clear that a special line passing through an endpoint of a diameter d also has just one
point in common with S. Naturally, we will not refer to such lines as tangents.
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Figure 162 Figure 163

We note that our definition does not automatically imply that the
relation of perpendicularity of two lines is symmetric. This is nevertheless
true: If [ is perpendicular to l,, then |, is perpendicular to | (Fig. 162; cf.
Exercise 6). Also, it is not difficult to prove that if / L1, then the diameter
parallel to | of a circle S bisects the chords of S parallel to I,; this is
illustrated in Figure 162.

It is now natural to define the distance d,,; from a point M to a line I of
the first or second kind as the length d\p of the perpendicular MP from M to
! (Fig. 163). There exists one and only one such perpendicular. The distance
d,, between two parallel lines can be defined as the distance d,,, from an
arbitrary point M on [/, to / (the latter distance is easily seen to be
independent of the choice of M; cf. Fig. 163). Equivalently, d;, can be
defined as the length dy n of the segment N\N cut off by the lines l1 and | on
any line p petpendlcular to them. We do not define the distance between
parallel special lines k and k, or the distance from a point M to a special
line £.'°

We note that in Minkowskian geometry two perpendicular lines are
always of different kinds. This fact enables us to associate to every
(ordered) pair / and /, of lines of different kinds a number 8,, such that two
such pairs (/,/,) and (m,ml) are congruent [i.e., there exists a motion (11)
or (11a) which takes / to m and /, to m,] if and only if / and m are of the
same kind and 6,, 6,,,,,, The number in question is the directed angle 8,
where /' 1/ (Flg 164). [In particular, the equality 8,, =0 signifies that
[ 11,.] The quantity just defined is not comparable with the magnitude of
the angle between two lines of the same kind.

The following result is of interest. If A,B,M, are three points in the
Minkowskian plane such that none of the lines AB,AM,, BM, is special, then
the set S of points M for which the (directed) angle between MA and MB is

15This is due to the fact that given two parallel special lines k and k, and two points M and
M, (with M €k, M€k, or M &k, M,&k)) there is always a motion (11) or (11a) which
takes k to k; and M to M.
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Figure 165a Figure 165b

congruent to the angle between MyA and MB,

Opa, M= 8M0A,MOB Or  Oprq mp= SMOA,MOB,

is a circle passing through A, B, and M, (Fig. 165a). In particular, if A and
B are fixed, then the set of points M for which MA 1 MB is a circle with
diameter AB (Fig. 165b).

We shall require some results pertaining to the “trigonometry of hyper-
bolas.” Thus let S be the unit circle

x2—y?=1 (18)
in the Minkowskian plane with center O(0,0), OA the radius of S joining O
to the vertex A(1,0) of the hyperbola (18), and OM a variable radius of S
(cf. Figs. 166a and 166b; the latter represents the Euclidean unit circle

xt+y2=1 (18a)
with radii O4 and OM). The directed angle 8,, o) = ¢ (regarded as an

angle in Minkowskian geometry, and thus equal to twice the signed area of
the shaded sector AOM of the hyperbola S in Fig. 166a) is often called the
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Figure 166a Figure 166b

hyperbolic angle between OA and OM; the coordinates x= OP >0 and
y=PM of the variable point M are called the hyperbolic cosine and the
hyperbolic sine of ¢ and are denoted by coshg and sinh g, respectively. The
ratio PM /OP=sinhg/coshe is called the hyperbolic tangent of ¢ and is
denoted by tanhg.'S The absolute value of tanhg is equal to the
(Euclidean) length of the segment AN cut off by the variable radius OM
on the tangent AT to the hyperbola S at its vertex 4.

Figure 166a shows that if ¢ increases indefinitely, then cosh¢ and sinhg
increae indefinitely and tanhg tends to 1. Also, if ¢=0, then coshp=1,
sinhgp=0, and tanh¢ =0. Finally, Figure 166a implies that

cosh(— @) =coshg (192)
[just as cos(— @) =cosg],
sinh(— ¢)= —sinh¢ (19b)
[just as sin(— @)= —sin¢], and therefore
tanh(— ¢)= —tanh¢ (19¢)

[just as tan(— @)= —tang). The graphs of the functions u=coshg, u=
sinhg, and u =tanh¢ are shown in Figure 167."7

Hyperbolic functions have many properties analogous to those of the
trigonometric functions sine, cosg, and tang. These properties can be
easily proved using the hyperbolic rotations (13a) or (13).'® Thus, for
example, Eq. (18) of the hyperbola S implies that for every choice of the
angle o,

cosh’p—sinh?@p=1 (20)

16We note for later use that the mechanical sense of tanhg is that of the velocity of the
uniform motion represented by the line OM. (Translator’s note.)

""We note for later use that if k is any given real number, there is one and only one
hyperbolic angle ¢ such that sinhg=k. We also note that coshg > 1 for all ¢. (Translator’s
note.)

18See, for example, [58], Chapter IX of [65], or Section 27 of [57].
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Again, for every choice of the angles ¢ and y, we have

sinh(g * ) =sinh ¢ coshy = coshgsinhy (21a)
and
cosh(g *y)=coshpcoshy *sinhgsinhy, (21b)
so that
_ tanhg=*tanhy
tanh(p*+y)= [+ tanhptanhy " (21¢c)
From Egs. (21a)-(21c) we can easily deduce that
sinh2¢ =2sinh @ cosh g,
_ 2 12
cosh 2¢ = cosh 3 :— :hnh o, (222)
tanh2p= —2209 .
1+tanh?g
sinhg = 2tanhg/2 ’
1—-tanh?p/2 (22b)
2
coshe= 1 +tanh q)/2’ tanhg= 2tanhg /2 :
1—tanh’q/2 1+tanh?p/2
and so on.

Note that the coefficients 1/V1—0? and —v/V1—v? in the for-
mulas (11) are connected by the relation

=)
- =1,
1—-0? 1—0?
which coincides with the equality (20) connecting the hyperbolic functions
coshg and sinh¢. It follows' that if « is the unique hyperbolic angle such

19See the remarks in footnote 17. (Translator’s note.)
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that sinha=—v/V1-0?, then cosha=1/V1-v?, and (11) can be

rewritten in the form

x'=xcosha+ysinha+a,

y'=xsinha+ycosha+b (23)

[compare (23) with the Euclidean motion (6) in the Introduction].

We shall now consider triangles in the Minkowskian plane. Assume that
the sides BC =a, CA =b, and AB =c of the triangle 4 BC are nonspecial. If
all the sides are of the same kind, then the lengths of the segments BC, CA,
and AB can be compared. (The lengths of these segments will be denoted
by the same letters a,b,c as the segments themselves.) Then if 4, B, and C
are not collinear, the largest side of the triangle ABC is larger than the sum
of the other two sides (see Fig. 168a, where AM=AC=5b and BN=BC=a,
so that a+ b= BN+ AM <AB=c; compare this with Fig. 168b illustrating
the inequality a + b >¢ which holds for the sides of a Euclidean triangle).

The inequality

a+b<c
(where c is the largest side of A ABC) follows from the “law of cosines” of

Minkowskian geometry, which states that if all the sides of ANABC are of
the same kind, then

a*=b*+ c?>—2bccoshA, (24a)

where A=8,, , is the undirected (i.e., positive) Minkowskian?® angle
between the sides 4B and AC of AABC. It turns out that the area
S (ABC) of AABC can be defined by the formula

S(ABC)=1labsinhC. (25)

(Remember that the Minkowskian area of any figure in the Minkowskian
plane is by definition the same as its Euclidean area.) The proofs of (24a)
and (25) are straightforward and are left to the reader.

20So far we have defined the functions coshg, sinhg and tanhe only when ¢ is the angle
between two lines of the first kind. If g is the angle between two lines m and m, of the second
kind, then we define coshg=coshy, sinhg=sinhy, and tanh¢=tanhy, where ¢ is the angle
between lines /L m and /; L m,.
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Formula (25) implies that
1absinh C=acsinh B=1bcsinh4,
from which we readily obtain the Minkowskian “law of sines”

a b c
sinh4 sinhB  sinhC’ (24)
It turns out that the relations (24a), (24b), and (25) also hold for triangles
with sides of different kinds.

We shall say a few words about isosceles and right triangles in the
Minkowskian plane (the inequality ¢>a+b rules out the existence of
equilateral triangles). If the sides AC and BC of AABC are equal (so that
AC and BC are lines of the same kind), then the vertices 4 and B lie on
the circle S with center C and radius C4 = CB (Fig. 169a). Let C be the
origin of a rectangular coordinate system. Then there exists a rotation
(13a) or (13) which carries the median CM of ANABC (M is the midpoint
of the side AB) to some point on the x-axis. If AA'B’C is the image of
AABC under this rotation, then the sides CA’ and CB’ of AA’B’C are
symmetric (in the Euclidean sense) with respect to the line Ox (Fig. 169b),
which shows that the median CM of an isosceles triangle is also an angle
bisector and an altitude. [The fact that CM 1 AB implies that the base AB
of an isosceles triangle is a segment of the opposite kind from its sides.]
Figure 169b also implies the equality of the base angles of an isosceles
triangle.

Now let A ABC be a right triangle with AC L BC (Fig. 170a). Then the
sides AC and BC are necessarily of different kinds. We assume that the
hypotenuse 4B is of the same kind as the side BC. Then it is easy to show

(compare Figs. 170a and 170b, where C’ is the vertex of the hyperbola S)
that

a=ccoshB, b=csinhB, b=atanhB. (26)
The first two relations in (26) and the relation (20) imply the Minkowskian

Figure 169a Figure 169b
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Figure 170a Figure 170b

version of Pythagoras’ theorem:

a’—b*=c% 27)
We note that the second of the relations (26) and the relation (25) imply
for the area of a triangle ABC the alternative formula

S(ABC)=lah, (25)

where 4, = bsinh C is the length d,,, of the altitude 4P of AABC dropped
from 4 to the line BC (Fig. 171). The theorem on the concurrence of the
medians of a triangle is valid in Minkowskian geometry, and is proved just
as in Euclidean geometry (cf. Sec. 4, Chap. 1, in particular p. 51). The
perpendicular bisectors of the sides of \ABC are also concurrent; they meet
at the center O of its circumcircle S (Fig. 172a). [We observe that if the
sides of AABC are all of the same kind and the radius of the circumcircle
is R, then

a _ b =_¢
smhA ~ smhB _ smhC 2R

(cf. Exercise 10).] Just as in Euclidean geometry, this fact implies that the
altitudes of N\ ABC are concurrent (Fig. 172b).

Figure 171
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Figure 172a Figure 172b

Figure 172¢

A triangle in the Minkowskian plane has three angle bisectors only if all
of its sides are of the same kind; for obviously an angle formed by lines /
and /; of different kinds has no bisector (i.e., a line forming equal angles
with / and /,).2! However, if the triangle has three angle bisectors (we know
that this is not the case for, say, an isosceles or a right triangle) then they
are concurrent; in fact, they meet at the center o of the incircle s tangent to
all sides of the triangle (Fig. 172c). (It is clear that if the sides of a triangle
are not all of the same kind, then no circle is tangent to all of them. This is
due to the fact that all the tangents to a circle of one kind are lines of the
other kind.) It is also true that the midpoints of the sides of a triangle ABC
and the feet of its altitudes (as well as the midpoints of the segments joining
the orthocenter of NABC to its vertices) lie on a circle S, whose radius is
half the radius of the circumcircle of the triangle. It is natural to refer to S,

2IThe bisector of the angle formed by lines / and I; can be described as the set of points
equidistant from [ and I, (we note that this description implies the theorem, formulated below,
on the concurrence of the angle bisectors of a triangle). If / and /, are of different kinds, then
there are no points equidistant from / and /;, for we cannot compare the distance from a
point to a line of the first kind with its distance from a line of the second kind. The first of
these distances is measured in complex units (cf. p. 181) and the second in real units.
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Figure 173

as the six- (nine-) point circle of the (Minkowskian) triangle ABC; if a
triangle ABC has an incircle s, then the six- (nine-) point circle S, of
AABC touches its incircle s (Fig. 173).

Next we consider a circle S in the Minkowskian plane and a point M
(Fig. 174). It is not difficult to show that the product

MA'MB=dMA'dMB, (28)

where A and B are the points of intersection of S and a line | through M,
depends on S and M but not on I. We shall regard this product as positive if
(a) the directions of the segments M4 and MB (from M to 4 and from M
to B) are the same and / is a line of the first kind or (b) the directions of

Figure 174
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the segments MA and MB are opposite and / is of the second kind; and as
negative in all other cases. [At this point it is convenient to regard the
lengths of segments of the second kind as imaginary. The sign of the
product (28) is the same as in Euclidean or Galilean geometry.] We shall
refer to this signed product as the power of the point M with respect to the
circle S.

It can be shown that the power of a point M(xy,y,) with respect to a circle
S given by Eq. (16b) is

X3 =y +2px+2qpo+f,

i.e., is equal to the result of substituting the coordinates (xqy,) of M in the
equation (16'b) of S (see Exercise 10 below). From this it readily follows
that the set of points in the Minkowskian plane whose power relative to a
circle S has the value k is a circle concentric with S (Fig. 175a) and that the

set of points which have the same power relative to two circles S and S, given
respectively by the Egs. (16b) and

x2—y2+2p,x+2q,y +f=0, (16'b)

SN

Figure 175¢
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Figure 176a Figure 176b

is the line
2p-p)x+2(g—q)y+(f—f1)=0

(Fig. 175b). It is natural to call this line (the line r in Fig. 175b; r passes
through the points of intersection of S and S, if any) the radical axis of S
and §. Just as in Euclidean and Galilean geometry, we can show that the
radical axes of pairs of three Minkowskian circles S, S,, and S, are all
parallel or intersect in a point R (Fig. 175¢), the radical center of the three
circles, and so on.

The study of inversions can be pursued in the context of Minkowskian
geometry. An inversion with center Q and coefficient &, (also called an
inversion in the circle S with center Q and radius r, where k= +r?), is a
mapping of the Minkowskian plane which maps a point A to a point A’ on the
line QA such that

QA-QA'=dydyy=k. (28a)

Further, for k>0, the segments Q04 and QA’ have the same or opposite
directions (from Q to 4 and from Q to A’) according as they are of the
first or second kind. If k<0, then Q4 and QA4’ have the same direction if
they are of the second kind and opposite directions if they are of the first
kind (see Figs. 176a and 176b)*%. It can be shown that if 4 is a point from
which two tangents can be drawn to S, then inversion in § maps A to the
point A" in which the line QA intersects the line KL which joins the points
of tangency (see Figs. 176a and 176b; see also Exercise 11 below).
Moreover, inversion in S leaves each point of S fixed. (A point 4 is said to
be exterior to S, on S, or interior to S, according as the number of
tangents from A4 to S is two, one, or zero.)

The following is an alternative definition of inversion in a circle S: the
image A’ of a point 4 is the point (other than A) of intersection of all
circles s (and the line m) passing through 4 and perpendicular to S (i.e.,
such that the tangents to S and s at the points of S N s are perpendicular in
the sense of Minkowskian geometry; Fig. 177a). (See Exercise 11 below.)
This approach to inversions permits us to regard a reflection in a (nonspe-
cial) line / (defined as the mapping which takes each point 4 to the point

2The exposition can be simplified by using the convention on real and imaginary lengths of
segments (sec pp. 181 and 195).
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Figure 177a Figure 177b

A’ on AA’ 1 [ such that P=AA’N ! is the midpoint of the segment 44") as
a special case of an inversion. That this is reasonable follows from the fact
that a reflection in a line / can also be described as a mapping which takes
a point 4 to the point A’#4 of intersection of all circles s (including the
line m) passing through 4 and perpendicular to / (i.e., such that the tangent
to s at sn / is perpendicular to /; see Fig. 177b). In turn, this explains why
in Minkowskian geometry, just as in some other geometries, inversion in a
circle S is often called reflection in S.

The definition (28a) readily implies that the inversion with center O(0,0)
and coefficient k£ maps A(x,y) or A(X,Y) to the point A'(x’,y") or
A'(X',Y") such that

. kx , ky
X = xz_yz’ - xz_yz’
or
,_ Kk ,_ Kk
X =5y Y—ZX' (29)

Using Eq. (16") of a circle in the Minkowskian plane, we can now easily
show that an inversion maps a line of the first or second kind passing (not
passing) through the center of inversion Q to itself (to a circle passing through
the center of inversion; Fig. 178a), a circle passing (not passing) through the
center of inversion to a line passing through the center of inversion (to a circle

Figure 178a Figure 178b
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not passing through the center of inversion; Fig. 178b), and special lines to
special lines. It can also be shown that inversions are conformal, i.e., angle
preserving, mappings: an inversion takes two curves T and T', intersecting at
a point A to two curves I" and T intersecting at a point A’ such that the
(Minkowskian) angle between the tangents t and t, at A to T and T 1 is equal
to the (Minkowskian) angle between the tangents at A’ to T" and I All
these properties of inversions can be used to prove many theorems of
Minkowskian geometry. We leave it to the reader to find examples of such
theorems (cf. pp. 137-141).

We conclude this section with a discussion of certain important general consid-
erations pertaining to inversions. It is clear that the definition (28a) assigns no
image to a point A whose distance dp4 from the center of inversion is zero. Yet the
set of points M of the Minkowskian plane defined by the equality

OM=dpy, =0 (30)

consists of the pair of special lines ¢, and g, passing through Q.?* Strictly speaking,
the domain of definition of an inversion is not the whole Minkowskian plane but
rather the set obtained by removing from the plane the lines q; and q; if Q is the
origin of the coordinate system {x,y} (or {X,Y}), then the lines ¢, and g, are given
by the equations x=y and x=—y (or X=0,Y=0). It is clear that the complicated
character of the domain of definition of an inversion in Minkowskian geometry
complicates its study and applications.

It is possible to surmount these difficulties in much the same way as in
Euclidean and Galilean geometry. We stipulate that the domain of definition of an
inversion with center O(0,0) is the Minkowskian plane 7 supplemented with
“infinitely distant points” which are the images of the points on the lines ¢; and ¢,
passing through the origin. Specifically, we assume that the inversion with center O
and coefficient 1 takes the point M(im, m) to the point at infinity 9, and the point
N(n, —n) to the point at infinity Q(?, and the center of inversion O to the point
Q=0 =00; here m and n range over the reals. The Minkowskian plane supple-
mented with the points at infinity Q) and Q2 is called the inversive Minkowskian
plane,?* and is the domain of definition of inversive and other circular transforma-
tions, i.e., transformations that carry every circle (16') of the Minkowskian plane
lincluding lines, obtained by putting a=0 in (16")] to a circle (or line).

We can visualize the inversive Minkowskian plane by means of a sterographic
projection (cf. Chap. II, Sec. 10, pp. 142-155). We introduce a coordinate system
{x,y,2} in three-dimensional space, and assume that the Minkowskian plane is the
plane z=0. We consider the one-sheeted hyperboloid y given by the equation

x2=y24(z=1)’=1 or x’—y*+z-z=0, G

which touches the plane # (the plane z=0) at 0(0,0,0) and intersects it in the
(special) lines g, and g, with equations y=x and y = — x (Fig. 179). Let Q denote
the point (0,0, 1) of y diametrically opposite to O (i.e., symmetric to O with respect
to the center of symmetry of y). Associate to each point A(x,y) of = the point

BWe recall that the term we applied earlier to the set (30) was “a null circle” or a “circle with
center Q and radius zero” (see p. 182).

2For reasons which we cannot go into here, it is necessary to add to the inversive
Minkowskian plane two more fictitious points at infinity ¢, and o,, which are left fixed by
inversions with center O (see p. 277 below and, say, Sec. 5 of [80]).
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Figure 179

A'(%,7,2)#Q in which vy intersects the line QA. It is easy to see that

S S 2N e
x2—y2+1’ x2—y241’ x2—p2+1

[compare (32) with (42) and (42) on pp. 144 and 151, respectively]. The stero-
graphic projection (32) associates to every point of 7 a unique point of v, but the
correspondence is not “onto”. Specifically, no points of = are mapped to the points
on the lines 0, and o, passing through the center of projection Q and parallel to 7;
these are the lines with equations y=x, z=1 and y=—x, z=1. It is therefore
convenient to assume that y is the image of 7 supplemented by two fictitious lines
which are projected onto 0, and 0,.2° If we associate with the points of 0, and o,
(other than Q) the points at infinity Q) and Q@ of =, and with the center of
projection Q the point at infinity @, then we can say that the sterographic
projection (32) is a one-to-one map of the inversive Minkowskian plane = onto .
This enables us to view a (one-sheeted) hyperboloid as a model of the inversive
Minkowskian plane.

Equations (32) imply that stereographic projection maps the points of a circle (or
line) (16") of the Minkowskian plane to the points of intersection of the hyperboloid vy
and the plane

(32)

az+2bx+2b,y+c(1—2)=0, (16”)

and that, conversely, to every plane section of y there corresponds a circle (or line)
of «. In particular, lines (in the plane) are mapped to plane sections of y passing
through Q, special lines to plane sections of y passing through Q and containing a
rectilinear generator of y (see footnote 25), and null circles to plane sections of y

Bt is easy to see that the stereographic projection (32) associates to the rectilinear generators
x—y=c(l-2z), x+y=(1/c)z and x+y=d(1—z), x—y=(1/d)z of y the special lines

y=x—c and y=-x+d

of 7. It is therefore natural to associate to the rectilinear generators o, and o, the “special
lines at infinity” of 7. This terminology reflects the fact that an inversion of the Minkowskian
plane maps special lines to special lines. Thus it is reasonable to suppose that an inversion
maps the special lines g, and g, to the special lines at infinity of the inversive Minkowskian
plane.
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Figure 180

containing a pair of rectilinear generators. Indeed, the sterographic projection maps
the points of the lines obtained, say, by putting a=0 in (16’) to the section of vy by
the plane

2byx+2byy+c(1—2)=0,

which, obviously, passes through (0,0,1). Since our convention associates
0(0,0,1) to the point at infinity @ of the inversive Minkowskian plane, we must
suppose that all the lines pass through £. We must also suppose that every circle
(16') contains a point at infinity &) and a point at infinity 22; these points are
represented by the points of intersection of the plane (16”) and the lines o, and o,.

The fact that the stereographic projection (32) maps circles (and lines) in the
Minkowskian plane to plane sections of the hyperboloid enables us to use this
projection to represent circular transformations of the (inversive) Minkowskian
plane 7. For example, consider the reflection of vy in the (horizontal) plane & given
by the equation z =1, i.e., the mapping which takes each point 4, of y to the point
Aj of y such that 4,4] L6 (Fig. 180). It is clear that this reflection takes a plane
section of y to a plane section. It follows that the induced transformation of T, i.e.,
the mapping which takes a point 4 of 7 (corresponding via stereographic projec-
tion to the point 4, of y) to the point 4’ of 7 (corresponding to the point A} of y),
must be circular. It is easy to show that this mapping of the Minkowskian plane is
Jjust the inversion with center O and coefficient 1 (the inversion with circle of
inversion S corresponding via stereographic projection to the section of y by the
plane §). This fact can be taken as the definition of inversion, and enables us to
deduce all of its properties from those of stereographic projection. Using stereo-
graphic projection, one can prove the fundamental theorem that every circular
transformation is a similitude (i.e., a mapping which takes each pair of points 4, B of
7 to a pair of points 4, B’ such that A’B'/AB=d, .z /d.p =k,
k fixed) or the product of an inversion and a similitude (cf. Problem III below).

PROBLEMS AND EXERCISES

5  Let the Ox and Oy axes and the units on them be chosen as in the text of this
section. Prove that the relation / L/, (in the sense of Minkowskian geometry)
amounts to saying that the special lines QU and QV passing through Q=/n1/,
are Euclidean bisectors of the angles between / and /| (cf. Fig. 161).
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(a) Show that the relation of perpendicularity in Minkowskian geometry is
symmetric (cf. p. 322). (b) Show that if 4B is a chord of a circle in the
Minkowskian plane and QP is a diameter of S, then the statements
“QP 1 AB” and “QP bisects AB” are equivalent.

(a) Prove the properties of Minkowskian circles illustrated in Figures 165a and
165b. (b) Show that these properties of Minkowskian circles can be used to
define such circles.

Prove the formulas (a) (24a); (b) (24b); © (25).

Prove the concurrence of (a) the perpendicular bisectors of the sides of a
triangle; (b) the altitudes of a triangle; (c) the angle bisectors of a triangle in
the Minkowskian plane.

Show that in Minkowskian geometry (a) The tangents PA and PB from a
point P to a circle S with center Q are congruent; the line QP bisects the
segment AB; QA4 L AB (in the Minkowskian sense). (b) The midpoints of all
chords of a circle S which pass through a point M in the Minkowskian plane
lie on a circle s.

Prove the theorems stated on pp. 193-196 concerning the power of a point
with respect to a circle in the Minkowskian plane, the radical axis of two
circles, and the radical center of three circles (see pp. 195-196). Show that the
tangents to two circles S, and S, from a point on their radical axis external to
S; and S, are congruent, and establish other properties of the radical axis.

Prove the properties of inversion in the Minkowskian plane stated on pp.
196-198. Give examples of the use of inversion in proving theorems of
Minkowskian geometry.

In Minkowskian geometry, prove (a) the existence of the nine-point circle of a
triangle; (b) the theorem that the nine-point circle and the incircle of a
triangle are tangent (cf. Fig. 173).

Formulate and prove other theorems of Minkowskian geometry.

Develop a theory of pencils and bundles of circles in the Minkowskian plane
(cf. Problem XII, Chap. II).

Develop a theory of circular transformations in the Minkowskian plane. In
particular, prove the fundamental theorem on circular transformations for-
mulated on p. 200. [ Hint: Use stereographic projection of a hyperboloid to the
Minkowskian plane; see pp. 198-200.]

Outline the main features of a theory of quadric curves in the Minkowskian
plane (compare this problem and Problem XVI, Chap. II).

Investigate three-dimensional Minkowskian geometry (cf. p. 221).

Galilean geometry as a limiting case of
Euclidean and Minkowskian geometry

By now we know of three different geometries in the ordinary (affine)
plgne, viz. Euclidean, Galilean (whose exposition forms the main part of
this book), and Minkowskian (sketched in the last section). Throughout
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the book we have noted similarities between these geometries. Many
theorems have identical formulations in all three geometries, for example,
the concurrence of the medians of a triangle, the existence of the six-point
circle (cycle), the theorem on the power of a point with respect to a circle
(cycle), the definition and properties of an inversion (of the first kind), and
so on. Other theorems may differ in the three geometries but nevertheless
retain certain common features—for example, it is difficult to deny the
analogies between the Euclidean law of sines

a _ b __c
sindA sinB sinC’ (332)
the Galilean “law of sines” [cf. (13), Sec. 4]
a_b_c
A B C’ (33)
and the Minkowskian theorem [cf. (24b), Sec. 12]
a _ b _ ¢
sinh4d ~ sinhB sinhC’ (33b)

In the case of such related but nonidentical results, Galilean geometry is
often “intermediate” between Euclidean and Minkowskian geometry. For
example, if a< b < c are the sides of a (nondegenerate) triangle, then in
Euclidean geometry

a+b>c, (34a)
in Galilean geometry
a+b=c (34)
[cf. (11), Sec. 4], and in Minkowskian geometry
a+b<c (34b)

(cf. p. 190)*® Again, in Euclidean geometry the equation of a circle (in
rectangular coordinates) is

a(x*+y?)+2b,x+2b,y +c=0 (35a)

(cf. p. 79), in Galilean geometry the equation of a cycle is
ax*+2b,x+2b,y+c=0 (35)
[cf. (2), Sec. 7], and in Minkowskian geometry the equation of a circle is
a(x*—y?)+2b;x+2b,y+c=0 (35b)

[cf. (16"), Sec. 12], and so on.

Another example: To visualize the inversive Euclidean plane, we used the central
projection of the plane z=0 in three-dimensional space {x,y,z} from the point
(0,0,1) to the sphere o given by

xayta(z= 1=t or xtyiesiez=0 (362)

26The assumed inequality a <b <c implies that the sides of the Minkowskian triangle are
comparable, i.e., of the same kind.
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[see (40), Sec. 10 and Fig. 129). In Galilean geometry, a similar role is played by the
projection of the plane z =0 to the cylinder { given by

x2+(z—§)2=§ or x?+z2—z=0 (36)

[see (40"), Sec. 10 and Fig. 135), and in Minkowskian geometry by the projection of
the same plane to the (one-sheeted) hyperboloid y given by

xt=y2b(z=3)'=t or X-yi+zi-z=0 (36b)

[see (31), Sec. 12 and Fig. 179). Also, the very concept of an inversive plane is
connected with the fact that in each case there is a set of “special” points (“circle of
zero radius” with center Q) with no images under inversion. In Euclidean geome-
try, this set consists of the point Q, while in Galilean geometry it is a line through
0, and in Minkowskian geometry a pair of lines through Q.

The connection between Euclidean (and Minkowskian) and Galilean
geometry can be explained as follows. Earlier (see p. 173) we saw that for
speeds which are very small in comparison with the speed of light the
principles of relativity of Galileo and Einstein are practically the same.
The “geometrized” version of this statement is that if the unit of length on
the y-axis in the Minkowskian plane (the axis associated with the position
of a point on the line 0 in one-dimensional kinematics) is very large
relative to the unit of length on the x-axis [the time axis; in our expositon
above we chose the unit of length on the line o so that the speed of light
was 1, i.e., we chose the unit of length to be equal to the distance (300,000
km) travelled by light during a unit of time (1 sec)], then Minkowskian
geometry turns out to be very close to Galilean geometry. In physics, this
fact is linked to the possibility of applying the classical mechanics of
Galileo and Newton in all physical problems not involving speeds close to
that of light (see the end of this section). In geometry, it sheds additional
light on the proximity of Minkowskian and Galilean geometry.

The “intermediate™ character of Galilean geometry vis-a-vis Euclidean
and Minkowskian geometry explains the analogy between the expressions
for the distance d between points A(x,y) and 4,(x,,y,) in the Euclidean
plane,

d*=(x,~x)’+(y-»)’ (372)
[cf. (1), Sec. 1], in the Galilean plane,
d*=(x,— x)’ (37)
[cf. (5), Sec. 3], and in the Minkowskian plane,
d*=(x,—x)*~(n—-y) (37b)

[cf. (15'a), Sec. 12]. Now suppose that in Euclidean and Minkowskian
geometry the unit of length OF, on the y-axis is replaced by a new unit
OE;=(1/c)OE,, while the unit of length on the x-axis remains un-
changed: OF,=OE| (Fig. 181). Denoting by (x,y) the old coordinates,
and by (x’, y") the new coordinates resulting from the change of unit on
the y-axis, we see that

x'=x and y'=c¢y
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Figure 181
or
, 1,
x=x" and y=2y (38)

It follows that the old Euclidean and Minkowskian distances (37a) and
(37b) between A4 and A4, change to the distances

’ ’ l ’ ’
d2=(x,—x)2+?(yl—y )2
in the Euclidean plane, and
’ ’ 1 ’ ’
d*=(xj—x )2" _2()’1_y )2
c

in the Minkowskian plane. Ignoring primes, i.e., denoting the new coordi-
nates by (x,y), we can rewrite the latter expressions as

d2=(x,—x>2+§(y1—y)2 (37'a)
and
d2=(x,—x)2—§(yl—y)2, (37'b)

respectively. Letting ¢ tend to infinity, i.e., viewing the unit OE, on the
x-axis as being very small relative to the unit OE, on the y-axis, we obtain
(in the limit) the familiar expression

d*=(x;—x)? (37)

for the distance betwen two points in the Galilean plane.

We shall continue to use the new coordinates, in which the distance
between the points 4 and 4, is given by the formulas (37’a) and (37'b), but
designate coordinates with the letters x and y. As before, we shall represent
the units of length OE| and OE; in diagrams as equal and denote them by
OE, and OE,, but bear in mind that the unit OE, of length on the y-axis
“equivalent” to OF, is ¢ times the unit OE, (see Figs. 182a and 182b,
where ¢=5). Then the lengths of the segment 44, computed by means of
(37'a) and (37'b) will be the same as the Euclidean and Minkowskian
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Figure 182a Figure 182b

lengths of the segment A4, [computed by means of (37a) and (37b)] whose
projection to the x-axis is the same as that of the segment 44,, and whose
projection to the y-axis is ¢ times smaller than that of A4,. As c tends to
infinity, we approach in the limit Galilean geometry, where the length of a
segment is expressed solely in terms of its projection to the x-axis.

We now replace the segment 44, by its projection 4B parallel to the
y-axis. Similarly, we replace 44, by the vertical projection 4B. Thus the
segment AB is (1/c)th of the segment AB (see Figs. 182a and 182b). As ¢
tends to infinity, 4B tends to an infinitesimal segment in the sense of both
Euclidean and Minkowskian geometry (the units are the same on both
axes). This shows that as c—oo the length d of such a segment tends to
zero, d—0. The latter fact is easiest to perceive when we view Galilean
geometry as a limiting case of Minkowskian geometry. We consider the
lines

y=z=cx. (39)
In Minkowskian geometry, any segment on these lines has length zero; on
p. 177 such lines (as well as lines parallel to them) were referred to as
special lines of Minkowskian geometry. From Figure 182b, where two
special lines intersect at 4, we infer that as c—oo the special lines tend to a
vertical line (i.e., a line parallel to the y-axis), and in the limit coincide with
it. Thus the vertical line through 4 becomes the line of segments of zero
length.

There is another way of illustrating the latter state of affairs. Figures
182a and 182b show, among other things, the “unit circle” S with center A
(whose coordinates we now denote by a and b). The expressions (37'a) and
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(37’b) imply that its equation is, in the Fuclidean case,

(y—-by
(x—a)’+ — =L (40a)
and in the Minkowskian case
(y—b)
(x—a)*~ =1 (40b)

i.e., that the curve S represents in the first case an ellipse and in the second
a hyperbola. In both cases the semiaxes are 1 and c. As c¢ increases, S is
stretched increasingly in the direction of the y-axis. Thus as c—o0, S tends
to the pair of (parallel) lines

(x—a)*=1 (40)

—a QGalilean unit circle. [Fig. 182b also shows the curve S, given by the
equation

(rmap- 2y, (40c)

whose points are likewise at a distance 1 from A4, but this distance 1 is
qualitatively different, in that it corresponds to lengths of segments on the
y-axis. As c—co this “circle” S, becomes ever narrower, following the
narrowing of the angle between the special lines (through A) which
contains it. It also recedes indefinitely from 4 and thus eventually disap-
pears from any drawing, however large. This corresponds to the disap-
pearance of segments of nonzero length whose nature is different from that
of the segment OE,.]

Next we consider the transformation of (Euclidean) angles resulting
from the change of units of length. The (Euclidean) angle § between the
lines

y=kx+s and y=kx+s, (41)
is determined by the formula
tand = Al B (42a)
[see (3), Sec. 3]. As a result of the change of variables (38), the equations
(41) change to
y'=ckx'+cs and y'=ckx"+cs,
or
Y'=k'x'+s and y =kix'+s|, 4r)
where k'=ck and k}=ck,, i.e.,

=-1-k’ and kl=lki.
c (4
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Substituting these values of the slopes k and k, in (42a) and dropping all
primes (i.e., replacing x’,y’ by x,y, and k’,k] by k,k,), we see that as a
result of the change of coordinates (38) the angle § between the lines (41) is
now determined by the formula

g /K= (/)
(1/c®)kk,+1

As c—>o0, the right-hand side of (42') tends to zero. In other words,
tan8—0 and therefore also §—~0—an outcome both unexpected and un-
welcome.

However, our difficulty is not very serious. Equation (42") shows that for
large ¢ the quantity

(42)

i.e., the tangent of the angle § between the lines (41), is very small—of the
order of 1/¢.2” If angles are measured in radians, then

li sind _ 1, lim cosd _ 1,

550 O 550 O

and therefore
. tand
ms
It follows that for large ¢ the magnitude of the angle § [computed by
means of (42')] is very small: it is of the order of 1/c.

We now change the angular unit in the new coordinate system {x’,y’}
[where the connection between x’,y’ and x,y is given by (38)] from the old
unit ¢ (radians) to a new unit ¢ such that ¢ =(1/c)e. Then the new
magnitude &’ of an angle is ¢ times larger than its old magnitude §:

1. (43)

8'=cs or 8=%8’. (44)

Substituting this value of § in (42') and (as usual) dropping primes, we
obtain the equality

8_1_ K-k
¢ c1+(1/PA)kk,’
or
ki—k
ctané = ____L_z_ . (4 n)
¢ 1+(1/P)kk,
Finally, letting c—oc0 and bearing in mind the fact that
tan(8/c)

lim ctan§ =0 lim
c—>00 c /

Z"More precisely, as c— 00, tand—0, 1/¢—0, but tand/(1/c)—k, — k 0.
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we see that
8=k, —k, (42)
ie., we obtain the formula for the angle § between the lines (41) in the

Galilean plane [cf. (8), Sec. 3]. In much the same way, we use the
substitution (38) to obtain (42) from the formula

k,—k

tanhé= T—kk

for the magnitude of the angle between two lines (41) (of the same kind) in

the Minkowskian plane [Eq. (42b) can be easily deduced from Eq. (21c),
Sec. 12].

Our argument shows that the procedure (just described) for changing
the units of length, which in conjunction with the limiting process ¢c—>0
reduces Euclidean (or Minkowskian) geometry to Galilean geometry, is
accompanied by a decrease in all angles. Indeed, in order to obtain finite
expressions for the magnitude of angles we must resort to the change (44)
of angular unit. This implies that in order to go from Euclidean to Galilean
geometry, we must make the replacement

4 /
in all relations involving angles [see the second relation in (44)), and the

replacements

(42b)

é

sin 8—>siné 8 ,  cosd—cos 8 ~1, tan 8—>tané ~—= (43)
¢ ¢ c c ¢

[see (43) and its analogues). Thus, in the limit, the Euclidean law of sines

a_ _ b ¢
sind sinB sinC

(33a)

yields
a __ b _ ¢
A/m  B/m C/m

[here and up to the derivation of the relation (46) we use the letter m
instead of ¢ because we wish to reserve the letter ¢ to denote the side AB of
the triangle 4BC], i.e., the law of sines of Galilean geometry:

a_ b ¢
ATB"C (3)
Similarly, starting with the Euclidean law of cosines
a*=b>+c?—2bccos A, (45a)

we obtain
a?=b+c?=2bc1  [=(c—b)’],
i.e., the familiar formula
c=a+b (349
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of Galilean geometry (here we assume that ¢>a, c¢>b); from the
Euclidean formula
S=21absinC

for the area of a triangle we obtain via the replacements sin C—C/m and
S—>S/m (the latter amounts to a change of unit of area), the formula

S=3abC (46)

for the area of a triangle in Galilean geometry [see (17) and (17), Sec. 4];
and so on. Finally, by making the replacements

1 . «
X=X, y—o>—=Y, sma—»-; s cosa—>1
C

[see (38) and (43")] in the formulas

= +ysina+
x xcosa+ysina+ta (47a)
y'=—xsina+ycosa+b

for a Euclidean motion [see (6), Sec. 1] we obtain
x'=x1+ z.e +a,
c
l—=—x-g+—-1+b,
c c
or

1
x'=x+—ay+ta,
o2

y'=—ax+y+ch.

Replacing cb by b and — a by v and letting ¢ tend to infinity, we arrive at

x'= x +a, ( 47)
y'=vx+y+b,
i.e., the formulas for a motion of the Galilean plane [see (1), Sec. 3]. In
much the same way, it is posible to obtain the relations (33), (34), (46), and
(47) from the corresponding relations of Minkowskian geometry [for
example, (47) from (23), Sec. 12]; we need only note that

lim sinhd _ 1, lim coshé=1, lim tanh§ =
50 550 550 O

L. (@43)

Next we investigate the connection between a Euclidean circle and a
Galilean cycle. We defined a cycle as the set of points from which a given
segment AB can be seen at a constant angle a (Sec. 6). We must, therefore,
define a Euclidean circle as the set S of points M(x,y) of the Euclidean
plane from which a segment AB can be seen at a constant (directed) angle a
(Fig. 183). In accordance with Section 6, we denote the coordinates of 4
and B by (a,,a,) and (b,,b,); then the slopes of the lines AM and BM are

- by—
k=222 apd k=222
a—x b—x
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Figure 183

(see pp. 77-78). In view of the formula (42a) for the (Euclidean) angle
between two lines, we see that the equation of the above set S of points
M(x,y) is

[(bz—)’)/(bl_x)] - [(az—-V)/(al—x)] -
[(bz_J’)/(bl"x)]' [(az—)’)/(al—x)] +1

tana

or

(b;=y)(a;—x)—(b,— x)(a,~»)
—tana[(b,—y)(a,—y) +(b,— x)(a,— x)]=0,

or finally,
(tana)(x®+y?) +[(b,— a,) —tana(b, +a;) | x
+[(a,—b,)—tana(a,+ b)) ]y
+[(b1a,— bya)) +tana(a,b, + a,b,) ] =0. (48a)

This is clearly the equation of a circle (indicated by heavy dashes in Fig.
183). The replacements

a b2 a
xox, y—Z, a,—a,, a2—>72, b,—b,, b2—>?, tana—>?
c
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transform (48a) into
I\ r
g(x2+ y——)+
c cz |
[ b
+ (al_bl)—g(ﬁ'i'_z)}Z
|

[ b b
+ (b,fcl—-cla,)+%(alb,+%—cz-)]=0,

or
a(x2+ );—z)+ [(b,—a)—a(b,+a,)]x
+ [(a,—b,)— %(a2+ bz)]y
+ [(b,az—b2a1)+a(a,bl+ gif—”=0, (48b)

which is the equation of an ellipse (represented by light dashes in Fig. 183).
Finally, transition to the limit as c—oo0 transforms (48b) into

ax?+[(by—a)—a(b,+ a;)]x+(a;— b))y +[(b,a,— bya,) + aa,b; | =0,
(48)

which represents a (Euclidean) parabola, and thus a cycle in the Galilean
plane (represented by light dots in Fig. 183; cf. pp. 77-79). All the results
of Section 10 pertaining to Galilean geometry can also be obtained by a
limiting process from the corresponding results of Euclidean geometry
(proved in Sec. 10) or Minkowskian geometry (see Sec. 12).

It is now easy to discuss the relation between “classical” and “relativis-
tic” mechanics or, equivalently, between the Galilean and Einsteinian
principles of relativity. In Section 11 we always chose units of length and
time in such a way that the speed of light was 1. With this choice of units,
the version of Minkowskian geometry developed in Section 11 yielded a
geometric picture of kinematics on the line 0 based on Einstein’s principle
of relativity. However, it is customary to choose a unit of length which is ¢
times larger than the unit employed in Section 11. With this choice of unit
of length the following replacements must be made in all the formulas in
Section 11:

x v
1>t xo>—, v (49)

[see (38), this section]. In particular, c is the speed of light in the system of
units of length and time now under consideration.
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After making the replacements (49) in the fundamental relations (7) in
Section 11, we obtain the more familiar form of a Lorentz transformation:

X _(/)=(/dt ,_ =(ofey(x/c)+1

’ b

b

¢ 1—-(v/c)? 1-(v/c)?
or
e X0t R —(v/c2)x+t’ (50)
1-(v?/¢? 1-(v?/¢?)

The latter is the form of a Lorentz transformation found in most books on
relativity. It is clear that transition to the limit c—oco transforms the
formulas (50) into the formulas

x'=x-—ut, V=t (50)
of a Galilean motion. If c—co, then the Fitzgerald contraction coefficient
Vy1=(v*/c?) and the (relativistic) time-delay coefficient 1/1/1—(v?/c?)
(cf. pp. 167-168) tend to 1, i.e., neither effect occurs in classical mechanics.
Finally, the replacements (49) transform the formula

ut+o
Y wo+ 1 (51)

of addition of velocities [cf. (9), Sec. 11] into the formula

w_ (u/c)+(v/c) —_ utv

¢ (u/c)(v/c)+1 or w= 1+(uv/c?)

If c—>o0, then the latter reduces to the classical formula of Galileo and
Newton for addition of velocities:

w=u+o (51)
[cf. (8), Sec. 11].

PROBLEMS AND EXERCISES
15 Prove the relations (43').

16 Investigate the connection between inversive mappings in Euclidean, Galilean,
and Minkowskian geometry.

17 Give examples of theorems of Galilean geometry that are limiting cases of
theorems of Euclidean and Minkowskian geometry; describe the correspond-
ing limiting processes.

VI Give the limiting process connecting the stereographic projections described
in Sections 10 and 12 and the three inversive planes. Develop the analogies
between the inversive geometries in the Euclidean, Galilean, and
Minkowskian planes, including the theory of pencils of circles (cycles). Derive
the fundamental theorem on cyclic transformations of the Galilean plane (cf.
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p. 154) by applying a limiting process to the corresponding Euclidean
theorem.

VII Compare the theory of quadric curves in the Euclidean, Galilean, and
Minkowskian planes (see Problem XVI in Chap. II and Problem IV in Sec.
12).

VIII Outline the connections between three-dimensional semi-Galilean geometry
(see Exercise 5 in the Introduction) and the three-dimensional Galilean and
pseudo-Galilean geometries (see p. 231). [Hint: Three-dimensional semi-
Galilean geometry occupies an intermediate position between three-dimen-
sional Galilean geometry and three-dimensional pseudo-Galilean geometry;
it can be obtained as a limiting case from each of them.]



Supplement A. Nine plane geometries

This book is essentially devoted to a comparative study of two geometric
systems that can be introduced in the (ordinary or affine) plane, namely,
the familiar Euclidean geometry and the simpler Galilean geometry which,
in spite of its relative simplicity, confronts the uninitiated reader with
many surprising results. In Section 12, we learned of a third geometric
system, namely, Minkowskian geometry. Finally, most readers of this book
are probably aware of the existence of, or are familiar with, a fourth
geometric system, namely Bolyai—Lobachevskian (hyperbolic) geometry. _

In this Supplement, we propose to describe a number of plane
geometries including Euclidean, Galilean, Minkowskian, and Bolyai—
Lobachevskian. Since these geometries were first introduced in 1871 by
Klein,' who used the earlier work of Cayley,” it seems best to call them
Cayley—Klein geometries (rather than non-Euclidean geometries; the latter
term is obviously not applicable to Euclidean geometry and is applicable
to a great many geometries not dealt with in this Supplement).

Following Cayley and Klein, we distinguish three fundamentally differ-
ent geometries on a line o. They are Euclidean geometry, elliptic geometry,
and hyperbolic geometry. Euclidean geometry is based on the familiar rule
for measuring the length of segments. According to this rule we choose a
unit of length OF on o and define the distance between points 4 and B on
o by the formula’

AB
iy = OF (1)

This distance is called parabolic (hence the letter P in d{%)). If C is a point

!See Klein [73] (first published in 1871) or Klein [56].

2For an historical account of the discovery of these geometries, see Sec. 7, Chap. X of Klein
[56] or the very interesting history of mathematics by Klein [79].

3The ratio of two segments on o can be defined in affine geometry without developing
Euclidean geometry.
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of the segment AB, then

dip+dip =dip
(Fig. 184a). The Euclidean motions of o, i.e., the transformations of o that
preserve the distance d{% between points, are

(a) translations (along o0);
(b) reflections (of o about its points).

To introduce elliptic geometry on o, we pick a point Q not on o and
define the elliptic distance d{5) between A and B on o as the usual
Euclidean measure of £ AQB:

df=/A0B
(Fig. 184b). If A4, B, and C are three consecutive points on o, then
i@ +dEp=dfp

(Fig. 184b). The elliptic motions of o which preserve the elliptic distance
a5 are:

(a) transformations induced by rotating the pencil with center Q (i.e., the
lines through Q) through a fixed angle o; such a transformation takes
A to the point A’ such that £ AQA4'=a;

(b) transformations induced by reflecting the pencil with center Q about a
line / of the pencil; such a transformation takes 4 to the point A’ such
that / bisects £ AQA’.

Hyperbolic geometry is introduced on o by fixing two of its points, I
and J, and defining the hyperbolic distance d{&’ between 4 and B on o by
the formula
Al AT
BI/BJ (1b)
(Fig. 184c). The choice of k is arbitrary, and changing the value of k (with
the base b of the logarithm fixed, say b=10) amounts to a change of the
unit used in measuring distances (lengths of segments). It is convenient to
assume that the segments on the right-hand side of the cross ratio

AIJAT
BI/BJ @)

of 4,B,1,J are directed. In view of the fact that a real-valued logarithm is
defined only for positive reals, we must ensure that the cross ratio (2) is

d{y’ = klog

(A,B; I.J)=

Figure 184a Figure 184b Figure 184c
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I B, B2 By
Figure 185a Figure 185b

positive. One way of doing this is to assume that 4 and B are points of the

segment 1J. Then the segment I/ represents the whole hyperbolic line. It is

easy to show that if 4,C,B are three consecutive points on IJ (cf. Fig.
184c¢), then

d(H)+d(H)_ dy;

indeed,
Al/AJ CI/CJ
(4,C; 1,J)-(C,B; 1,J)=#C7- ‘BT?EJ
_AI/AJ
~ BI/BJ
=(4,B; 1,J),
and so

log(4,C; I,J ) +1og(C, B; 1,J)=log(4,B; 1,J).

Another fact is that the cross ratio has the same value for two sets of
quadruples on o related by a central projection.* It follows that the
hyperbolic motions of o (more precisely, of the hyperbolic line, i.e., the
segment 1J) which preserve the hyperbolic distance d{’ are generated by

(a) reflections about the midpoint S of IJ {[clearly, if such a reflection
takes A,B to A’,B’, then (4,B; I,J)=(A',B’; J,I)];

(b) central projections of IJ to itself, where 1J is first projected to some
segment 1J, from a point O,, and 1J, is in turn projected to IJ from a
point O, on the line J,J (Fig. 185a).

Figure 185b shows a sequence of equal (in the sense of hyperbolic
geometry) segments AB,BB,,B,B,,B,B,,.... This figure shows that if,
beginning with some point A of the (hyperbolic) line I/, we lay off a
sequence of equal (in the sense of hyperbolic geometry) segments

AB=BB,=B,B,=B,B,=

4See, for example, [12], [19], [32], or [67].
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we remain within the segment 1J, i.e., the hyperbolic line 1/ is infinite.
[This can also be seen from Fig. 184c. Indeed, if B tends to I, then (4, B;
1,J)=(AI/AJ)/(BI/BJ)—x (since BI-0). Consequently, d{4)'—00.]
Just as there are three ways of measuring length that give rise to three
geometries on a line o, so, too, are there three ways of measuring angles
that give rise to three geometries in a pencil of lines with center O. The
usual measure of angles in the pencil with center O given by the formula

8 =/ aOb (3a)

(Fig. 186a; the symbol Z is used here as well as below in the usual
Euclidean sense) is called elliptic. The so-called parabolic measure of angles
is very different from that used in Euclidean geometry; it can be defined
by choosing a line ¢ not passing through O and putting

84 )="AB (=d{3, the signed Euclidean length of 4B), 3)

where A=anq and B=bngq (Fig. 186b). It is clear that our pencil
contains a unique line w||g which forms an “infinitely large angle” with
every other line of the pencil. Finally, the hyperbolic measure of angles is
introduced in our pencil as follows: we fix two lines i and j of the pencil,
and for any two other lines ¢ and b we put

)= k] sin Z (a,i)/sin £ (a.j)
b5 =klo (sin Z(b,i)/sin Z (b)) (3b)
(Fig. 186c). The constant k depends on the choice of unit. It is convenient
to regard the angles on the right-hand side of (3b) as directed. Define the
cross ratio (a,b; i,j) of four lines a,b,i,j as the quantity

..~ _ sin/Z(a,i)/sin Z(a,j) ,
(@83 1) = a7 (b.1) /sin Z(by) 2)
For 84" to make sense we must ensure that (a,b; i,j)>0. One way of
doing this is to assume that the lines a,b,... belong to a definite pair of
vertical angles formed by i/ and j. Since the cross ratio (2’) of four lines of
the pencil is equal to the cross ratio of the four points in which these lines
meet an arbitrary fixed line g (not passing through the center of the

!
a

1
1
i
1
1‘
1 b
4

Figure 186a Figure 186b Figure 186¢
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Table | Nine Cayley-Klein geometries in the plane
Measure of length

Measure of angles Elliptic Parabolic Hyperbolic
elliptic elliptic Euclidean hyperbolic
geometry geometry geometry
parabolic (Euclidean) co-Euclidean Galilean co-Minkowskian
geometry geometry geometry
hyperbolic cohyperbolic Minkowskian doubly
geometry geometry hyperbolic
geometry

pencil),’ we could also define 8§ as
38 =dip, (30)

where A and B are the points in which the lines a and b meet an arbitrary
fixed line ¢ (see Fig. 186c¢). The equality (3¢) implies that (in the hyperbolic
measure of angles) each of the lines i,j forms an “infinitely large angle”
with every other line.

The Cayley—Klein scheme yields nine plane geometries. Specifically, we
can choose one of three ways (parabolic, elliptic, or hyperbolic) of measur-
ing length on a line and one of three ways of measuring angles in a pencil
with center O. This gives nine ways of measuring lengths and angles and
thus the nine plane geometries listed in Table I.

We are familiar with the geometries of Euclid, Galileo, and Minkowski
(middle column of Table I) in all of which the metric on the line is
parabolic; the length of a segment AB is defined as a ratio AB/ OE, where
OF is a “unit segment” on the line.

In Euclidean geometry, the endpoints of all unit segments issuing from
a point O lie on a (Euclidean) circle S (Fig. 187a). Angles in a pencil are
measured in the elliptic, i.e., in the usual, way, which amounts to measur-
ing the length of the arc of S cut off on S by the appropriate lines: in
Figure 187a, §,,= £ aOb=arc AB.

In Galilean geometry, the endpoints of all unit segments issuing from a
point O lie on a “Galilean circle” S (Fig. 187b) consisting of a pair of
parallel (“special”) lines (of which more will be said below). Angles in a
pencil are measured in the parabolic, i.e., not in the usual, way: the angle
d,, between the lines a and b is equal to the (Euclidean) length of the
segment AB cut off by these lines on the Galilean circle, i.e., on the line ¢,
in Figure 187b (compare this with Fig. 186b). We note that the circle S
does not determine a unit segment on any line w||q. In fact, comparing a
segment on w with other segments we are compelled to assign to it the
length zero. But then, contrary to our insistence that length in a Cayley—
Klein plane geometry must be measured in the same way on every line, we
end up with a metric in which the distance between any points P and Q on

5See footnote 4.
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w is zero. Thus, strictly speaking, the “special lines” (i.e., the lines parallel
to g) must be excluded from the class of lines (which is what we often
did!). On the other hand, if we restrict Galilean geometry to a study of the
affine plane and its ordinary lines (briefly, the Galilean plane), then we
end up with a “plane” which fully satisfies the restrictions imposed by our
table.

In Minkowskian geometry, the “unit circle” S—the locus of the end
points of all unit segments issuing from a point O—is a Euclidean
hyperbola (Fig. 187c). Earlier (see p. 182) we defined the angle §,, between
two lines a and b as

86 =25408

where 5,05 is the area of the shaded sector of the Minkowskian circle S
(Fig. 187c), an idea suggested by Euclidean and Galilean geometry. How-
ever this quantity can also be defined as

_ sin Z (a,i)/sin / (a,j) )
e °g( sin Z(b,1)/sin Z(b,)) (3b)
where i and j are the asymptotes of the hyperbola S, or
AOIO/AMO)
O =klogl ———— 1|, 3c
ab g( BOIO/B()'IO ( )

where Ay, By, I, and J, are the points in which the lines a, b, i, and j meet
a fixed line g, say, the line 7 tangent to S at its vertex (try to prove this
result)®; the number k in (3b) and (3c) is determined by the choice of base

°In translator’s footnote 12 of Section 12 we showed that =804, 0n=log(x+VxZ-1)=
Minkowskian length of arc AM (¢ and arc 4AM appear in Fig. 166a). Now

x+m=x+y= l+l(y/x)= 1+(y/x) _+ 1+ /x) _y/1tm ,
/x \/m)‘ 1-(y/x) V 1-m
where m is the slope of OM. But then 8,4 ) =Minkowskian length of arc
AM=log(x+Vx2—1)="1llogl(1+ m)/(1— m)]= 1+log(4,M; 1,7), wherel,J are the points of

intersection of the line AN in Figure 166a with the lines y=x and y = —x, respectively. The
proof of the general case is left to the reader. (Translator’s note.)
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of the logarithms. It follows that in Minkowskian geometry the measure of
angles in a plane pencil with center O is hyperbolic.

In accordance with the requirement of congruence of any two lines in
the plane, it is natural to define the “Minkowskian plane” as the points of
the (ordinary) plane and the lines of one kind—say, the first. In this
connection we note that in Euclidean geometry every point on a line a can
be joined by a line to a point 4 not on a (Fig. 188a); in Galilean geometry,
each line a contains a unique point, “parallel” to A4, which cannot be
joined by an (ordinary) line to A (Fig. 188b); in Minkowskian geometry,
there are infinitely many points on a line a of the first kind which cannot
be joined to 4 by means of lines of the first kind (Fig. 188c). On the other
hand, all three geometries share the property that through any point 4 not
on a there passes a unique line not intersecting a (a unique line parallel to
a).

We must still describe the remaining six Cayley—Klein geometries in the
plane (see Table I). Of these, elliptic geometry closely resembles spherical
geometry, the oldest “non-Euclidean” geometry known to mankind. Nev-
ertheless, Riemann was the first person to juxtapose this geometry, classi-
cal Euclidean geometry, and the (then just discovered) hyperbolic geome-
try in his famous memoir [74] “On the hypotheses underlying the foundations
of geometry” (1854)."

Let = be a unit sphere in three-dimensional Euclidean space. We call a
great circle of 3 (i.e., a plane section of = passing through its center O;
Fig. 189a) a line. If we defined a “point” to be simply a point of X, then
the intersection of two lines would consist of two points rather than one.
To avoid this awkward situation we define a point of the elliptic plane to
be a pair of antipodal points of =. Thus the elliptic plane is not the sphere,
but rather a hemisphere =’ with identified (“glued together”) antipodal
points of its boundary circle (Fig. 189b). We define the distance d,g
between two points of the elliptic plane (i.e., two points on a great circle, or
rather semicircle) as the length of the arc 4B. This measure of length is
clearly elliptic. By the angle §,, between the lines a and b of the elliptic

7See footnote 4 of the Preface; cf. [79}.
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Figure 189b Figure 189c

plane we shall mean the dihedral angle between the planes containing the
great semicircles @ and b (Fig. 189c); this is the elliptic, i.e., the usual
measure of angle in a pencil of lines. Finally, by the motions of the elliptic
plane we shall mean the rotations of = (viewed as a set of pairs of
antipodal points) about its center O.2

Hyperbolic geometry and doubly hyperbolic geometry can be described
in a similar manner. In three-dimensional Euclidean space we replace the
usual distance between A (x,y,z) and 4,(x,,y,,z,) given by’

d*=(x; = x)’+(y,~ )’ +(z,— 2)’ #)
by the distance

d?=(x,—x)+(y,—y)—(z,— 2)% @)

and call the resulting space Minkowskian. Formula (4) shows that in
Minkowskian three-dimensional space there are two types of “unit
spheres,” namely, a “sphere” =, with center 0(0,0,0) and imaginary radius
i given by

xt+y?—z2=—] (5)

(a Euclidean hyperboloid of two sheets shown in Fig. 190a), and a
“sphere” 2, of radius 1 given by

xt+y?—zt=1 (5)

(a Euclidean hyperboloid of one sheet shown in Fig. 191a). By points of the

8Elliptic geometry is obviously very close to spherical geometry, which investigates figures on

the surface of a sphere (see, for example, [76] and [25]. An introduction, in English, to these
and other geometries is found in [72b].

9See footnote 3 of Section 1.
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hyperbolic plane we mean pairs of antipodal points of =, (which means
that the hyperbolic plane is represented by a single sheet = of =;; Fig.
190b), and by lines we mean “great circles of the sphere” Z,, i.e., plane
sections of =, passing through its center O. It is clear that a line is a
Euclidean hyperbola (or rather a branch of such a hyperbola; see Figs.
1902 and 190b) on which distance can be defined in the manner in which
we defined angular measure in a pencil of lines in the Minkowskian plane;
this metric is, of course, hyperbolic.'® The nature of a “pencil of lines” (the
set of sections of 3] by a pencil of planes; see Fig. 190c) is very much like
that of a pencil of lines in the Euclidean plane, and it is therefore natural
to introduce in such a pencil the elliptic (i.e., the usual) measure of angles.
This agrees fully with the requirements in Table I pertaining to hyperbolic
geometry.!! The motions of the hyperbolic plane are defined as rotations
of the “sphere” =, (or “hemisphere” 3i), ie., as transformations of

10The distance d, 5 between points A4 and B can also be defined as the Minkowskian length of
the segment AB of the corresponding line, i.e., as the limit of the lengths of the polygonal
lines inscribed in 4B, where the length of a polygonal line is the sum of the lengths of its
segments, and the length of a segment with endpoints (x,y,z) and (x,,y,,z;) is given by the
formula

d2=|(x;— x)*+ (3 =y’ = (2, 2)’|.

In 1829, the eminent Russian mathematician N. I. Lobachevsky discovered this first
“non-Euclidean” geometry. The new geometric system was also discovered, independently
and almost simultaneously, by the great German mathematician C. F. Gauss and the
Hungarian J. Bolyai; cf. footnote 3 of the Preface.
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three-dimensional space {x,y,z} which keep the origin O fixed and pre-
serve the distance (4) (it is clear that these transformations map 2, to
itself).!2

Next we turn to the “sphere” =, (Fig. 191a). Here we also identify
antipodal points, i.e., we consider the “hemisphere” X, with identified
antipodal points on its boundary “circle” (Fig. 191b). By the points of the
“plane” we are about to construct we mean the points of ) (pairs of
antipodal points of 2,), and by its /ines we mean those sections of =, (Z5)
by planes through O which are hyperbolas (rather than ellipses!). On such
a “line” (i.e., hyperbola) we can introduce a hyperbolic measure of
length."® A pencil of lines with center Q of our geometry is determined by
the planes of the pencil with axis OQ = q which intersect the cone K given
by

x2+y?—z2=0 (5a)

(see Figs. 191a and 191b). The structure of such a pencil is analogous to
the structure of a pencil of lines in the Minkowskian plane—for example,
its determining pencil of planes contains two “limiting” planes i,/ tangent
to ¥, and consists of the planes in the interior of the dihedral angle
formed by i and j. In such a pencil we can introduce a hyperbolic measure
of angles by defining the angle §,, between lines a and b by means of the
by now familiar formula

5 =kl sin Z (a,i)/sin £ (a,j)
= Klog\ 7 5,1) /sin Z (b))

(3b)

12This approach to hyperbolic geometry enables us to develop it extensively by relying on the
analogy between Euclidean and Minkowskian space (see, for example, [25]).

3C. footnote 10.
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[where, for example, Z(a,i) denotes the usual, i.e., Euclidean, dihedral
angle between the plane i and the plane determined by the “line” a]. The
resulting “plane” with its measures of length and angle is the doubly
hyperbolic plane, and its motions are again rotations of the “sphere” 2,
(regarded as a set of pairs of antipodal points) of Minkowskian space
about its center O. We note that in hyperbolic and in doubly hyperbolic
geometry there are infinitely many lines through a given point not on a line
a which do not intersect a (Figs. 192a and 192b). On the other hand,
whereas in hyperbolic geometry any two points 4 and B determine a
unique line (since any three points 4,B,0 in space determine a unique
plane), this is not the case in doubly hyperbolic geometry. Specifically,
each line a contains infinitely many points which cannot be joined to a
point 4 not on a (for not all planes AOB, where B varies on the hyperbola
a, intersect 2, along a hyperbola; cf. Fig. 192¢).

There is a simple way of obtaining from each of our geometries a new
(but closely related) geometry. All we need do is call a point a “line” and a
line a “point” (and, of course, call the distance between points the “angle
between lines,” and call the angle between lines the “distance between
points”). We know (see Sec. 5) that such a verbal transformation takes
Galilean geometry to itself. The same is true of elliptic geometry and of
doubly hyperbolic geometry (in both of which the principle of duality is
also valid). Our verbal transformation takes each of the geometries of
Euclid, Minkowski, and Bolyai—Lobachevsky to its “dual” or its “cogeom-
etry”; Euclidean to co-Euclidean, Minkowskian to co-Minkowskian, and
hyperbolic to cohyperbolic.

In conclusion, we present Tables II and III, which characterize the nine
Cayley—Klein geometries from the point of view of parallelism of points
and lines, and Table IV which summarizes the fundamental relations
connecting the elements of a triangle ABC in each of these geometries.
These relations are stated without proof (see, however, pp. 280-282). The
letters “E”, “P”, and “H” in Tables II-IV refer to the elliptic, parabolic, or
hyperbolic nature of the metric. The letters a and 4 in Tables II and III

Figure 192a Figure 192b Figure 192¢
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Table Il Number of lines passing through
the point 4 which do not intersect
the line a

Measure of lengths

Measure of angles E P H
E 0 1 )
P 0 1 0
H 0 1 0
Table Il Number of points on the line a
which cannot be joined by a line to
the point 4
Measure of lengths
Measure of angles E P H
E 0 0 0
P 1 1 1
H ) 00 00

denote an arbitrary line and an arbitrary point not on that line. The letters
A,B,C in Table IV denote the magnitudes of the angles of the triangle
ABC, and a=BC, b=CA, c=AB represent the lengths of its sides.!*

The interpretation of plane hyperbolic geometry by means of Minkowskian
geometry in three-dimensional space yields a curious and sometimes overlooked
connection between hyperbolic geometry and Einstein’s theory of relativity. Thus,
consider the relativistic kinematics of plane (more accurately, plane-parallel) mo-
tions (cf. p.'16). It is not difficult to see that its geometric equivalent is the study of
three-dimensional space {x,y,?} whose motions are defined by formulas related to
formulas (7) and (10) in Section 11; for example, if the reference frame {x’,y",#'}
moves with respect to the reference frame {x,y,¢} with uniform velocity v in the
direction of the x-axis, then the connection between the two coordinate systems is
given by

x'= 1 xX— ° t+a,

V1-9? V1—10?
y'= y +b, 6)
= t+a.

v 1
- x +
V1-—1¢? V1-p?

It is easy to see that if (x,y,?) and (x,,y,,#,) are the coordinates of two events in
the first reference frame and (x',y’,¢') and (x{,y},¢]) are their coordinates in the

“In many cases it is convenient to think of a,b,c; 4,B,C as signed quantities, i.e., to regard
the sides and angles of the triangle as directed entities. However, we shall not go into this
matter here. Also, we shall not discuss the extended interpretation given to the terms “side”
and “angle” in Table IV which allows us to assert, for example, that in Euclidean geometry
A= B+ C (the theorem of the exterior angle in a triangle).



DYS03 ) YUIS F YUIS + ) YSOD g YSOd = J/ 4s0d O+g=V DS00 ) YUIS g YUIS + D YOO g YS0d =  Ys0d

oquls  quyuis _ pyuis 2 9 ? ouls  quis _ puIs H
oyuls  gyuis  pyus oquls  gyuls  pyuis Dyuls  gyuils  pyus
Y 4sO3 2YUIS g YUIS 4 2SO0 USOd=DYS0d  PUS00IGT+ 0+, =,P  FUYSOIIUISQUIS+ IS0DGS0d =DS0
PYSOODG T+, D+ =,V o+d=v PSOODGT+ D+, =¥
OUuls _ qUuIs _ pyuIs 2 _ 49 » ouls _ quis _ puis d
> 4 v o 4 v o 4 v
2449g=0 24+q=0 24+q=0D
DYSO0I D UIS g UIS + ) SO g SO0 = }’SO0D oO+gd=V DS00) UIS g UIS + ) SO0 g SOd = } SO
oUuls _ quuis _ pyuIs 2 9 v ous _ quis _ puls
ouls  guis  pus ows  guis  puls Juls  guis  puis d
SO0 2 qUIS g YUIS + 2SO g YSO0d = D SO y$009q7— 0+ 4 =,0 /' S00 2 UIS @ UIS 4 2S00 §SOI = DS0D
H d q sajbue jo ainsespy

syibus) jo ainseapy

ajbuel © JO SJUSWD|S By} USEMIS] SUOlBIS) OIS Al 9IgBL



227

Figure 193

second, then
(xi—xV+(i -y -~ )
1
1—p?
1

== [1- =0+ @ = =]+ (i -»)?

=(x;—x)*+ =y - (-

Quite generally, one can show that two-dimensional relativistic kinematics
reduces to the geometry of three-dimensional Minkowskian space {x,y,z} with the
metric

[ = x) = o(t = )P+ (r1=»)* = [—o(xi—x)+(H -0

1-0?

d?*=(x,—x)+ (3 —y)—(z1—2), @)

where time is denoted by z instead of ¢.

Next we consider the totality of plane uniform motions. As above, we can show
that to every such motion there corresponds a line in three-dimensional
Minkowskian space representing the totality of events each characterized by two
space coordinates and one time coordinate. Thus, from the point of view of the
theory of relativity, the set of plane uniform motions is equivalent to the set of lines
of three-dimensional Minkowskian space. With every (ordered) pair of uniform
motions there is associated in a natural way a “deflection” given by the velocity of
the first motion with respect to the second—the latter being regarded as defining
the state of rest (we are obviously describing the concept of “relative velocity”
treated in Secs. 3 and 11). This distance between uniform motions requires us to
identify all uniform motions with the same velocity, since the distance between two
such motions is zero. Thus the totality of uniform motions can be reduced to the
uniform motions which include the event O(0,0,0) (since each uniform motion with
velocity v can be represented by a motion with velocity v passing through the point
0(0,0,0). These uniform motions are represented by the lines of three-dimensional
space passing through the origin and contained in the interior of the cone K given
by Eq. (5a) (Fig. 193). The latter condition is equivalent to the condition v<1,
where v is the speed of the given motion in some inertial frame of reference (here,
as in Sec. 11, we take as our unit the speed of light').

15We recall that according to the theory of relativity there are no motions with speed v > 1.
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We now replace each of the lines under consideration by the point where it
meets the “hemisphere” =;—one sheet of the (Euclidean) hyperboloid

xt+yr-zi=—-1 )

We recall that if @ and b are lines representing uniform motions, then Uy, the
relative velocity of b with respect to a, is given by tanhg, where =4, is the
Minkowskian measure of £ (a,b).!® In turn, ¢ is equal to the distance, in the sense
of the hyperbolic geometry on =, between the points where a and b meet =}.!
These facts enable us to conclude that, from the point of view of Einstein’s theory of
relativity, the set of plane uniform motions can be identified with the hyperbolic plane
provided that the distance between two motions a and b is taken to be the relative
velocity vy, of b with respect to a.

We see that the facts and concepts of relativistic mechanics can be thought of
not only in terms of Minkowskian geometry (which was originally devised to
provide a geometric interpretation of Einstein’s special theory of relativity), but
also in terms of hyperbolic geometry. Here we can also construct a dictionary,
analogous to the dictionary in Sec. 3 connecting classical mechanics and Galilean
geometry, which enables us to translate every theorem of hyperbolic geometry into
a theorem of relativistic kinematics, and conversely. In much the same way, we can
show that from the point of view of Einstein’s theory of relativity the set of uniform
motions in space can be identified with hyperbolic space,'® provided the distance
between two motions a and b is taken to be the relative velocity of b with respect to a.

This connection between the theory of relativity and hyperbolic geometry
enables us to derive by purely geometric means many results connected with the
Einsteinian principle of relativity. Here we need only bear in mind that the relative
velocity v, of the motion b with respect to the motion a (the latter representing the
state of rest!) is tanhd, 5, where d, is the hyperbolic distance between the points 4
and B of Figure 193." Two such derivations follow.

Keeping the setting of Figure 193, put vy, =u, v, =v, v.,,=w, dyg=d, dgc =8,
and 84 =A. Then [cf. Eq. (21¢), Sec. 12] we obtain the relation

tanhd+tanhd _ u+vo
I+tanhdtanh§ 1+uv’

which is identical with Eq. (9) of Section 11. Again, in the setting of Figure 193, let
A, B, and C, be three points which do not lie on the same (hyperbolic) line but
form, say, a right triangle. In physical terms, let an observer H move horizontally
with velocity u=tanhd,p, and let a particle U move vertically with velocity
vy=tanhd,c,. Select an inertial coordinate system in which the line a through 4
represents the state of rest. Then the velocity w=tanhdsc, of the particle U
relative to the observer H, and the angle a—as observed by H—Dbetween the

w=tanhA=tanh(d+8)=

16See translator’s footnote 16 in Section 12.

17See translator’s footnote 6 in this Supplement.

Hyperbolic space is discussed in a number of the bibliographical items dealing with
non-Euclidean geometry (for example, [64], [65), [66] in [67] or [72]).

The relation v,,=tanhd,, implies the fundamental inequality v <1 of the theory of
relativity as well as the constancy of the speed of light in all inertial reference frames. The
corresponding relation associated with the classical Galilean principle of relativity is o, =
tangd,, =singd,, /cosgd,,, where 8, is the Galilean angle between a and b (which may be
identified with the “non-Euclidean distance” between the points 4 and B where the lines a
and b intersect the “unit sphere” of Galilean space; see below), and singd, cosgd and tangd
are, respectively, the Galilean sine, cosine, and tangent of the angle 8, so that singd =tangé=
8 and cosgd =1 (cf. Exercise 3, Sec. 3).
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horizontal and the direction of the motion of U, can be found by “solving” the
triangle ABC; in the hyperbolic plane, with AB=d (and tanhd=u), AC,=§, (and
tanhd,=v,), Z BAC,=90°, and £ ABC,;=a (make a drawing). Putting BC,=A,
and tanhA,=w, and using the appropriate formulas of hyperbolic geometry
(cf. Table IV, when AABC is a right triangle), we get coshA,=coshdcoshd,
(hyperbolic version of Pythagoras’ Theorem) and tana=tanhd;/sinhd. (For small
d and 8, these formulas are very close to the Euclidean formulas A}=d?+ 87 and
tana=8,/d.) Using, say, the relations sinhd=tanhd/V1—tanh’d and coshd=
1/V1—tanh’d , we obtain w}=u?+0v}—u’} and tana=(v,/u)V1—u*. (For
small u and v, these formulas are close to the classical formulas w?=u?+ v} and
tana=v,/u.)

Of special interest is the case of a photon U, when v;=1 and AC,||BC, (in the
sense of hyperbolic geometry). Then w; =1 and cosa=u.

‘Euclidean, Galilean, and Minkowskian geometry are defined in the
usual affine?® plane. Elliptic geometry is defined on a unit sphere of
three-dimensional Euclidean space with the metric

d2=(x1_x)2+()’1_)")2+(21_2)2- 4)
Hyperbolic and doubly hyperbolic geometry are defined on unit spheres in
three-dimensional Minkowskian space with the metric

d2=(x1_x)2+(.)’1—)’)2_(21_2)2- €))

In each case, a “point” is a pair of antipodal points. This method of
constructing plane Cayley—Klein geometries in three-dimensional space
can be used in other cases. We note first of all that a domain of definition
for cohyperbolic geometry can be obtained by identifying antipodal points
of the sphere 2, of Minkowskian space given by the equation

x2+yr—z2=1. (5)
To do this we designate the points of the hemisphere =) (Fig. 191b) as the
points of cohyperbolic geometry, and the sections of 2, by planes through
O which yield ellipses’ on =, as the lines of cohyperbolic geometry. As
before, the motions of the cohyperbolic plane are induced by “rotations”
of Minkowskian space about O.
In addition to Euclidean and Minkowskian space we consider semi-
Euclidean space, i.c., three-dimensional space {x,y,z} in which the dis-
tance d between points (x,y,z) and (x,,y,,2,) is given by

d?=(x,—x)’+(y,-»), 0
and semi-Minkowskian space, i.e., three-dimensional space with metric
d2=(x1—x)2—(yl—y)2. ™)

The motions of semi-Euclidean and semi-Minkowskian space are given,

20See, for example, [19] or [57].
21In other words, the planes involved must not cut the cone ¥ given by (5a).
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respectively, by

x'= .cosa- x+ sina-y +a,
y'=—sina- x+cosa-y +b, ®)
z'= ux+ w+wz+ec,

and
x’=cosha-x+ sinha-y +a,
y'=sinha-x +cosha-y +b, ®)
z'= ux+ vy +wz+c.

In fact, it is easy to see that if the coordinates (x’,y’,z’) and (x,y,z) are
connected by the formulas (8), say, then

(xj=x)*+ (¥ =y =[(x; = x)cosa +(y,—y)sina]’
+[=(x;—x)sina+(y, —y)cosa]’

=(x;=x)*+(y,~y)
[compare (8) and (8’) with (6) of Sec. 1 and (23) of Sec. 12; the latter
describe plane Euclidean and Minkowskian motions, respectively].
The “unit spheres” of semi-Euclidean and semi-Minkowskian space are

given by the equations

x2+y?=1 9
and

x2 _ y2 = 1’ (9/)
and represent, from the Euclidean viewpoint, a circular and hyperbolic
cylinder, respectively (Figs. 194a and 195a). We call the points O(0,0,0) on
the axis of each of these cylinders its center, and identify antipodal points
of the cylinders. Then the resulting hemicylinders o’ and o (see Figs. 194b
and 195b) become models of the co-Euclidean and the co-Minkowskian
plane, respectively. The points of these planes are the points of the
hemispheres ¢’ and o] and their lines are sections of ¢’ and ¢ by planes
passing through 0(0,0,0); the distance between points 4 and B is the

.
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Figure 195a Figure 195b

length of the segment AB of the “line” joining A and B, measured in terms
of semi-Euclidean or semi-Minkowskian geometry, and the angle between
lines a and b is the angle between the corresponding planes measured in
terms of the semi-Euclidean or semi-Minkowskian metric in three-dimen-
sional space (we forego a precise definition of the latter concept here).?
The motions of the semi-Euclidean and semi-Minkowskian plane are
induced by the motions (8) or (8) of three-dimensional space, which leave
fixed the center 0(0,0,0) of the sphere o or o,.

It is possible to describe the remaining three Cayley—Klein geometries
(Euclidean, Galilean, and Minkowskian) in similar terms. In addition to
the Euclidean metric (4'), the Minkowskian metric (4), the semi-Euclidean
metric (7), and the semi-Minkowskian metric (7'), we introduce the metric
in which the distance d between the points A(x,y,z) and A4,(x,,y,,2,) of
three-dimensional space is given by the formula

d?=(x,—x)%, (10)

analogous to the formula (37) of Sec. 13, which expresses the distance
between points A(x,y) and 4,(x,,y,) in the Galilean plane. We will find it
convenient to write this metric in the form

d?=(z;—z)~ (10a)

When combined with suitable groups of motions, this metric gives rise to
three geometries in space. The three groups of motions are defined by

x'= cosarx+sinay+v,z+a,
y'=—sina-x+cosa-y +v,z+b, an
z'= z+c

[three-dimensional Galilean space; cf. (11) and (12) of Sec. 2],
x'=cosha-x+sinhay+v,z+a,
y'=sinha-x+cosha-y + v,z +b, 1)

’

z'= z+c¢

22But see p. 240 for more details. (Translator’s note.)
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[pseudo-Galilean space; cf. (11’) and (23) of Sec. 12], and

xX'=x+u+oz+a,
y' = y+wz+b, (11a)

’

z'= z+c¢

(semi-Galilean space; cf. Exercise 5, Sec. 2). In all three geometries, the
equation of the “unit sphere” g, is

=1 or z==l1, (12)

i.e., the unit sphere is a pair of parallel planes (Fig. 196a).

As usual, we call 0(0,0,0) the center of the sphere o, and identify
antipodal points of o,; this leads to the consideration of the “hemisphere”
0y (a plane; Fig. 196a). If we define lines as sections of o} by planes
through 0(0,0,0), and motions as the rotations (11), (11"), and (11a) which
leave O(0,0,0) fixed, then we obtain, respectively, Euclidean, Minkow-
skian, and Galilean geometry in o).

The representation of six plane Cayley-Klein geometries as spheres in
Euclidean, Minkowskian, and semi-Minkowskian space makes it simple to identify
the curves which in these geometries play the role of (Euclidean) circles. By a cycle
of a Cayley-Klein plane we shall mean a curve which “has the same structure at
each of its points,” i.e., a curve such that for each pair 4,4’ of its points it admits a
glide along itself which takes 4 to A’ (cf. Sec. 8). With this definition of cycle we
see that the Euclidean cycles are circles and lines [given by Eq. (35a), Sec. 13]; the
Galilean cycles are the curves which we earlier called cycles (and shall now call
“proper cycles”), as well as circles and both ordinary and special lines [ given by
Eq. (35), Sec. 13]; and the Minkowskian cycles are “circles’: and lines [given by Eq.
(35b), Sec. 13]. It can be shown that the cycles of the six Cayley—Klein geometries—
elliptic, hyperbolic, doubly hyperbolic, cohyperbolic, co-Euclidean and co-
Minkowskian—are plane sections of appropriate “spheres” (2, Z,, =,, o, or a,). Thus,
for example, the cycles of elliptic geometry are lines and circles, where the term
circle is defined, just as in Euclidean geometry, as the locus of points equidistant
from a point called the center of the circle. If the elliptic plane is represented by a
Euclidean sphere = with antipodal points identified, then its cycles are the plane

Figure 196a Figure 196b
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Figure 197

sections of = passing through the center 0(0,0,0) of = (the elliptic lines) as well as
the plane sections not passing through O (elliptic circles; Fig. 197). [We note that in
spherical geometry each circle has two centers. They are the points Q; and Q»,
where planes a; and a,, parallel to the plane a of the circle, touch Z. On the other
hand, in elliptic geometry the antipodal points @, and Q, represent the same point,
so that in elliptic geometry a circle has a single center.]

We turn now to hyperbolic geometry. Here the cycles are: lines, circles (a circle
of radius r is the locus of points at a distance r from a point Q called its center),
equidistant curves (an equidistant curve of width h is the locus of points at a distance
h from a line q called its base), and horocycles (a horocycle is the curve obtained by
letting the radius r of a circle tangent to a line a at a point A tend to infinity, or the
curve obtained by letting the width h of an equidistant curve tangent to a line a at a
point A tend to infinity®®). We know that in the model of the hyperbolic plane on
the “sphere” X, lines are represented by plane sections passing through the center
0(0,0,0) of =, and intersecting the cone K given by Eq. (5a). (Planes through O
which do not intersect K do not intersect =,.) It can be shown that the circles of
the hyperbolic plane are sections of =, by planes a not passing through O and
intersecting K (and X,) in ellipses (Fig. 198a); that the equidistant curves are
sections of =; by planes B8 not passing through O and intersecting K along
hyperbolas (Fig. 198b); and that the horocycles are sections of Z; by planes y not
passing through O and intersecting ¥ in parabolas (Fig. 198c). We note that in the
hyperbolic plane the center of the circle represented by the section of =, by a is the
point where the plane ay||a touches 3, (Fig. 198a), and the base of the equidistant
curve represented by the section of 2, by B is the curve g (a hyperbolic line) in
which the plane B,|| B passing through O intersects =, (Fig. 198b).

The cycles of doubly hyperbolic, cohyperbolic, co-Euclidean and co-
Minkowskian geometry can be described in a similar manner. Our discussion
implies that the circular transformations of each of our six geometries, i.e.,
transformations of each of the six planes which take cycles to cycles, are repre-
sented by transformations of three-space that carry planes to planes?* and the
appropriate “sphere” (2, =, 2,, 0, or ;) to itself.

We illustrate the above discussion by considering co-Euclidean geometry on the
sphere o (or rather on the hemisphere 0’). We know that we can think of Fuclidean
lines as the “points” of co-Euclidean geometry. The equation of a Euclidean line /

2See, for example, [19] and [64]; or [56), [12] and [13]; or [25], [65]-[72a], {80], [81], and [78].

24These transformations are called projective transformations of three-dimensional space (see,
for example, [19], [31], [32] or [67]).
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can be written in the so-called normal form
xcosa+ysina—p=0, (13)

where a is the angle between the perpendicular to / and the positive direction of the
x-axis, and p is the distance from the origin O to / (Fig. 199a). One advantage of
the normal form of a line is that it permits us to evaluate easily the distance d=d,,,
from a point M(xy,y,) to / by simply substituting x,y, for x,y in (13) and taking
the absolute value:

d=|xycosa+yosina—p|. (13a)
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If we regard / as a directed line, then we can make n, the perpendicular from O to
/, into a directed line by rotating / counterclockwise, say, through 90° about the
point /N n, and transferring the positive direction on / to n (Fig. 199b). Then the
angle a can take on any of the values 0° <a <360°. If, in addition, we agree to
consider the distance from a point to a directed line as positive or negative
according as the point is on the right- or left-hand side of the line, then the distance
p from O to ! can take on any real value, — oo <p < 00. We can thus establish a
one-to-one correspondence between the set of directed lines | in the ( Euclidean) plane
and the set of triples

cosa,sina, —p (14)

of coefficients of / in (13), i.e., the set of points (cosa,sina, —p) of the cylinder o in
the three-dimensional space {x,y,z} (Fig. 200). Since the equation of o is

x2+y2=l, )

we may regard o as a sphere in the semi-Euclidean space {x,y,z}. Note that two
lines / and /; which differ only in direction are characterized by the number triple
(14) and the number triple

(cos(a + 180°),sin(a + 180°), — (—p)) =(—cosa, —sina,p)

(see Fig. 199b); i.e.,, / and /; correspond to antipodal points of the cylinder ¢ (Fig.
200). It follows that if we think of a “point” of the co-Euclidean plane as a
nondirected line in the Euclidean plane, then such a point is represented by a pair
of antipodal points of o.

It turns out, however, that in studying cycles of co-Euclidean geometry it is
more convenient to take “points” to be directed Euclidean lines.?® If we retain the

25Moreover, in studying circular transformation of co-Euclidean geometry, it is natural to
regard the points of the co-Euclidean plane as being “directed,” i.e., to consider a point as a
pair of coincident points of the (co-Euclidean) plane having different “directions.” One way
of assigning a direction to a point is to draw about it a circular arc with an arrow which
indicates which of the two possible rotations about the point is to be viewed as positive; cf.
Figures 225-227. Similarly, in many cases it is convenient to assign directions to points in the
elliptic, hyperbolic, doubly hyperbolic, cohyperbolic, and co-Minkowskian plane: see pp.
284-286 or [13] and [80}.
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above convention for the sign of the distance from a point to a line, then the
(signed) distance d=d,,, from M(x,,y,) to I [given, as before, by (13)] is equal to

d=xycosa+y,sina—p. (13b)
Then the section of the “sphere” o [i.e., the cylinder (9)] by the plane®
Ax+By+Cz=D, C+0, (15)
or, equivalently, the plane
ax+by+z=d (15)

with a=A4/C, b=B/C, d=D/C, is the set of points of the cylinder x2+y2=1
which represent the (directed) lines of the Euclidean plane at (positive or negative)
distance d from the point Q(a,b). This means that the cycles of co-Euclidean
geometry represented by the plane sections of the “sphere” o are just directed
circles, each viewed as the totality of its (directed) tangents (Fig. 201a); these circles
include points (circles of radius zero) or, more accurately, pencils of lines through
these points (Fig. 201b). In our model of the co-Euclidean plane, points are
represented by sections (15") of the cylinder o for which d=0, i.e., by sections of ¢
by planes passing through the origin O(0,0,0).

Circular transformations of the co- Euclidean plane are transformations of the set
of (directed) lines of the Euclidean plane (points of the co-Euclidean plane!) which
carry circles to circles. Such transformations of the Euclidean plane were first
considered by the eminent French mathematician E. N. LAGUERRE (1834-1886);
hence the name Laguerre transformations.*” Laguerre transformations are repre-
sented by mappings of the cylilnder o onto itself which take plane sections to plane
sections. An example of such a transformation is a central projection of ¢ to itself
from some center M which takes a point 4 of o to the second point A4’ of

%For C=0, the plane (15) is parallel to the axis of the cylinder.
2TSee [13], [80] or [29].
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Figure 202

intersection of the line MA with o (Fig. 202); if MB is tangent to o (at B), then
B’'=B. (This transformation is called an axial inversion, and is similar to an
ordinary inversion.)

Starting with three-dimensional models of plane Cayley—Klein geometries, it is
easy to obtain representations of these geometries in the plane. To this end, we
project each of the “spheres” =, =, =,, 0, and o, from its center 0(0,0,0) to the
plane z=1 (Fig. 203). Then each pair of antipodal points of the “sphere” is mapped
to the same point of z=1, and we can say that the points of our “Cayley—Klein
plane” are represented by points of either an ordinary or, more precisely, a
projective plane. Specifically, the elliptic plane is represented by the whole plane
z=1 (Fig. 203a), the hyperbolic plane by the interior of the circle x*+y*=1 (Fig.
203b), the doubly hyperbolic plane and the cohyperbolic plane by the exterior of
that circle (Fig. 203c), the co-Euclidean plane by the plane z=1 punctured at the
point x =y =0 (Fig. 203d), and the co-Minkowskian plane by the region |x/y|< 1
(Fig. 203e). It is clear that our central projection of each of the spheres =, 2,, Z,, g,
and o, from 0(0,0,0) to z=1 takes a plane section through O to a line. Hence in
our models of the six plane Cayley—Klein geometries, the lines of these planes are
represented by lines of the plane z=1. It is these models which were the starting
point of the algebraic constructions of Cayley and the geometric constructions of
Klein. They are called Klein models of the geometries in question.?

By using stereographic projections (see pp. 142, 149 and 198) of the spheres X,
2, 2y o0, and oy to planes we obtain other models of the same six plane
Cayley~Klein geometries. The spheres = and =, contain the point Q(0,0, —1). We
project each sphere to the plane z=1 tangent to it at the point Q,(0,0, 1) antipodal
to @ (Figs. 204a and 204b). The image of X is the whole plane z=1. On the other
hand, if we restrict ourselves to, say, the upper hemisphere X', then the plane model
obtained for elliptic geometry is the (rather oddz) region of z=1 consisting of the
interior and half the points of the circle x2+y*=4 (for the boundary of 3’ is a
semicircle; cf. p. 220, in particular, Fig. 189b). It is often convenient to assume that
elliptic geometry “acts” in all of z= 1. But then the points of that plane are images
of the “directed” points of the elliptic plane (cf. footnote 25) represented by all the

28See [56] and [73). In connection with Klein’s model of hyperbolic geometry, see [64], [37);
[69}, and [12].
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Figure 205a Figure 205b Figure 205¢

points of the sphere =. We note that as a result of the properties of stereographic
projection (cf. pp. 142-146) elliptic lines and circles (plane sections of =) are
represented in our model by (Euclidean) line and circles; in particular, the elliptic
lines—the great circles of =—ate represented by the circles of the plane z=1
which intersect the circles x*+y>=4 in antipodal points. Similarly, the image
under stereographic projection of the “upper hemisphere” X is the disk x2+y2 <4
of the plane z=1, which is thus the natural domain of hyperbolic geometry.
Nevertheless, in some cases (e.g., in developing the theory of circular transforma-
tions of the hyperbolic plane) it is convenient to regard the points of the hyperbolic
plane as directed and to assume that the “field of action” of hyperbolic geometry is
the whole plane z=1, which is the image under stereographic projection of the
whole sphere ;. Since stereographic projection of the sphere =, to the plane z =1
takes plane sections of 2, to circles (cf. pp. 142-144), it follows that in our model
of hyperbolic geometry all lines and cycles (circles, horocycles, and equidistant
curves) are represented by (Euclidean) lines and circles.

The spheres X, 0, and o, contain the point P(—1,0,0). We project them to the
plane x =1 which touches each sphere at the point P,(1,0,0) antipodal to P (Figs.
205a—c). The resulting plane maps enable us to construct plane models of the
geometries on 3,, o, and o), namely, doubly hyperbolic, cohyperbolic, co-
Euclidean, and co-Minkowskian geometry. Again, it is convenient to regard the
points of the various Cayley—Klein geometries as directed, for only then are all of
the points of the spheres =,, o, and o, images of the points of the Cayley—Klein
planes.?” We note that stereographic projection takes plane sections of the sphere
Z, to hyperbolas in the plane x =1, and plane sections of the spheres o and ¢, into
parabolas. It follows that in our models the lines and cycles of the doubly hyperbolic
and cohyperbolic plane are represented by hyperbolas, and the lines and cycles of the
co-Euclidean and co-Minkowskian plane by parabolas.

2We note that the fields of action of the models of the six Cayley—Klein geometries obtained
in the above manner are not copies of the familiar Euclidean (or affine) plane but more
complex constructs. Specifically, stereographic projection of the sphere = and of the two-
sheeted hyperboloid Z; from P to the plane z=1 maps = and I, to the inversive Euclidean
plane (see p. 142); stereographic projection of the cylinders o and o, to the plane x=1 maps o
and o; to the inversive Galilean plane (p. 149); and stereographic projection of the one-
sheeted hyperboloid =, to the plane x=1 maps it to the inversive Minkowskian plane (see p.
198).
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The models of plane hyperbolic and elliptic geometry obtained by means of
stereographic projection (models closely related to those studied in Supplement C
below) were first investigated by Poincaré. That is why all of these models are
called Poincaré models of Cayley—Klein geometries.>°

We conclude with a few remarks on three-dimensional Cayley—Klein geome-
tries, Just as there are 32=9 plane Cayley—Klein geometries, so there are 33=27
such three-dimensional systems, corresponding to all possible combinations of
measures of distance between points on a line, plane angles in a pencil of lines, and
dihedral angles in a pencil of planes. Each of these measures can be elliptic,
parabolic (Euclidean), or hyperbolic. We have already defined the three measures
of distance and the three measures of plane angles. It remains to define the three
measures of dihedral angles. The usual measure of dihedral angles (i.e., the one
used in Euclidean solid geometry) is called elliptic. The measure defined by the
requirement that the magnitude of the angle between two planes a and B is equal
to the (Euclidean) length of the segment AB cut off by these planes on a fixed line
q (not parallel to the edge of the angle) is called parabolic. Finally, the measure

defined by the formula
 klog L0/ L (xe)
b= klon| 253 7 ey )

where Z denotes the usual dihedral angle between two planes, and ¢« and ¢ denote
two fixed planes of the pencil, is called hyperbolic.

Examples of three-dimensional Cayley—Klein geometries are the usual
Euclidean geometry, Minkowskian geometry, semi-Euclidean and semi-
Minkowskian geometry, Galilean, pseudo-Galilean, and semi-Galilean geometry
(see pp. 229-230 and pp. 231-232). We shall denote the metric on a line, in a
pencil of lines and in a pencil of planes by means of one of the letters E, P, and H,
depending on whether the metric in question is elliptic, parabolic, or hyperbolic.
We shall use ordered triples of these letters to denote various geometries. The first
letter of the triple will refer to the metric of distances, the second to the metric of
plane angles, and the third to the metric of dihedral angles. Thus Euclidean
geometry is of type PEE. A pseudo-Euclidean geometry (i.e., a non-Euclidean
geometry in which the measure of length is parabolic but the two measures of
angles are not parabolic) may be of type PEH, PHE, or PHH. In classifying such a
geometry, we must decide whether its “planes” are planes which intersect the cone
K given by

x24+y2—22=0 (5a)

in ellipses or in hyperbolas, and consider separately the space whose “lines” are
lines parallel to those included in the interior of ¥ and the space whose “lines” are
parallel to the lines through 0(0,0,0) in the exterior of .3! Semi-Euclidean
geometry is of type PEP. Semi-Minkowskian geometry is of type PHP; as “lines” of
this geometry we must consider (Euclidean) lines parallel to lines passing through
0(0,0,0) and belonging to any (rather than just one) pair of vertical angles formed
by the planes

x2—y?=0 or (x+y)(x—y)=0.

30See [80]. In connection with the Poincaré models of hyperbolic and elliptic geometry, see
also [56] or [13].

311f all the “planes” of our Cayley—Klein geometry intersect the cone ¥ in (Euclidean)
ellipses, then its “lines” must be (Euclidean) lines parallel to lines through O in the exterior of
X (for our “planes” contain only such “lines”).
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Finally, Galilean, pseudo-Galilean, and semi-Galilean geometry are of type PPE,
PPH, and PPP, respectively.

By now we have accounted for nine of the 27 three-dimensional Cayley—Klein
geometries, namely those in which the metric of distance is parabolic. It is natural
to compare these geometries with the three plane Cayley—Klein geometries which
are the main concern of this book, i.e., Euclidean, Galilean, and Minkowskian
geometry, in which the distance metric is also parabolic. The remaining 27—-9=18
three-dimensional Cayley—Klein geometries can be realized on spheres in four-di-
mensional®> Euclidean, semi-Euclidean, pseudo-Euclidean, and semipseudo-
Euclidean spaces. However, these constructions® are beyond the level of this book.

3See [19]-[21].
33See, for example, [77] or [78].



Supplement B. Axiomatic characterization
of the nine plane geometries

In Supplement A, we gave a rather detailed exposition of the nine plane
Cayley~-Klein geometries. One reason for including the present supplement
is to comply with a tradition going back to Euclid [1-3] and Hilbert [4]
which requires that each geometric system be described by a complete list
of axioms. Another reason is the need to prepare a basis for proving the
duality principle of Galilean geometry (cf. Sec. 6).

The axioms of a geometry are the assumed properties of its undefined
terms (such as point and line); these terms are used to define more
complex geometric entities (such as triangle and circle). In turn, their
properties are formulated as theorems deduced from the (unproved)
axioms by the use of logical rules of deduction.

Every geometric system can be characterized by many (equivalent)
systems of axioms. Two equivalent systems of axioms may be based on
different sets of undefined terms, and what is an undefined term in one
axiomatization may be defined in terms of other concepts in an equivalent
axiomatization. Thus, at the end of the 19th and the beginning of the 20th
century there appeared a number of equivalent axiomatizations of
Euclidean geometry. The axiomatization of plane geometry by D. HILBERT
(1862-1943) used as undefined terms point and line, as well as the unde-
fined relations of incidence of points and lines, of a point lying between two
other points, and of congruence of segments and angles (which were
defined in terms of points, lines, and betweenness within the geometric
system). The axiomatization of Euclidean geometry published by the
Italian mathematician M. Pier1 (1860-1913) at about the same time as
Hilbert’s book [4] was based on the undefined terms point and motion, and
the system of axioms also formulated at about that time by the Russian
geometer B. F. KaGAN (1860-1953) was based on concepts of point and
distance. (The “metric” approach to geometry based on the concept of
distance was subsequently perfected by the American mathematicians O.
VEBLEN (1880-1960) and G. D. BIRKHOFF (1884—-1947); in connection with
Birkhoff’s axiomatization, see, for example, [5], [6], or [20}.)
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Axiomatizations of (plane and solid) Euclidean geometry developed in
the last few decades are usually based on the undefined terms point and
vector. This approach is usually, but perhaps without sufficient justifica-
tion, attributed to the great German mathematician H. WEYL (1885-1955)
whose famous book [39] on the theory of relativity entitled Space, Time,
Matter (first published in 1918), opens with this axiomatization. The
simplicity and universality of the vector approach which, when suitably
modified, encompasses not only classical Euclidean geometry but also
many non-Euclidean geometries (including all the Cayley—Klein geome-
tries) gave rise to the view that all other axiomatizations of geometry are
hopelessly out of date and deserve no attention (cf., for example, [8]). Our
own axiomatization of plane Euclidean geometry will also be vectorial and
will involve five groups of axioms, I, IT, III®, IV®, and V.

As indicated above, our undefined terms will be point and vector. We
take for granted the real numbers (which, in turn, can be based on a
suitable system of axioms; see, for example, Chap. I of [8]). The vectors are
required to form a vector space, i.e., a system closed under the operations
of addition (to each pair of vectors a and b there is associated a third
vector ¢ called their sum and denoted by a+b) and multiplication of a
vector by a number (to each vector a and real number a there is associated
a vector d called the product of a by a and denoted by aa) subject to the
following axioms.

I. Axioms of addition of vectors
I,. Vector addition is commutative':

a+b=b+a for all pairs of vectors a and b.
I,. Vector addition is associative:
(a+b)+c=a+(b+c) for any three vectors a, b, and c.
I;. Existence of a zero vector: There exists a vector 0 such that
a-+0=a for each vector a.

1, Existence of an additive inverse: For every vector a there exists a

vector &’ such that
a+a =0.

IL. Axioms of multiplication of a vector by a number
II,. For every vector a
la=a.
II, Multiplication of a vector by a number is associative:
a( Ba)=(ap )a for every vector a and numbers a, f3.
II,. Multiplication of a vector by a number is distributive over addition
of numbers:

(a+ B)a=aa+ Ba for all numbers a, 8 and for each vector a.

!Axiom I, can be deduced form axioms I, , and II, 4 (see, for example, W. Nef, Linear
Algebra, McGraw Hill, London, 1967, p. 18).



244 Supplement B. Axiomatic characterization of the nine plane geometries

II,. Multiplication of a vector by a number is distributive over vector
addition:

a(a+b)=aa+ ab for each number o and all vectors a and b.

The axioms in groups I and II imply the uniqueness of the zero vector 0
as well as the uniqueness of the additive inverse a’= —a of a given vector
a. Also, it is easy to establish the possibility of subtraction of vectors, i.e.,
the fact that given two vectors a and b there exists a unique vector x such
that

x+a=b;
the vector x [equal to b+ (—a)] is called the difference of b and a and is
denoted by b—a. Other simple results are

0a=0 and a0=0
for every vector a and number a, and
(=a)a= —(aa),
for every number a and vector a. Indeed,
(—a)a+aa=(—a+a)a=0-a=0,
(—a)a=(—1-a)a=(—1)(aa)= —(aa).

The fact that we are dealing with plane geometry (or two-dimensional
geometry) is determined by the following axioms.

III®. Dimension axioms
IIP. For every three vectors a,b,c there exist three numbers, not all zero,
such that

aa+ b+ yc=0. (16)

IIY. There exist two vectors a and b such that
aa+ Bb=0 onlyif a=0 and B=0.

The usual formulation of the dimension axioms involves the concept of
linear dependence of vectors. We say that vectors a,,a,,...,a, are linearly
dependent if there exist numbers a;,ay,...,0,, not all zero, such that

alal +a232+ e +akak=0. (16,)

If this is not the case, then we say that the vectors a,,a,,...,a, are linearly
independent. We can now restate the axioms III{? and III{ as follows.
I, Any three vectors are linearly dependent.
IIY. There exist two linearly independent vectors.

The dimension axioms enable us to introduce the important concept of
coordinates of a vector. Call a pair of linearly independent vectors (whose
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existence is guaranteed by IT1I{) a basis. Let e,f be a basis. Then it is easy
to show that for every vector a (which may coincide with e or f) there
exists a unique pair of (real) numbers x,y such that

a=xe+yf. 17)
The numbers x,y are called the coordinates of a relative to the basis {e,f}.

To prove the existence of the decomposition (17) we note that axiom
III{? guarantees the existence of numbers a, ¢, and {, not all zero, such that

aa+ee+ {f=0. (18)

Also, the number a in (18) is not zero; otherwise, we would have the
relation

ee+{f=0
with ¢ and { not both zero, and this would contradict the fact that the pair
e,f is a basis. Now —(e€)=(—¢)e and —({f)=(—{)f. By adding to both
sides of (18) the sum (—ze)+(— {f) we can rewrite (18) as

aa=(—¢)e+(—)I. (18)

Multiplying both sides of (18’) by 1/a and denoting the numbers —¢/a
and —{/a by x and y, we arrive at (17). The uniqueness of the coordi-
nates (x,y) of a follows from the fact that if, in addition to (17), we had an
equality

a=x,e+yf, 17)
then subtraction of (17") from (17) would yield

(x—x)e+(y—y)i=0.
Bearing in mind that e,f is a basis we conclude that
x—x,=0, y—y =0, 1€, X=X, y=y.

Formula (17) and the properties of addition of vectors and multiplica-
tion of a vector by a number (given by axioms I and II) imply that if the
vectors a,b have coordinates (x,y) and (x,,y,), then the vectors a+b and aa
(where & is any number) have coordinates (x + x,,y +y,) and (ax,ay) [and
a—b has coordinates (x — x,,y —y )]

In order to make the two-dimensional vector space governed by the
groups of axioms I, II, and III® (the vector plane) into a Euclidean vector
space, we must add to the undefined relations connecting vectors and (real)
numbers a binary operation called the scalar product of vectors, which
associates to a pair of vectors a,b a number ¢ called the scalar product of a
and b and denoted by ab. The scalar product is governed by the following
axioms.

IV®, Axioms of the scalar product of vectors
IV,. The scalar product of vectors is commutative:

ab=ba for any two vectors a and b.
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IV,. The scalar product of vectors is associative relative to the operation of
multiplication of a vector by a number:

(aa)b= a(ab) for arbitrary a, b and a.
IV;. The scalar product of vectors is distributive over vector addition:
(a+b)c=ac+bc for arbitrary a,b,c.
IVED. The scalar product is positive semi-definite:
aa >0 for any a.

The number aa is called the (scalar) square of a and is denoted by a2
Thus IV{® asserts that the square of any vector a is nonnegative. Finally,
we require

IVE. a’=0 only if a=0.

Together, axioms IV{Y and IV{® assert that the scalar product is
positive-definite. (Of course, the last statement is merely a definition of the
term “positive-definite.”)

[We note that 0a=0 for every a; indeed, by IV, (c+0)a=ca+0a, ie.,
ca=ca+0a, so that 0a=0, as asserted.]

The axioms IV® imply the existence of orthonormal bases, i.e., bases i,j
such that

i?=j#=1 and ij=0. (19¢)

Indeed, let e,f be a basis. Since e#0 and thus e*=a >0, we can form the
vector i=(1/Va )e. For this vector,

2=[(1/Va)e]’=(1/a)e*=(1/a)-a=1.
Now let if = 8. Put f, =f— Bi. Then
if, =i(f — pi)=if — Bi*=p— B=0.

If we put 2=y (where, clearly, y>0), then i and j=1/V7y {, satisfy the
conditions (19¢). Indeed,

P=1, ij=(1/Vy )if,)=0
and
P=[((/ VY =0/vB=(1/y)v=1.

Now let a,b be two vectors, {i,j} an orthonormal basis, and (x,y) and
(x,,y,) the coordinates of a and b relative to {i,j}. Then

ab= (xi+yj)(x,i+ A§) = (xx,) () + (o)) + (2, X) G + ) ()
=xx;1+xy:0+yx;-0+yp,- 1,

or
ab=xx, +yy, (20e)

—a formula for the scalar product of a and b expressed in terms of their
coordinates relative to an orthonormal basis. In particular, (20e) implies
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that
a?=x2+y2 (20¢)
The norm ||a|| and length |a| of the vector a are defined by

la]| = x2+y2, |a] =\/x2 +y2 . (207¢)

Finally, the (undefined) concept of a point is linked to the concept of a
vector by a relation which associates to each (ordered) pair of points 4,B a
vector a denoted by ‘AB, where A is called the beginning and B the end of
AB. This (undefined) “point-vector” relation is subject to the following
two axioms.

V. Axioms of the point-vector relation
V,. For every point A and vector a there is a unique point B such that

AB =a.
V,. For any three points A,B,C we have AB+BC=AC.

__By the line AB (A+B) we mean the set of points M such that AM and
AB are linearly dependent (i.e., AM=)AB for some number \). The vector
ABis called the direction vector of the line and determines it uniquely. If
we put AB=t, then the line AB can be described as the set of points M
such that

AM =t (21)
or, if O is any point of the plane, as the set of points M such that
OM = 04 +\t (21a)

(Fig. 206).

Let {e,f} be a basis and let O be a point of the plane. By the coordinates
of a point M of the plane we shall mean the coordinates of (the vector) OM
relative to the basis {e,f}. The point O is called the origin. If we denote the
coordinates of 4 by (p,q) and the coordinates of t by (— b,a), then the
coordinates (x,y) of a point M on the line / passing through 4 and having
direction vector t satisfy the relations

x=p—Ab, y=q+Aaq,
or
ax+by=ap+bg,
or briefly
ax+by +c=0, (22)

the equation of a line with direction vector t=(— b, a) passing through the
point A(p,q). The constant ¢ in (22) has the value c= —ap— bq.

The _distance between points 4 and B is defined as the length of the
vector 4B. By V,, we have

AB="0B- 04,
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Figure 206

so that the coordinates of AB are equal to the differences of the coordi-
nates of the points B and 4. It follows that if {i,j} is an orthonormal
(rather than an arbitrary) basis, then by (20”¢) the distance d, 4, between
the points A(x,y) and A,(x,,y,) is given by

dyy, =\, — 2+ (3, - ) . (23¢)

Lines / and /; with direction vectors t and t, are said to be parallel if the
vectors t and t, are linearly dependent (i.e., proportional, t,=At for some A),
and perpendicular if t and t, are orthogonal, i.e.,

“1 =(). (24)
Finally, the angle §, between / and /, is defined by the formula

_
cos sy = TR (25¢)

[t is easy to see that the absolute value of the number on the right-hand
side of (25¢) does not exceed 1, so that the formula (25€) actually
determines an angle 8.]

The development of Euclidean geometry based on two undefined terms—vector
and point—and on the groups of axioms I, I, III, IV, and V is very convenient. (It
is usually associated with the name of H. Weyl) Nevertheless, most of the
expositions of the subject in the scientific literature (and often in textbooks) rely on
the single undefined term vector. Such presentations dispense with the axioms in
group V and identify point with vector. In other words, it is assumed that to the
vector 0 (which is “special” by virtue of the fact that its existence is given by axiom
I;) there corresponds a point O (more precisely, the vector 0 is also called a point;
as such it is denoted by the letter O and is referred to as the center of the plane or
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of space). Further, to every vector a there is associated a point A (more precisely,
each vector a is called a point, and as such it is denoted by A4). The vector a can
also be given by the pair of points 0,4 and can be denoted by OA. Finally, to each
pair of points B, C we associate a new vector ¢—b which can be denoted by BC. 1t
is then easy to verify axioms V; and V,. This method of presenting geometry,
which ignores the concept of “point” is adopted in many university texts (as well as
in, say, the book [8]; cf. also pp. 254256 below).

A kind of “dual” development of geometry uses the single undefined term point
and a quaternary relation (4BCD) on points governed by the following axioms
(which replace the axioms of group I and are therefore denoted by I with
appropriate subscripts).

I,. If (ABCD) then (ACBD).

I,. If (ABCD) then (CDAB).

1. If (ABCD) and (CDEF) then (ABEF).

I,. For every triple of points A, B,C, there is a unique point D such that (ABCD).

The relation (ABCD) is often written in the form 4,B~C,D and is called a
relation of equipollence of pairs of points A, B and C, D. A class of equipollent pairs
of points® is called a vector. The undefined relations connecting vectors and
numbers are the relations of multiplication of a vector by a number and scalar
multiplication of vectors satisfying the groups of axioms II,-II, and IV, respec-
tively. Addition of vectors is defined by means of an equality which is fully
analogous to axiom V,. Then one proves the properties of vectors listed in the
group of axioms I. Finally, it is required that the axioms II;-II, and III be
satisfied.

While this way of developing geometry has intuitive appeal [the relation
(ABCD) asserts that the points 4, B, D, C (in this order!) are vertices of a parallelo-
gramy], it is somewhat arduous and therefore infrequently used.

In axiomatizing the Galilean plane and the Minkowskian plane we leave
unchanged the groups of axioms I, II, III®), and V. The axioms IV,, IV,,
and IV, of the groups of axioms IV® (“G” for Galilean) and IV™ (“M”
for Minkowskian) are the same as the corresponding axioms of the group
IV® in Euclidean geometry.

In the case of Galilean geometry, we keep axiom IV (which we denote
by IV{®) but replace axiom IV® with the axiom

, IVE®. There exists a vector a with a>>0 and a nonzero vector o with
0°=0.
One more axiom, which has no Euclidean analogue, will be added below.

To complete the axiomatization of Minkowskian geometry we need only
replace the Euclidean axioms IV{® and IV{® with the single axiom
IV, There exists a vector a with a2>0 and a vector b with b*<0.

20ne usually ignores the minor difference between the geometric structures determined by the
groups of axioms I-V and I-1V, respectively. This difference amounts to the fact that in a
“purely vectorial” space, where a point is defined as a vector, there exists a “special” point O.
That is why the latter geometry is sometimes called central Euclidean (i.c., Eucidean with a
special “center”).

31t is eagy to sge that the relation 4,B~C,D on pairs of points is an equivalence relation.
Axioms I, and I say that the relation is symmetric and transitive. The reflexive nature of the
relation follows easily from axioms I, 4.
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We repeat: the axioms of (plane) Minkowskian geometry consist of the
groups L, I, III®, and IVM = {IV IV, IV, IV]}.

The coordinates of a vector a and the coordinates of a point 4 (defined
as the coordinates of OA, where O is the fixed origin) are introduced in
Galilean and Minkowskian geometry in the same way as in Euclidean
geometry. Differences arise when we define an orthonormal basis. In the
case of Galilean geometry, axioms IV{? and IV{® readily imply that

0a=0
for every vector a. [Indeed, let a be any vector, and put a’=a. If
a0= 350, then for the vector b=a+Ao we have
b?=(a+A0)*=a?+2\(a0) +A\20?= a +2)\B.
But then b?<0 for suitable A, which contradicts IV{®.] Now let a be a
vector with a?=a >0, and put i=(1/Va )a. Then

1
'2=— 2=—- =
i a(a) e 1.

We define as orthonormal a basis of the Galilean plane formed by vectors
i,o0 such that

i’=1, o’=0, and io=0. (19g)
In the case of Minkowskian geometry we choose vectors a,b with
a’=a>0 and b?= — B<0 (cf. IV™). For the vector i=(1/Va )a we have

o1

1
- 2 _— =
i a(a) e L.

Now let ib= . Then for the vector b, =b— yi we have

b, =i(b— i) =ib—y({@)=y—y=0
and

(b)*=(b—vi)*=b>—2ybi+ y*(?) = - B—2y*+y>= — B—y*<0.

Putting m=(1/y 8+ y? )b, we have
=1, im=0, and m’=-1. (19m)
A basis of the Minkowskian plane satisfying (19m) is called orthonormal.
If {i,0} is an orthonormal basis of the Galilean plane and a,b are
vectors with coordinates (x,y) and (x,,y,) with respect to {i,0}, then the
analogue of (20e) is
ab=xx,. (20g)
Similarly, if {i,m} is an orthonormal basis of the Minkowskian plane, then
the analogue of (20e) is
=XX;=W1- (20m)
If, as before, we denote the norm a of a vector a by |jaj| and its length
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Va? by |a], then in place of (20”¢) we obtain
lal=x%  [a|=x (20"g)

for Galilean geometry, and

lall=x*=y%  |a|=yx*~y’ (20"m)

for Minkowskian geometry. Thus in the Galilean plane we single out
vectors yo=(0,y) with |yo|=0 (“special” vectors), while in the
Minkowskian plane we distinguish between vectors for which |laj|>0,
|lal| =0, and ||a]| <0 (vectors of positive, zero, and imaginary length,
respectively). Vectors of zero norm are called isotropic, those of positive
norm are called spacelike, and those of negative norm are called timelike;
cf. Sections 12 and 13.

Lines in Galilean and Minkowskian geometry are introduced in the
same way as in Euclidean geometry, i.e., by means of conditions (21)~(21a)
or (22). All we need add is that in Galilean geometry we single out special
lines with special direction vectors, and in the case of Minkowskian
geometry we distinguish spacelike, isotropic, and timelike lines with ap-
propriate direction vectors. Since the two types of Galilean lines are not
comparable, it is natural to include in the class of lines of Galilean
geometry only ordinary lines. Similarly, we include in the class of lines of
Minkowskian geometry just spacelines or just timelines (since each of these
classes is invariant under all the Lorentz transformations).

The distance d,, between points A(x,y) and A,(x,,y,) in the Galilean
plane (the coordinates of 4 and A, are taken with respect to an orthonor-
mal basis) is given by the formula

dyg=%,—x (23g)

(and is therefore signed, i.e., positive, negative, or zero). The corresponding
distance in the Minkowskian plane is given by

o, =(x,— )= (7,—-»)? (23m)

(and is therefore positive real, zero, or imaginary). Parallelism and per-
pendicularity of lines with direction vectors t and t, are defined in Galilean
and Minkowskian geometry just as in Euclidean geometry, i.e., by means
of the condition (24). We note that in Galilean geometry the condition (24)
of orthogonality of vectors (and of perpendicularity of lines with these
direction vectors) holds if and only if one of the two vectors is special (cf.
the text on p. 43 and Fig. 37b).

It is somewhat more difficult to define the angle §,, between the lines /

and /. In Minkowskian geometry it can be defined' by an analogue of
(25e):

(tt,)
TR

cosh?8, = (25m)
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where t and t; are the direction vectors of / and /,, respectively (cf. p. 187
ff). We require here that / and /, be both timelike or both spacelike.* In
Galilean geometry, however, we run into a difficulty, since the right-hand
side of (25¢) reduces to 1.° The difficulty is fundamental: The axioms in
groups I, II, III®, V, and IVO = {1V, IV, IV, IVO=IVP,IV(®} do not
completely describe Galilean geometry. In fact, the class of transforma-
tions which preserve all the concepts in these axioms [in particular, the
scalar product (20g)] consists of all transformations of the form

x'= x +a,

y'=vx+wy+b,
and is therefore larger than the class of motions (1) of the Galilean plane
(see p. 33). One way of obtaining Galilean geometry is to supplement the
above axioms with the axiom

IV, The set of all vectors o such that 0a=0 for all a is a Euclidean

(vector) line.

The axiom IV{® states that in the set of “special” vectors o such that
|o] =0 (and therefore oa=0 for all a; cf. p. 414) we can define a (“special”)
scalar product (pqg), satisfying IV,, IV,, IV;, IV, and IV{P. This scalar
product enables us to define a “special” length |p|,=V(p®); for such
vectors (in the coordinate system adopted above we can put |p(0,»)|; =»).
This special length allows us to introduce a measure on special lines which
is closely related to the measure of angles between lines introduced in Sec.
1 of Chapter 1.

We could approach the issue differently. In Euclidean geometry we can
introduce, in addition to the scalar product (20e), the cross product

aXb=xy,—yx, (26)

of vectors a(x,y) and b(x,,y,). This product has the following properties.

aXb= —(bXa) (anticommutativity);

(aa)Xb=a(aXb) (associativity relative to multiplication of a vector by a
scalar);

(a+b)Xc=aXc+bXc (distributivity over addition of vectors);

ixXj=1 for an orthonormal basis {i,j} which defines a “right-handed”
coordinate system® (normalization condition).

“It is easily checked that (tt,)> > [|t||[it, ||, and so the right side of (25m) is > 1. But then it is
indeed of the form cosh?8, where # is real. Similar remarks apply in several places on the
following pages. (Translator’s note.)

SIf we try to replace (25¢) by its Galilean analogue,
tt
cosgdy, = e @
where cosga is the Galilean cosine of a (see Exercise 3, Sec. 3), then we run into the difficulty
that cosga=1 for all a.

SAn orthonormal basis {i,j} is right-handed if iXj=1 and left-handed if ixXj=—1. This
corresponds to the distinction between right-handed and left-handed coordinate systems (and
bases).
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It is not difficult to show that these properties completely determine t.he
product aXb. We can use it to define the angle between lines / and /; with
direction vectors t and t; by means of the formula

txt,
It t:]
The definition (26) of a cross product (as well as its properties) is meaning-
ful in Galilean and Minkowskian geometry.” We can use it to define the

Galilean angle §, between lines / and /, with direction vectors t and ¢, by
means of the formula

sing, = (27¢)

txt,
=-— 27
= e

(or the formula

. tXxt,
8 = =7 7> 27
SIng oy, 1e[TE,] (27g)
where singa (= a) is the Galilean sine of the angle a; cf. Exercise 3, Sec.
3), and the Minkowskian angle by means of the formula

tXt,

sinh 8y, = el -

(27m)

Thus far we have given complete characterizations of the geometries of Euclid,
Galileo, and Minkowski. The basic concepts of co-Euclidean and co-Minkowskian
geometry are a doublet (the analogue of a vector; see Sec. 6) and a line. Doublets
(denoted by boldface capital letters) can be added and multiplied by numbers, and
these operations are required to satisfy all the axioms of the groups I-III®, Thus,
(A+B)+C=A+(B+C) for any three doublets A, B, C; there exists a doublet 0 (the
zero doublet) such that A+0=A for all A; a(A+B)=aA+aB for all A, B and a;
given three doublets A,B,C there exist numbers a,B,y, not all zero, such that
aA+ BB+ yC=0, and so on. In particular, these properties enable us to introduce
coordinates (X, Y) of a doublet (relative to a basis of linearly independent doublets
E,F). The connection between doublets and lines consists in associating to each
pair of lines a,b a unique doublet A=ab (doublet with beginning a and end b5).
This, in turn, allows us to define the coordinates of an arbitrary line a as the
coordinates of the doublet oa, where o is the fixed “line origin.” The association of
a doublet to a pair of lines is required to satisfy axioms which are exact analogues
of axioms V| and V,. Finally, a point L is defined in our scheme as the set (pencil)
of lines whose coordinates (X, Y) satisfy an equation of the form

aX+ Y+ vy=0, (22)

where a,f,y are given numbers [cf. (22)]. Such a pencil can also be specified by
giving one of its lines, say a, and a doublet T. The pencil then consists of all lines m

It is easily seen that the geometric interpretation of the cross product aXb of (Euclidean)
vectors a and b is the (signed) area of the parallelogram spanned by these vectors. Since the
concept of area is meaningful in Galilean and Minkowskian geometry, the same is true of the
concept of the cross product of vectors. We note that instead of supplementing IV,-IV{®
with IVE®, we could have supplemented it with the requirement that there exist a cross
product of vectors satisfying the conditions listed above. This approach would also have led
us to the “usual” Galilean geometry whose study takes up most of this book.
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~

Figure 207

such that
‘am =AT or om = oa +AT, (1)

where o is a preselected “doublet origin” (cf. Fig. 207). Thus we can speak of “the
point on line @ with doublet T.” In order to measure angles between lines (and
distances between points) we must still introduce the operation of scalar multiplica-
tion of doublets, which associates to each pair of doublets A,B a number AB, and
satisfies analogues of the axioms IV® or IV, The choice of IV® leads to
co-Euclidean geometry, and the choice of IV to co-Minkowskian geometry.

In order to characterize by means of the above scheme elliptic geometry,
hyperbolic geometry, cohyperbolic geometry, and doubly hyperbolic geome-
try, we must first introduce the concepts of a (three-dimensional) Euclidean
vector space and that of a (three-dimensional) Minkowskian vector space. A
Euclidean vector space is defined as a set of objects called vectors®
satisfying the axioms in groups I, II, and IV®. The axioms in group III are
now replaced by the following.

M®. Axioms of dimension
Y. Given four vectors a,b,c,d, there exist four numbers a,p,v,8 not all zero
such that

aa+Bb+yc+8d=0. (16))
I, There exist three vectors a,b,¢ such that
aa+ b+ yc=0 onlyif a=p8=y=0.

8In developing the usual (school) geometry we can identify “point” and “vector” and work
with the single undefined term “vector.” This approach, used in most university texts on
linear algebra, is adopted, for example, in [8].
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An equivalent formulation of these axioms is, of course, the following.
. Any four vectors are linearly dependent.
Ilz”. There exist three linearly independent vectors.

A basis is now a triple of linearly independent vectors e, f,g, and the choice of a
basis enables us to define the coordinates (x,y,z) of a vector a as the clefficients in
the decomposition

a=xe+yf+:zg Qar)
It is clear that the coordinates of aa are obtained by multiplying the coordinates of
a by a, and that the coordinates of a+b are sums of the corresponding coordinates
of a and b. A (vector) line / with direction vector t can be defined as the set of all
vectors m which are multiples ot t:

m=At. (281)

A line can also be defined as the set of all vectors p(x,y,z) with coordinates
proportional to given numbers a, 8,y (not all zero), i.e., by the condition

x:a=y:B=z:y. (287)

Similarly, a (vector) plane 7 can be defined as the set of all linear combinations of
two linearly independent vectors u,v, i.e., as the set of vectors q such that

q=Au+pv, (291)

where A and p are arbitrary numbers. The plane 7 can also be defined as the set of
vectors q(x,y,z) such that

Ox+ey+§z=0, 29,)
where 8,¢,{ are given numbers not all zero. The numbers a, 8,y in (28,) and §,¢,¢
in (29,) are determined only up to a nonzero multiple; for example, the number

triples a, 8,y and Aa,AB,Ay, A5=0, determine the same line /.
The axioms IV® imply the existence of an orthonormal basis i,j,k such that

PP=pP=k’=1, ij=ik=jk=0. (19%)

Indeed if {e,f,g} is a basis, then we can put i=(1/Va )e, where a=e% Then
i?=1. Further, if if = 8, then the vector f, =f— Bi is such that if, =0 and the vector
j=(1/Vy )y, where y=12, is such that ij=0 and j>=1. Finally, if ig=3 and jg=¢
then the vector g, =g— 8i—¢j satisfies the conditions ig, =jg,=0, and the vector
k=(1/V? )g,, where { =g, satisfies the conditions ik =jk =0, k?=1. Relative to an
orthonormal basis {i,j,k}, the scalar product of vectors a(x,y,z) and b(x;,y,,2;)
takes the form

ab=xx,+yy,+zz,, (20%¢)
so that if we define the norm |ja|| of a as ||a]|=a® and the length |a| of a as

|aj="Va?, then

lall=x2+y2+2%  |a|=Vx2+p2+22. (20%¢)

The angle ¢ between a and b is defined by the familiar formula cosgp =ab/|a|(b|,

so that the angle between lines / and /; with direction vectors t and t, is computed
by means of the formula (25¢) used in two-dimensional space (cf. p. 413). Similarly,
the plane with equation (29,) is characterized by its normal vector n(d,¢,¢{) (this
vector is perpendicular to all vectors in #: if qE =, then nq=0), and the angle ¢
between two planes 7 and #; with normals n and n, is computed from the formula

=M ’
cosy= o, (25'¢)
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(Three-dimensional) pseudo-Euclidean vector spaces are defined by the groups
of axioms I, II, III®, and two further axioms constituting the group IV™, One is
the familiar axiom IVf™ and the other is the axiom®

IVI™, There is no nonzero vector o such that oa=o for all vectors a.

The only difference between three-dimensional Euclidean and pseudo-Euclidean
spaces occurs in connection with the definition of an orthonormal basis. We choose
a basis {e,f,g} of pseudo-Euclidean space with €= a > 0. It is obvious that this can
be done. If, as before, we put i=(1/ Va )e, then =1. Further, f, is defined (as
before) as the vector f— i, where B=if. Then if,=0. At this point we must
consider the case f2=y>0 and the case f2=y<0. In the first case, putting
j=(1/Vy)f,, we obtain the equalities ij=0 and j*=1. In the second case, putting
m=(1/V]y| )f,, we obtain im=0 and m?>= — 1. Finally, if we put gi=g—d6i—¢jor
g, =g— 6i— em, where § =ig and e¢=jg or mg, then we have g,i=g,j=0 or gji=gm
=0. If 2 >0, then necessarily g}={ <0 (for otherwise IV would not hold) and
we put m=(1/V/]¢| )g,. This yields the equalities

i2=j2=1, m2=—l, and ij=im=jm=0' (19’1m)

On the other hand, if 7 <0, then we can have g2={ >0 or gZ={ <0. In the first
case, we put j=(1/V{ )g, and in the second case we put n=(1/V|{| )g,. In the
first case we obtain the equalities

2=f=1, m*=-1, and ij=im=jm=0, (19jm)
and in the second case, the equalities

=1, m’=p*=—1, and im=in=mn=0. (19;m)

This shows that there exist two (quite similar) types of three-dimensional pseudo-
Euclidean spaces in which the inner product of two vectors a(x,y, z) and b(x,,yy,2;)
is given, respectively, by

ab=xx,+yy,—zz, (20'm)
and
ab=xx, —yy,—zz,. (20"m)

[We shall refer to the pseudo-Euclidean space with the scalar product (20'm) as
Minkowskian three-space; it can be distinguished from the other pseudo-Euclidean
space (with scalar product (20”m)) by the fact that it contains a Euclidean vector
plane (29,).] The norm |ja]| and length |a] of a vector a in Minkowskian three-space
are given by the formulas

lal|=x2+y?—2z% and |a|=Vx2+y?—22; (20,m)

here it is necessary to distinguish spacelike, isotropic, and timelike vectors a with
norms |ja| >0, [|a]|=0 and ||a]| <0, respectively. A line / of Minkowskian space
defined by (28,) is called spacelike, isotropic, or timelike according as

litl=a?+B8%=v>>0, |it|=0, or |it|<0

(note that only the sign of ||t|| has geometric significance). It is clear that a
spacelike line is a set of spacelike vectors, an isotropic line is a set of isotropic
vectors, and a timelike line is a set of timelike vectors. The angle ¢ between two
lines with direction vectors t and t, is defined by the familiar formula (25m), and is

SIV™ holds in the Minkowskian plane, but 1n this case it can be deduced from the other
axioms and is thus a theorem rather than an axiom.
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meaningful only for two lines of the same kind (two spacelike or two timelike
lines). The nature of a plane given by (29,) and belonging to a Minkowskian
(vector) space is determined by the nature of its normal vector n(d,s,{) (n is
obviously orthogonal to all the vectors in =, that is, nq=0 for all qE€ 7). Depending
on whether |n||>0, |n||=0, or ||n|| <O we call the plane spacelike, isotropic, or
timelike.'® It is easy to see that a timelike plane has the structure of a Euclidean
plane and all its vectors are timelike; an isotropic plane contains a single isotropic
line and represents a Galilean plane; and a timelike plane has the structure of a
Minkowskian plane and contains timelike, isotropic, and spacelike vectors (why?).
The angle y between two planes 7 and 7, with normals n and n, is defined by the
formula

cosh¢=ﬁrl:7|; (25'm)

it has meaning only if both planes are of the same kind (both spacelike or both
timelike).

We can now define the elliptic plane as the set of all (vector) lines and planes of
three-dimensional Fuclidean space E>. The lines of E* are called the points of the
elliptic plane, and the planes of E> are called the lines of the elliptic plane. The
angle between two lines of > is called the distance between the corresponding points
of the elliptic plane (represented by these lines), and the angle between two planes
of E3 is called the angle between the corresponding lines of the elliptic plane.
Similarly, we define the hyperbolic plane as the set of all timelike lines and timelike
planes of three-dimensional Minkowskian space M3. The lines of M3 are called
points of the hyperbolic plane and the angle between two lines is called the distance
between the corresponding points. The planes of M> are called lines of the hyperbolic
plane (and the angle between two planes is called the angle between the correspond-
ing lines). If we designate spacelike lines of M3 as points, and timelike planes of M3
as lines, then we arrive at doubly hyperbolic geometry. One way of constructing
cohyperbolic geometry is to designate timelike planes of M? as points, and timelike
lines of M3 as lines (what are the other ways?).

19Clearly the quantity ||n|| depends on the choice of the normal vector n (and there are many
such vectors). However, the sign of ||n|| is a geometric characteristic of the plane 7 (29;).
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plane geometries

It is well known that the points of the Euclidean plane can be identified
with the complex numbers by associating to the point with rectangular
coordinates (x,y) or polar coordinates (,¢) the complex number
z=x+iy=r(cosp+ising) (30)
(Fig. 208). The numbers x and y are called the real and imaginary part of
the number z and are denoted by Rez and Imz; r and ¢ are called the
modulus and argument of z and are denoted by |z| and argz. [The
argument of z#0 is defined to within an integral multiple of 27—i.e., if ¢
is an argument of z, then so is p+2kw for integral k; we assign no
argument to z=0.] The modulus |z| of z can be defined by the formulas

@ |P=x’+y?  (=Rezl+(mz)})

or €2))
(b) |zP=zz,

where z is the complex conjugate of z:
(a) Rez=Re_z, Imz=—Im:z

or (32

®  |Z=ls, argF=—argz
fie, if z=x+iy=r(cosp+ising), then zZ=x—iy=r[cos(—op)+
isin(— ¢@)]=r(cosp—ising)]. The argument argz of z is given by the
relations

Rez Imz _ . Imz _
s cos (argz), o sin (argz), Re, —tan (argz), (33)

which most readers are used to seeing in the form

£ Y =i L= 33a
~ =cose, ~ =sing, L = tane. (33a)
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y)

Figure 208

It is important to bear in mind that

Re(z+z)=Rez*Rez;, Im(z*z)=Imz*Imz, (34)
fie, (x+p)x(x;+iy)=(xEtx)+i(y £y)]
|2z, =]z]|z,], arg(zz,)=argz+argz, (34a)

(i.e, r(cose + isin@)r,(cosg, + ising,)=rr[cos(p + ¢,) +isin(p+ @)D,
and
z

z|_ 14
Z)

V4
= arg{ — |=argz—argz 34b
el ) e s (40)

(ie., r(cose+ising)/r(cose, + ising,)=(r/r\)cos(p—¢,)+isin(p—
@)D The relations (32)-(34b) also imply that

—_ z H
z+z,=z+2z, z—z,=z—I, zzy=Zzi; and iz—;-__-z:—’@s)
1 1

and that the sum z+ z=2Rez and the product zz=|z|? are real, while the
difference z—z=(21Imz)i is pure imaginary (i.e., of the form ib, b real).
The equality z=7% holds only for real z, i.e., z such that Imz=0 and
argz=0 or =, and the equality z = — 7 holds only for pure imaginary z, i.e.,
z such that Rez=0 and argz=*#/2.

The distance d,, between two points of the Euclidean plane corre-
sponding to the complex numbers z and z,—or, as we shall say, between
the complex numbers z and z,—is defined by the formula

dz,z,’—_lzl‘zl or dz2,z|=(z_zl)(z-_z—l) (36)

(Fig. 209a). The angle §,_, y., ., between the lines joining z, and z, to
z,—or, as we shall say, between the lines (z(,z,) and (z4,z,)—is given by

zZ,—z

8(20’11)(20»12) =arg (22’21; ZO) =arg 22 — ZO ’ (37)

1~ %0

where (2,,2,; 20) = (2, — 20)/ (2, — 2,) is called the simple ratio of three points
2y, 3, and z,. Formula (37) follows from the fact that §, ., .,=®2— 1
where @, and ¢, are the arguments of the complex numbers z3 = z, — z, and
z)=z,—2z, (Fig. 209b). Here we must bear in mind that the angle
(02202 15 the directed angle between the directed lines (zq,z;) and
(29, 2), i.e., the angle through which we must rotate the positive ray of the
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directed line (zy, z,) (the ray from z, to z;) to bring it into coincidence with
the positive ray of the directed line (zg, z,).

It is clear that the (nondirected) line (z,,2,) is the set of points z such
that

arg(z,z,;z,)=arg z __2222 =0 orw (38)

Z)

(Fig. 210a). It follows that a line (z,,2,) can be defined as the set of points
z such that

z—z
Im(z,z;z,)=Im 2 =0 (38a)
ZI - ZZ
i.e., that the number (z,z,; z,) is real. But then
zZ— 22 Z—_' 2_2
=—"2 39
5172, ) @9

In other words, a line (z,,z,) is given by the equation (39), which can be
written as

(2, 5)z—(2,— 2)2+(2,5,~ £,2,) =0,
or
Bz—Bz+C=0, ReC=0, (40)
where B=7z,—%,, and where C=z,%,—Z;z, is indeed pure imaginary.

Figure 210a Figure 210b
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Conversely, an equation of the form (40) defines a line passing through the
pOintS 21529 Such that Zl - Z_2= B, 212_2 - 2122= C.
A circle with center z, and radius r is the set of points z such that
|z—zol=r or (z—zo)(z—Z)=r? (41)
(Fig. 210b). Thus the equation of a circle has the form
22— 252 — 2gZ +(202o— r*) =0,
or the form

azz+bz+bz+c=0, Ima=Imc=0. (42)

Conversely, an equation of the form (42) with a#0 defines a circle, namely
the circle with center z, and radius r determined by the relations z,=
—b/a, z4Zy—r*=c/a. After multiplication by i, Eq. (40) becomes the
special case of Eq. (42) with

a=0. (43)
We could also replace (42) by
Azz+Bz—Bz+C=0, ReA=ReC=0, (42a)
and view (40) as the special case of (42a) in which
A=0. (43a)

The circle passing through three points z,,z,,2z; can be described as the
set of points z such that

8(23»21)(23,22)— 8(Z>Z|)(2»22)=0 or w
(here the angles and lines are directed; Fig. 210c) or such that

Z1— 2 z,—z

arg =7, arg 7=z =0 or = 44)
In turn, (44) is equivalent to
Im(z,,2,;25,z)=Im Cnzizy) Im (2, 2)/(z, = 25) =0, (44a)

(21,223 2) (z2,—2)/(2,—2)
where (z,,2,;23,2) is called the cross ratio of four points z,, z,, z;, and z.
Thus the condition for four points z,,2,,24,2, to lie on a circle (or line) is

(21=23)/(2,—25) -
(z1—24) /(22— 2,)

The equation (44a) of a circle passing through points z,, z, and z, can
also be written as

(21— 25)/(2,—2z3) _ (21— 273)/(2,— 73)
(2,—2)/(2,—2) (z2,-2)/(5,-2)°

Im(z,,25;25,2,)=Im

0. (45)

(44b)

Oor as

Azz+ Bz—Bz+C=0, Red=ReC=0 (42a)
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[cf. the earlier occurrence of (42a)], where
A=(z,—23)(2,— 2;) — (£, — 2,)(2,— z5),
B=2)(2,—2;)(2,— 23) — 2\(2, — 2;)(Z,— Z3), (42b)
C=212)(z,— 23)(2,— Z3) — 2,22, — 25)(2,— z5).

The motions of the Euclidean plane are the transformations of the plane
which take z to z’, where!

(a) Z'=pz+gq,

or
(b) '=pz+q (pp=1). (46)

Indeed, it is easy to show that if z and z, are sent to z’ and z}, say, by (a) in
(46), then

21— 2'P=(z1—2)( 2 = ') =[(pz,+ q)—(pz+ @) ][ (PZ,+ T) — (pz+7)]
=p(z,-2)p(2,-2)=pp(2,— 2)(2,- 2)=(2,— z)(£,— Z) = |z, — 2,

i.e., the transformation (a) in (46) preserves the distance between points:

d;  =d, . (47)
In particular, the very simple transformations
@ z=-z
and
b)) =z (C))

represent, respectively, a half-turn about O (Fig. 211a) and a reflection in
the line Imz=0 (Fig. 211b), and (a) in (46) represents a rotation about O
through the angle argp followed by the translation determined by the
vector ¢ with beginning O and end ¢ (Fig. 212).

Finally, we note that the transformations

,_az+b
@) z_cz+d

and

az+b
L - 49
) 2 Z+d’ “9)

where ad — bc #0, related to the motions (46) when ¢ =0, either preserve the
cross ratio (z,,z,;25,2,) of four points z,,2,,25,2, [true of (a) in (49)] or
change it to its complex conjugate [true of (b) in (49)). Indeed, if the

!Tt is easy to see that (a) in (46) represents direct motions, and (b) in (46) represents opposite
motions (cf. [19], [10]).
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quadruples z{,z5,23,2z; and z,,z,,2;,2, are related by (a) in (49), then
(21— 23) /(25— 25)
(z1-20)/ (25— 20)

az;+b az;+b / az,+b az;+b
(czl+d B cz3+d) (czz+d B cz3+d
az,+b az,+b az,+b az,+b
( cz +d cz4+d)/( cz§+d B cz:+a')
(ad—bc)(z,—z5) / (ad - be)(z,—2,)
B (czy+d)(czz+d) ! (czy+d)(czy+d)
- (ad—bc)(z,—z,) / (ad—bc)(z,—z,)
(czy+d)(cz4+d) /' (czy,+d)(cz4+d)
_ [(z21=23) /(23— 23) ] [(cz,+ d) /(cz,+d) ]
[(z,—z4)/(zz—z4)]-[(cz2+d)/(czl+d)]
— (z21—23)/ (22— 23)
(21— 24) /(23— 24)
=(21,25323,24)

It follows that if the cross ratio of four points z,, z,, z5, and z, is real, then
50 is the cross ratio of their images z}, z, z3, and z, under (a) or (b) in (49);

(29,2525, 24) =

yA
pz
-
g A | F
\ //
‘\\-f\//’pp
5
o a 1 ’x
g

Figure 212
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in other words, a transformation (49) takes four points on a circle (or line) to
four points on a circle (or line), and is thus a circular transformation (see p.
146). It is possible to show that every circular transformation of the
Euclidean plane is of the form (a) or (b) in (49). In particular, the inversion
with center O and coefficient 1 (cf. pp. 124—125) is given by

,_ 1

z=—

z
[Fig. 213; (50) is a special case of (b) in (49) with a=d=0, b=c=1].

It is clear that a transformation (46) takes every point z of the Euclidean plane
to some point z’. However, this is not the case for the transformations (49) with
¢+#0. Specifically, a transformation (a) in (49) assigns no image to the point
z=—d/c and a transformation (b) in (49) assigns no image to the point z= —d/¢
(in each of these cases the denominator vanishes). Of course, this is connected with
the fact that while the expressions z,*z, and z,z, always define a complex
number, this is not the case for the quotient z,/z, when z,=0. To avoid this
difficulty, we sometimes put

(50)

Q=
[
8

and

zZ+00=00, Z— 00 =00, 2+ 00 =00, £=oo, Z -0
z )
for an arbitrary complex number z (in the third equality we assume that z 0 and
in the others we assume that z = c0). Thus, the transformations (a) and (b) in (49)
are one-to-one mappings defined for all points of the complex plane, supplemented
by the fictitious point at infinity oo; in particular, a transformation (a) in (49) takes
z=—d/cto

—a(d/c)+b —(ad—bc)/c _
0 = 0 =

g

and z=o00 to

,_ao+b _ a+(b/ ) _a+0 -
co+d c¢+(d/o) c+0

a
¢’

In slightly different terms, the natural domain of definition of the circular
transformations (a) and (b) in (49) is not the Euclidean plane but rather the
inversive plane obtained by adding to the Euclidean plane the point at infinity oco.

1
1
I
~
Figure 213

[ ]}
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It is possible to generalize the preceding constructions by considering, in
addition to complex numbers, “dual numbers” and “double numbers.” A
dual number is an expression of the form z = x+ ¢y, where x and y are real
and the “dual unit” e satisfies the condition ¢2=0; like the “complex unit”
i, the “dual unit” e lies outside the domain of real numbers. A double
number is an expression of the form z =z + ey, where x and y are real, and
the “double unit” e (which again lies outside the reals) satisfies the
condition e*= +1.

It seems that dual numbers were considered by the well-known German
geometer E. STUDY (1862-1930) and are often referred to in the literature
as the dual numbers of Study. Double numbers were apparently first
introduced by the noted English mathematician W. K. CLIFFORD
(1845-1879).2

The rules for addition and subtraction of dual and double numbers are
similar to the rules for addition and subtraction of complex numbers:

(x+e)x(x+e)=(xxx)+e(y ), (51)
(x+e)x(x,+ey)=(xxx))+e(y=y). (517)
The rules for multiplication are:

(x+e)(x;+ &)= xx; +e(xp)) +e(yx,) + X (yyy)

=xx;+e(xy; +yx,), (52)
(x+e)(x,+epy)=xx,+e(xy)) +e(yx,) + €*(yy))
= (xx, +yy)) +e(xy, +yx,) (52")

[compare with the equality (x+ iy)(x, +iy))=(xx;—yy ) +i(xy, +yx))] It
follows that if we put x=Rez,y=Im z in either z=x+¢ or z=x+ey,
then, just as for complex numbers,

Re(z+z)=Rez+Rez;, Im(z*z)=Imzz*Imz,. (34)
Also, for all three types of numbers (complex, dual, and double),
Im(z-z,)=Rez-Imz,;+Imz-Rez,. (53)
However, while for complex numbers
Re(z:z;)=Rez-Rez,—Imz-Imz,, (54)
the corresponding expressions for dual and double numbers are
Re(z:z;)=Rez-Rez, (54)
and
Re(z-z,)=Rez-Rez,+Imz-Imz,. (547)

The rules for division of dual and double numbers are closely linked to
the rule of forming the conjugate z of z; the latter operation is defined in

2The. term “complex numbers” is sometimes used for dual and double numbers as well as
“ordinary” complex numbers. We shall not follow this usage.
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the same way for all three systems of numbers:
Ifz=x+1y, thenz=x—1Iy, whereI=i,¢ ore (55)

(we continue to use the symbol I below). Hence for all three types of
numbers

Rez=Rez and ImZ=-Im:. (32a)

In all three cases, the sum of two conjugate numbers is real, i.e., a
number 2 such that Imz =0, and the difference of two conjugate numbers
is pure imaginary, i.e., a number z such that Rez=0:

z+z=2Rez, z—-z=(Q2Imz)I, I=iz,e. (56)

The condition z=2Z characterizes reals, and the condition z= —Z char-
acterizes pure imaginaries. What is more important is that in all three
systems the product of conjugates is real:

(x+p)x—p)=x*+)y%  (x+e)(x—e)=x%
(x+e)(x—ep)=x>~y2 (57)
It follows that in order to define the quotient z,/z, it suffices to multiply
its numerator and denominator by Zz, for then the denominator zz of

(2,2)/(22) is real, and in order to divide z,z by zZ it suffices to divide
Re(z,z) and Im(z,z2), respectively, by zz:

( X, + iy, — (x+ i) (x—iy) _ (xxl+YY1)+i(XY1_xl)’)
x+iy  (x+iy)(x—i) x2+y?
+ —x
= ‘xxl yyl +.'x)212 12y . (58)
x2+y? xI+y
X1+ ey, - (x+e)(x—¢p) _ xx,+e(xy;—x,y)
a_| ¥ty (ty)x—e) x?
z =y T 0) —ley ; (58)
X
x;t+ey, - (x+ey ) (x—ey) - xx,—yy 1 +e(xy;—x,y)
x+ey (x+e)(x—ep) x2—y?
- XY;i— X
= xle y);l + y12 12.y (58//)
xX“—y x“—y

The formulas (58)-(58”) show that while in the domain of complex
numbers the only inadmissible divisors are numbers z = x + iy with x2+ y?
=0, i.e., the number 0 (=0+i0), there are other inadmissible divisors in
the domains of dual and double numbers. Specifically, in the domain of
dual numbers we must not divide by numbers z=x+ ¢ for which x=0,
i.e., by numbers of the form ey (=0+¢p); and in the domain of double
numbers we must not divide by numbers z=x+e¢y for which x>?—y*=0
fie, (x+y)Xx—y)=0]l—in other words, numbers of the form x+ex or
x—ex.
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In defining the modulus |z| of a complex number z we used the first of
the equalities (57):
|zP=zz=x>+y% and |z]/>0
[cf. (31)]. Similarly, for dual and double numbers we define the modulus |z|
of z by the formulas

|zP=zz=x2, (31a)
|2 =|zz|=|x*—y?|. (31b)

More accurately, for a dual number z= x + &y we put
2 =x (31)

(so that the modulus of a dual number may be positive, zero, or negative)
and for a double number z=x+ ey we put

2_ 2
,z.={:\/x ' for[x|> ]yl 617

+\yr—x?  for |x|<|y|,

and make the convention that the sign of the modulus of a double number
is the same as the sign of x if |x|>|y| and the same as the sign of y if
|¥|>|x] (so that the modulus of a double number may be positive, zero, or
negative).

We can now say that in all three number systems (complex, dual, and
double) we cannot divide by numbers of zero modulus (i.e., by numbers z
with |z|=0). Such numbers are called divisors of zero, since for each of
them there exists a nonzero number z, such that zz,=0:

O0(a+ib)=0, (ey)(eb)=0;
(x+ex)(a—ea)=(1+e)(1—e)(xa)=(1-e*)(xa)=0.

[Note that, contrary to widespread usage, our definition make the number
zero into a divisor of zero.]
Let z be a number with |z|=r0. We then have
X Y X Y
=x+ =rl — =1 = =rl — -
zZ=x+tgy r(r+er), z=x+tey r(r+er).
For a dual number, z = x + ¢y, where |z|=r=x. Hence
z=x+ey=r(1+e{c-) if x#0.

The quotient y /x = g is called the argument of the dual number z = x + ¢y,
with |z|#0, and is denoted by argz. Thus, every dual number with nonzero
modulus can be written as®

z=x+e=r(l+ep), withr=|z|] and ¢=argz, (30)

3We can also write (30") as z=r(cosgp+ esingg) (cf. Exercise 3, Sec. 3). Then x = rcosge,
y=rsinge.
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where |z| and argz are defined by the formulas
|z]=x=Rez @3r)
and

=2y _Imz_ Imz /
aez=" |z2]  |z| Rez® (33)
In the case of a double number z = x + ey with |z|#0, it is necessary to
consider the cases |x|>|y| and |x|<|y| separately. If |x| >|y|, then we put

@  r=lol=xy@-57, (317)
where the sign of r is that of x. Hence
(3)-(2)- 225

r r r2 xz _y2

It follows that there exists a number ¢ (which may be regarded as an angle
in Minkowskian geometry; cf. pp 187-188) such that

(a) coshq>=%=— sinhp=2

Im:z
2| ro 2

tanhgp=>—% =¥ - 02 (33")

If |x <|y|, then we put

(b) r=lz]=%\y*-x?, (317)

where the sign of r is that of y. Hence
(- (32 2R

r r r2 y2_ x2

In this case there exists a number ¢ such that

(b) sinhp=—== T coshgp=

tanhg= 10 = X _ 262 (33")

The number ¢ defined by the formulas (33”) (a) and (b) is called the
argument of the double number z and is denoted by argz. Thus every
double number z= x + ey with |z|#0 can be put in one of the forms

(a) z=r(coshp+esinhg)
or

(b)  z=r(sinhg+ecoshe), (30”)
where r=|z| and ¢ =argz, with the modulus |z| of z=x+ ey given by the

formulas (31”) [in which the sign of |z| is that of x for numbers of type (a)
in (30”) and that of y for numbers of type (b) in (30”)], and with argz
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defined by the formulas (a) and (b) in (33”). We shall call the numbers (a)
in (30”) (numbers x + ey with |x|>|y|) double numbers of the first kind, and
numbers (b) in (30”) (numbers x + ey with |x|<|y|), double numbers of the
second kind.

We note that if

z=x+e=r(l+¢&),

then

z=x—gy=r(l+e(—9)],
so that the formulas

|z]=|z|, argz=—argz (32b)
hold for dual (as well as for complex) numbers. These formulas also hold
for double numbers of the first kind. In fact, if

z=x+ey=r(coshgp+ esinhg),
then
Z=x—ey=r[cosh(—p)+esinh(—g)]

[see formulas (19a) and (19b) of Sec. 12]. However, for double numbers of
the second kind these formulas change to

|Z2|=—|z|, argz=—argz. (32¢)
Indeed, if
z=x+ey=r(sinhp+ecoshp),
then
I=x—ey=—r[sinh(—¢)+ecosh(—¢)]

[again see formulas (19a) and (19b) in Sec. 12].
We now form the product of the dual numbers z=r(1+ep) and
z1=ri(1+ep,)):
zzy=r(1+ep)ry(1 +8‘P1)=”1[(1 +ep)(1 +3‘P1)]
=rri(1+ep+ep; +e'pp,)=rr [ 1+e(p+g,)].
Thus, for dual numbers we have the formulas
|2z)|=|z||z,|,  arg(zz,)=argz+argz,. (34a)

(These formulas are familiar under the name of de Moivre’s formulas from
the study of complex numbers and we shall refer to them by that name in
the domain of dual numbers.) From (34a), we obtain the relations

z |2l

z
—|= , arg| — |=argz—argz 34b
z, |z]' g( zl) g 2241 ( )

[ie., r(1+ep)/ri(1+ep)=(r/r)[1+e(p—@,)]. Similarly, if z=r(coshe+
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esinhg) and z,=r (coshe, + esinhg,), then

zz)=r(coshg + esinhp)r,(coshe, + esinhg,)
=rri(cosh¢ + esinh¢)(coshg, + esinhg,)
= rr [ (coshgcoshg, +sinhgsinh g, ) + e(coshpsinh g, +sinh g coshe,) |
=rr;[cosh(p+¢,)+esinh(p+¢,) ]

[cf. the formulas (21a) and (21b) of Section 12]; if z=r(sinhg+ ecoshg)
and z,=r(sinh, + ecosh¢,), then

zz,=r(sinh g+ ecosh)r,(sinh g, + ecoshg,)
=rr[ (sinhg + ecosh@)(sinh g, + ecoshg,) ]
= rr,[ (sinhgsinh g, +coshgcoshe,) + e(sinh g coshp, + coshpsinhg,) |
=rr,[cosh(p+¢,)+esinh(p+,)];

and if z=r(coshg + esinhg) and z, =r (sinhg, + ecoshg,), then

2z, =r(coshe + esinh¢)r,(sinhg, + ecoshg,)
=rr\[ (coshp+ esinh)(sinh @, + ecoshe,) |
=rr;[ (coshgsinhg, +sinhcoshe,) + e(coshpcosh g, +sinhgsinhg,) ]
=rri[sinh(¢+¢,)+ecosh(p+¢,)]

[see formulas (21a) and (21b), Sec. 12]. Thus for double numbers we also
have the de Moivre formulas

lzz,|=|z]|z], arg(zz,)=argz +argz,. (34a)

Note, however, that the product of two double numbers of the same (first or
second) kind is a double number of the first kind and the product of two
double numbers of different kinds is a double number of the second kind.
From the formulas (34a) it follows that

aoel(3)

== arg| — |=argz—argz,. 34b

I le g z, g g 1 ( )
Note, however, that the quotient of double numbers of the same kind is a
double number of the first kind and the quotient of double numbers of
different kinds is a double number of the second kind:

r(coshg+esinhg) _ r(sinhgp+ecoshe)
ri(coshg, +esinhg,)  r,(sinhg, + ecoshe,)

=r—rl[cosh((p—w.)+eSinh(<P“Pl)]

z

Z

and
r(coshp+esinhg) _ r(sinhg+ecoshg)
r/(sinhg, + ecoshg,)  r,(coshg,+esinhg,)

=7"; [sinh(p— @)+ ecosh(p—¢,;)].
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For all three types of numbers we have the relations

Z+z,=2+Z, z-z =i-%, z2z,=2z, and(z/z)=Z/z,.

(35)

The first three of these relations follow from (34), (53), (54)-(54"), (58)—

(58”), and the definition (55) of the conjugate of a number, and the last
two follow from (34a,b) and (32a—c).

A final remark. In the domain of dual numbers, argz=0 for real

numbers and argz is not defined for pure imaginary numbers, whereas in

the domain of double numbers argz =0 for real numbers (these are of the

first kind) and well as for pure imaginary numbers (these are of the second
kind).

After these preliminaries we can turn to geometry. Let M be a point in
the Galilean plane (Secs. 3—10) with rectangular coordinates (x,y). Then
the Galilean length = OM = d,,,, = x and the Galilean angle y = Z xOM =
8ox,0m are called the polar coordinates of M. We associate to M the dual
number

z=x+ey=r(1+¢) 30)
(Fig. 214a). Now let M be a point in the Minkowskian plane (see Sec. 12)
with rectangular coordinates (x,y). Define the (signed) Minkowskian length
OM to be the quantity r given by the equations (31”) on p. 267. If OM is a
line of the first kind (see p. 179) define y to be the Minkowskian angle
y=/Lx0OM=3§,, o). If OM is a line of the second kind define y to be the
Minkowskian angle y=ZyOM =38, o5 =080x,0m> Where OM L OM’ in
the sense of Minkowskian geometry (cf. footnote 20, Sec. 12). The numbers

(r,) are called the polar coordinates of M. We associate to M the double
number

z=x+ey=r(coshp+esinhgp) or z=x+ey=r(sinhgp+ecoshy),
(30”)
depending on whether o=/ xOM or o= /yOM (Fig. 214b). Finally, in

g
M=z
/ﬁ
1
g
T%M e

Figure 214a Figure 214b
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the case of the Galilean plane we associate to the points of the special line
x=0 (cf. p. 34 and p. 39; we might also call this line a “null line”) the
divisors of zero in the domain of dual numbers, and in the case of the
Minkowskian plane we associate to the points of the lines x=y and
x=—y (cf. p. 177 and p. 179; we might also call these lines “null lines™)
the divisors of zero in the domain of double numbers. We have thus
identified the points of the Galilean plane with the dual numbers (and will
therefore feel free to speak of the “point z of the Galilean plane,” meaning
the point identified with the dual number z) and the points of the
Minkowskian plane with the double numbers (and will likewise feel free to
speak of the “point z”).

The (signed) distance d, ,, between two points z and z, of the Galilean
or Minkowskian plane (Figs. 215a and 215b) is defined by the expression

4., =|21—2| sothat &, =(z—2z)(z,-2), (36)

whose form is the same as that of the expressions obtained by identifying
the points of the Euclidean plane with the complex numbers.This defini-
tion is a natural extension of definitions (31") and (31”) on p. 267 for the
modulus |z| of a dual and double number respectively. For points in the
Galilean plane (36) agrees with the distance formula (5) of Section 3. [The
second of the formulas (36) also holds for points z and z, of the
Minkowskian plane (Fig. 215a) if 4,, is defined by formula (15'a) in
Section 12. However, the first formula of (36) does not hold in general.
Indeed, the modulus of |z, — z| [as defined by (317)] is always real, but may
be either positive or negative. On the other hand, in Section 12, p. 180, we
defined two different distances from z to z,, neither of which behaves like
|zy—z| in this respect. The distance defined by (15a) is always real and
nonnegative, while the distance defined by (15'a) may not be real.]

The (directed) angle §,_, ., ., between the (directed) lines (z,,z,) and
(29,2,) joining the points z, and z, to the point z, (whenever defined; cf.

Figure 215a Figure 215b
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pp. 4041 and pp. 182-184) is given by the now familiar formula

N 23" %
8(‘0’20(20,21) =arg (ZZ’ZI’ ZO) =arg z,— 2o ’ (37)
where (2,,2,;2,) is again called the simple ratio of three points zj,2,,z, (in
the Galilean or Minkowskian plane). The relations (37) follow from the
fact that 8, , .. .,= P2~ 1, Where

g =argz)=arg(z,—2,), P =argz;=arg(z,—2zo)
[compare, e.g., Fig. 216a for the case of the Galilean plane, and Figs.
216a—c for the case of the Minkowskian plane; note that in Fig. 216¢ we
have z{°=z{| —z,, where (zq,z})L(z4,2,) in accordance with the definition
(p. 186) of the angle between lines of different kinds in the Minkowskian
plane]. We note that in the case of the Galilean and Minkowskian planes,
Eq. (37) actually defines the signed magnitude of the directed angle
between the lines (2,,z,) and (zq,2,) (cf. pp. 259-260).
Since a line (z,,2,) can be described as the set of points z such that

Im(z,2,;2,) =0, (382)

where (z,2,;2,)=(z — z,) /(z,— z,) is the simple ratio of the points z,z,,2,
(cf. Fig. 210a), it follows that the equation of a line in the Galilean or
Minkowskian plane has the (by now familiar) form

o

z—2z, =z'—— (39)

zy—2z, z,—z

[ 3]

or
Bz—Bz+C=0, ReC=0. (40)

Conversely, just as in the case of the Euclidean plane, every equation of the
form (40) defines a line in the Galilean or Minkowskian plane (according as
z, B, and C are dual or double numbers); it joins points z, and z, such that
z,—Z,=B and z,7,— z,2,=C.

Y ¥
z] o
. L, 520
A2 &%22
5 7
ol ?f_ - __OZ;’ EI/
0 f? , z 0 I 0 2 )

Figure 216a Figure 216b Figure 216¢
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44 Y
N\
e
\‘/
2
. 4
0 z 0
Figure 217a Figure 217b

By a circle with center z, and radius of square p, where p=r? in
Galilean geometry and p= +r? in Minkowskian geometry and r>0 (see
Figs. 217a and 217b, and p. 181), we mean the set of points z such that

(2= 20)(Z— Z5)=p; (41)
in Minkowskian geometry the (double) numbers z — z, must all be of the

same kind (of the same form). It follows that the equation of a circle has the
Jorm

22— 2oz — zgZ + (22— p) =0
or

azz+bz+bz+c=0, Ima=Imc=0. (42)

Conversely, every equation (42) defines a circle in the Galilean as well as the
Minkowskian plane with center z, and radius of square p given by the
relations

;=_2b
0 a

- _c
s ZOZO"p—Z.

A cycle of the Galilean plane passing through the points z,,z,,z, (Fig.
218a), as well as a circle of the Minkowskian plane, can each be defined as
a set of points z such that

(2202 = 82,2, 2,20

y Y
N
Zz N 23
22 [} N7
z I‘ /// N ‘\
o ~\\z,
z 0 NI

Figure 218a Figure 218b



Supplement C. Analytic models of the nine plane geometries 275

(cf. p. 77 and pp. 186-187), i.e., such that

(z123323) _, (21=25)/(22=23) _
(215255 2) =Im (2,—2)/(z,—2) 0, (44a)

Im(z,,2,;25,z)=Im

where

(z;— 23)/(2,— 23)

Coti2 )= 6 20 ma)

is the cross ratio of the four points (z,,2,;24,z) of the Galilean or
Minkowskian plane. Thus the equation of the cycle or the circle determined
by three points is given by the equation

(2,=25)/(2,—23) _ (2,—23)/(5,—25)

- - - — -\ 2 (44b)
(z,—2)/(2,—2) (21“2)/(22_2)
which can be written in the form
AzZ+Bz—Bi+C=0, RedA=ReC=0, (42a)

with coefficients 4, B, C given by expressions identical with the expressions
(42b) obtained in Euclidean geometry. However, while the equations (42)
and (42a) are equivalent in Euclidean and in Minkowskian geometry (in
the case of Minkowskian geometry we need only multiply one of these
equations by the double unit e in order to obtain the other equation), this
is not the case in Galilean geometry (since the dual unit ¢ is a divisor of
zero, we must not divide the terms of an equation by &). This corresponds
to the fact that a Galilean circle (42) and a Galilean cycle (42a) are two
essentially different curves, whereas in Euclidean and Minkowskian geom-
etry, (42) and (42a) define the same curve.

In the case of Minkowskian geometry, we may view the equation (40) of
a line as a special case of either of the equations (42) and (42a), from
which (40) (or an equivalent equation) can be obtained by putting

a=0 (43)
and
A=0, (43a)

respectively. This is not so in Galilean geometry. Here we may view the
line (40) as a special case* of the cycle (42a) [which reduces to (40) if (43a)
holds] but not of the circle (42). [If (43) holds, then the equation (42) of a
Galilean circle reduces to

bz+1;2+c=0, Imc=0;
putting b= b, + &b,, z = x + gy, we obtain

(b, + eby)(x +ey) +(by—eb))(x —ey) +¢=0

“More accurately, a limiting case (cf. p. 83).
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or
2b,x+c=0,
ie.,
_ ¢
2—b| s
which is the equation of a special line of the Galilean plane.]

Four points z,,2,,z5,z, are on the same cycle or line of the Galilean plane
[on the same circle (or line) of the Minkowskian plane] if and only if

(21— 23)/(2,— 23) -
(21— 24) /(23— 24)

A motion of the Galilean or of the Minkowskian plane can be described
as a mapping z—z’ such that

(@) Z=pzt+q or (b) z'=pi+q (pp=1).  (46)
In particular, just as in the case of the Euclidean plane, the maps
(a) z=—z and (b) z'=2Z (48)
represent, respectively, a half-turn about the point O and a reflection in the
line Imz =0 (cf. Figs. 211a and 211b). The general mapping (a) in (46) with
|p|=1, viewed as a mapping of the Galilean plane, represents a shear with
coefficient argp (cf. p. 25) followed by a translation by the vector q with
beginning O and end ¢ (Fig. 219a). Viewed as a mapping of the
Minkowskian plane, (a) represents a (hyperbolic) rotation about O through
the angle argp followed by a translation by q (Fig. 219b).

x=

Im(z,,2,;25,2,) =Im 0. (45)

It is easy to check that the mappings (a) and (b) in (46) are square-distance-pre-
serving: d? .. =d?, , where 2, z} are the images of z,z, under a mapping (46) and d
is interpreted as Galilean or Minkowskian distance (cf. p. 262). This, of course, is
also true of the motions of the Galilean plane and of the Minkowskian plane.

y A yh
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Figure 219a Figure 219b
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Nevertheless, the mappings (46) do not coincide with the class of Galilean motions
considered in Chap. I [cf. formulas (1), Sec. 3] or with the class of Minkowskian
motions considered in Section 12 of the Conclusion [cf. formulas (11) or (23) in
Sec. 12). This is due to the fact that our exposition was limited to direct motions,
while the mappings (46) include opposite motions as well (cf. footnote 12 of Sec.
1). Thus, for example, the coordinate representation of the Galilean motions in (46)
is given by the formulas

xX=xx +a,
y'= oxxty+b.

We leave it to the reader to investigate the “generalized motions™ (46) of the
Galilean and the Minkowskian planes (see Exercise 4 in Sec. 2).

Finally, the transformations
,_az+b _az+b
(2) = +d T cz+d
which are more general than the motions (46), take four points in the
Galilean plane that lie on a cycle (or line) to four points on a cycle (or line).
The transformations (49") of the Minkowskian plane take four points on a
circle (or line) to four points on a circle (or line). These assertions, which are
equivalent to the theorem that (49) are circular transformations of the
Galilean as well as of the Minkowskian plane, follow from the criterion
(45) for four points to lie on a cycle or circle. Indeed, if z}, z3, z3, and z; are
the images of z,, z,, z,, and z, under the maps (a) in (49"), then (z},25; 23, 2%)
=(2,,24; 23,24); and if they are the images of z,,2,,25,2, under the maps (b)
in (49), then (z{,23; 23, 23) =(z},2,; 23, 24)- In particular, the mapping

=1
Z_Z-, (50)

and (b) Z

(Jad— bc|#0) (49")

which is a special case of (b) in (49"), is an inversion (of the first kind) of
the Galilean plane with center O and coefficient 1 (see pp. 128—129) when
z and z’ are dual numbers, and an inversion of the Minkowskian plane

with center O and coefficient 1 when z and z’ are double numbers (see pp.
199-197).

Consider the mappings (49') with ¢=<0. If z is such that cz+d is a divisor of
zero in the domain of dual or of double numbers, then z has no image under (a) in
(49). Similarly, if cZ+d is a divisor of zero, then z has no image under (b) in (49").
This makes it necessary to supplement the dual numbers by fictitious (“ideal”)
numbers

Aw and co= l),

1
(/N ( 0
where A ranges over the reals, and where we assume that
o= —w, O =00;
similarly, we supplement the double numbers by fictitious numbers

Aw =-———l— Wy = __1—
T/ +e) M7 /m—e)

1—e l1+e 1
(and o=135,  e=1I5  w=g)
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where A and p range over the reals, and where we assume that
By =w,, Wy =w, 01 =03, G,=0,, 0 =o00.
Then we have, for example,

aw+b _a(l/e)+b _a+be
cwtd c(1/e)+d c+de

for dual numbers, and

aw+b _a[l/(1—-e)]l+b _a+b(1—e) (a+b)—be
cortd  c[1/(1—e)]+d c+d(l—e) (c+d)—de’

or

a0 +b _ a[(1—e)/(1+e)]+b _ a(l1—e)+b(1+e) _ (a+b)—(a—b)e
coy+d  c[(1-e)/(1+e)]+d c(1—e)+d(I+e) (c+d)—(c—d)e

for double numbers. Now each mapping (49") (with |ad— bc| #0, i.e., with ad — bc
not a divisor of zero) represents a one-to-one map of the extended dual (double)
numbers onto the extended dual (double) numbers. In geometric terms, the natural
domain of definition of thé circular mappings (49) is the inversive Galilean plane
or the inversive Minkowskian plane. These planes are obtained by supplementing
the “ordinary” Galilean and Minkowskian planes by “ideal” points (“points at
infinity”) corrsponding to the numbers Aw, oo and Aw,, puw,, 6y, 65, 0, Tespectively.

The similarities between complex, dual and double numbers often allow
us to prove by means of a single computation (which is the same for
complex, dual, and double numbers) theorems valid in Euclidean,
Galilean, and Minkowskian geometry. For example, Jet S, S,,Ss, S, be four
circles in the Euclidean or Minkowskian plane (four cycles in the Galilean
plane). Let z; and w,, z, and w,, z; and w, and z, and w, be the points of
intersection of the pairs S, and S,, S, and S, S; and S,, and S, and S,,
respectively. We shall show that if z,,z,,25,24 lie on a circle or line (on a
cycle or line), then the corresponding statement is true of w,,wy,wj,w, (see
Figs. 220a and 220b which refer, respectively, to Euclidean and to Galilean
geometry).

We use the fact that z,,z,w,,w, are on S,; z,,25,w,w; are on Ss;
Z3,Z4 Wi, W, are on S,; and z,,z,,w,,w, are on S;. This implies that the four
cross ratios

. _ (21— 2))/(wy—2;)
(zows; 22 m) = (z2y=wy)/(wy—wy)’
(2= 25)/(W3—2;)
(22— wy) /(w3 —wy) ’

(23_ 24)/(“’4_ Z4)

(23, W45 24, W3) = (z3—w3)/(Wwy—w;) ’

(22 W35 23, W) =

and

(z4—21) /(W —2,)

(24— wa)/ (W —wy)

(zpwis2,wy) =
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Figure 220a

Figure 220b

are real [cf. (45)]. But then the expression
(21,2522, W) . (23, W43 24 W)
(22, w3323, W) (zpwi321,wy)
— { (21— 2)) /(23— 25) } { (Wi —wa)/(w;—wy) }
(21— 24) /(23— 24) (w1 —ws)/ (w3 —wy)

=(21,23;25,24) (W, was wy, w,)

is also real. Since the cross ratio (z,,z,; z5,2,) is real, we conclude that the
cross ratio (wy, wy; ws,w,) is also real. But then the quadruple w,, w,, s, w,
lies on a circle (cycle), as asserted. In other words, either both quadruples
lie on a circle (cycle), or neither quadruple lies on a circle (cycle).
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y A=z,
ngZS
B=gz,
UI \,z
Figure 221

What follows is a more important example of such a “universal” computation.
Let ABC be a (Euclidean, Galilean, or Minkowskian) triangle. As usual, we denote
the lengths of its sides by a,b,c and the magnitudes of its angles by 4, B, C. Let the
numbers (complex, dual, or double) corresponding to the vertices be z;,z,,z; (Fig.
221). It is clear that if we put

W1=2z3— 2y Wy=2Z1— 23 W3=23—2),
then®
[wil=a, |w)l=b, |wj|=c. (59
Putting
argw; =@y, argw, = @y, argw; =@
[so that
argwy=—g@,,  argw,=—@z,  AIgW;= —@;3;

see formula (b) in (32) on p. 258 and formulas (32b) and (32c) on p. 269), and
assuming, for the sake of simplicity, that in the case of Minkowskian geometry the
numbers w;, w,, w; are dual numbers of the first kind, we have

wy=a(Coseg, + ISing,), wy=b(Cosg,+ISing,), w3=c(Cosg;+ ISing;),

where I=i,e or e, and Cosp and Sing stand for the ordinary (“Euclidean”
trigonometric functions cosg and sing, the “Galilean trigonometric functions”
cosgp =1, singp=¢g [cf. Exercise 3, Sec. 3 and formula (30’) in this Supplement],
and the “Minkowskian trigonometric functions” coshe and sinhe, respectively.
Finally, we note that

= p3=A4, P3¢ =5, P—p=C (60)

(see Fig. 221),5 so that in view of the formulas (34a) of this supplement, we have,
respectively,

wowy=bc(Cos A + ISinA4),

wsw, =ca(Cos B+ ISinB),

w,w,=ab(CosC+ISinC),
and

wawy=bc(Cos A — ISin4),

wyw, = ca(Cos B— ISinB),

wiw,=ab(Cos C—ISinC).

5Thus in Galilean and Minkowskian geometry a, b, c are signed lengths of the sides of A4BC.
(For an earlier use of signed lengths of the sides of a triangle see, for example, p. 51.)

SThus A, B, C are directed angles of AABC (cf. p. 51).
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Now
witwytw;=0  [=(z3—2)+(z21—z3) + (22— 2))],
ie.,
—wi=wy+w;,
which implies
— W =Wy + W;.
Hence

a2 = |W1|2 = Wlwl = (Wz + W3)(W2 + Wg) = W2W2+ W3W3 + W2W3 + W2W3
=|w,|2+|w;|2+ bc(Cos A + ISin4) + bc(Cos A — ISinA4)
=b%+c2+2bcCos A. (61)

This is just the law of cosines of Euclidean, Galilean, and Minkowskian geometry.
In Euclidean geometry, it takes the form

a*=b*+c?+2bccosA (61e)

[note that using the notation in Fig. 221, which we now interpret in Euclidean
terms, A =180°— Z BAC, so that (61) is equivalent to the relation a®>=b?+c2—
2bccos £ BAC). In Galilean geometry, the law takes the form

@?=b2+c2+2bc-1=(b+c)’ (61g)
[cf. formula (11), Sec. 4], and in Minkowskian geometry it takes the form
a*=b>+c2+2bccoshA. (61m)

Form the expressions

W3 — Wyw3=bc(CosA + ISinA)— bc(CosA — ISinAd)=(2bcSinA)1,

w3, — Wyw, = ca(Cos B+ ISin B ) — ca(Cos B—ISin B )=(2caSinB )1,

wiWy — Wyw, = ab(Cos C+ ISin C ) — ab(Cos C— ISin C )=(2abSinC ) I
Now

W3 — Wywy=(21— 23)(5,— 21) — (2, — B3)(22— 21)
=21+ 223+ 232 — 212, — 223 — 232y,
and as can be readily shown,
W3W| — WaW| =W\ W, — W\Wy = 212y + 2,23+ 232y — 212y — 2523 — Z32;.

[Note that the expression on the right-hand side is symmetric in z,,z,,z5.] There-
fore, (2bcSinA4)I=(2caSin B)I=(2abSin C)I, or

bcSinA = caSin B=abSinC,
from which we readily obtain

a _ b _ ¢
Sind ~ SmB - SinC’ ©2)
the law of sines of Euclidean, Galilean, and Minkowskian geometry:
a _ b _ ¢
sind smB _ sinC (62¢)

(Euclidean geometry);

A-B-©C (62¢)
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(Galilean geometry; cf. p. 49) and

a _ b _ ¢
snhA ~ smhB ~ SmhC (62m)
(Minkowskian geometry, cf. p. 191).

It is well known that the points of the hyperbolic plane can be represented by
means of complex numbers (compare, e.g., [80] or [81]). As the points of our model
of the hyperbolic plane, we take the points of the unit disk X defined by zz < 1. The
hyperbolic distance 4, , of points z,z, in K is defined as

4, - (z,—2)(2,-2)
2 (-zz)(1-2zz)"°

The hyperbolic motions are given by those linear fractional transformations (49)
which map X to itself, i.e., the transformations

tanh? (63)

@ =214

qz+p
and
_PZtq o
® =L (p-g720) ©49)
Particularly simple examples of the transformations (64) are

(@ zZ=—-z and (b) 2=z, (48)

which represent a half-turn about the point O of the hyperbolic plane (cf. Fig.
211a) and a reflection in the line Imz =0 (cf. Figs. 211b and 222), respectively.

The arc MM’ in Figure 222 represents a segment of a hyperbolic line perpendic-
ular to the hyperbolic line I/, the segment of Imz =0 in K, which is also a diameter
of K. The hyperbolic distance (63) between two points of IJ coincides with the
hyperbolic distance (1b) in Supplement A. All the remaining hyperbolic lines can
be obtained by applying a motion (64) to the line

z—z=0. (65)
This implies that the equation of a hyperbolic line is given by
azz+bz+bz+a=0, Ima=0, (66)
or, equivalently, by
AzZ+Bz—Bz+A=0, Red=0, (66a)

Figure 222
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Figure 223

where z € K. The hyperbolic lines are given geometrically by the diameters of X
and arcs in K which belong to circles perpendicular to the boundary circle = of K
(Fig. 223; an angle between two circles is defined as the angle between the tangents
to the circles at a point of intersection of the circles).

The circles

azz+bz+bz+¢=0, Ima=Imc=0 (42)
or

AzzZ+Bz+Bz+C=0, ReA=ReC=0 (42a)

(more accurately, their parts in K) represent the hyperbolic cycles [i.e., curves
which have the same “structure” at each point; curves S such that if P and Q are
any given points of S, there is a motion mapping S onto itself and sending P to Q}.
We know by now that a cycle (42) or (42a) is a hyperbolic line if

a=c 67
or
A=C (67a)

[cf. Egs. (66) and (66a) above]. A Euclidean circle (42) or (42a) represents a
hyperbolic circle [the set of points at fixed (hyperbolic) distance from a given point
—its center; cf. p. 233], a horocycle (p. 233) or an equidistant curve [the locus of
points at fixed (hyperbolic) distance from a line—the base of the equidistant curve;
cf. p. 233], according as it is contained in K, is internally tangent to X or cuts X in
two points M and N. The three curves in question are shown in Figures 224a—c.

In the case of an equidistant curve, the above description must be amended.
Instead of saying that an equidistant curve is the arc (in K) of a circle (42) [or

by
s 3 MN
,.' RN o
"' "‘.
H
LY ¢
. P

Figure 224a Figure 224b Figure 224c
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z (7

Figure 225

(42a)] intersecting = in two points M and N, we should say that it consists of the
points on two such arcs (see Fig. 224¢) lying on either side of the base of the
equidistant curve (represented in Fig. 224c by the dotted arc MN) at a fixed
distance from the base.

The last remark underlines the principal defect of our model of the hyperbolic
plane represented by the disk K. None of the simple equations (66), (66a), (42),
(42a), and not even the extremely simple equation (65), represents a line or cycle of
hyperbolic geometry, for in each case we must restrict ourselves to the complex
numbers z with zz < 1. Consequently, it is very difficult to find analytic expressions
for circular transformations of the hyperbolic plane (cycle-preserving transforma-
tions). In our model, these transformations would be required to permute arcs of
the circles (42) [or (42a)]. But the task of obtaining sufficiently simple analytical
expressions for such arcs (rather than for the circles of which they are a part) is not
easy.” And, surely, the representation of an equidistant curve (Fig. 224c) as a lens
consisting of two circular arcs with common ends is not likely to strike anyone as
simple.

The careful reader may well have guessed how to surmount these difficulties.
We shall view each point of the hyperbolic plane as oriented, i.e., supplied with an
indication of which direction of rotation about it is to be taken as positive; in our
drawings each point is oriented by means of a circular arrow (Fig. 225). We shall
assign opposite orientations to distinct points represented by complex numbers z
and z’ such that

Z'=

N||»—a

, (50)

i.e., to distinct points which correspond under inversion in = (inversion with center
O and coefficient 1; cf. Fig. 225). Finally, we shall include among the points of the
hyperbolic plane the points of = (given by the equation zz =1); we shall call them
“points at infinity” of the hyperbolic plane and assign to them no orientation. We
can think of a hyperbolic point at infinity as a pencil of hyperbolic parallels (which
“converge at that point™) just as a point at infinity in the Euclidean plane is often
thought of as a pencil of Euclidean parallels.

Thus the set of all points of the hyperbolic plane (including the oriented points
as well as the points at infinity) is represented by the set of all complex numbers
(including the “number” oo associated to the “negatively oriented” point 0). Each
hyperbolic cycle will also be oriented (i.e., supplied with an arrow indicating the
positive direction of motion on the cycle). An oriented point 4 is to belong to an
oriented cycle S if 4 is a point of S and if the orientations of 4 and S are related
as in the schematic diagram in Figure 226a; there A belongs to S but B does not.
By an (oriented) equidistant curve with base / we shall mean the set of points at a

"We suggest that the reader consider the problem of producing a simple equation describing
the segment 1J in Figure 222.
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fixed distance h from /, with points on opposite sides of / assigned opposite
orientations (Fig. 226b); we thus have two equidistant curves with given base / and
width >0, and we could agree to say that their widths are 4 and — A, respec-
tively). It is convenient not to orient lines® and to regard points of a hyperbolic line
as “doubled” (Fig. 226¢c), i.e., as having both orientations.” Finally, the (non-
oriented) “circle at infinity” represented by = (the circle zz=1) is also regarded as
a cycle in our model. Apart from =, the set of all (oriented) cycles and lines of the
hyperbolic plane is represented by the set of circles and lines of the complex plane (see,
in particular, Fig. 227 which shows a hyperbolic line / and an equidistant curve §

Figure 227

8We recall, by way of comparison, that in co-Fuclidean geometry (cf. pp. 233-237) we found
it convenient to regard oriented lines of the Euclidean plane as the fundamental elements of
the geometry, and that while we assigned orientation to circles (“cycles™) we assigned none to
points.

%An orientation of a cycle induces a natural orientation of its points: The orientation of the
curved circular arrow associated to a point of a cycle and drawn on the convex side of the
cycle must agree with the orientation of the cycle (Fig. 226a). In the case of a line, there is no
“convex side” and the scheme which works for points on cycles fails. The simplest way out of
the dilemma is to assign to a point on a line both possible orientations (Fig. 226¢). (If we
regard a line as “an equidistant curve of zero width,” both of whose branches coincide with
the base, then it is again reasonable to assign to its points both possible orientations; cf. Figs.
226b and 226c¢.)
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with base /). Now a line in the hyperbolic plane is given by an equation (66) [or
(66a)], and a cycle by an equation (42) [or (42a)].
Four (oriented) points zy,z,,23,24 lie on a circle or line if and only if

Im(2|,22;23,24)=0. (45)
It follows that the transformations

,_az+b ,_az+b
(a) z —m and (b) z = z+d’ (49)
where ad — bc <0, take four points on a line or cycle to four points with the same
property, i.e., (46) are the circular transformations of the hyperbolic plane. This fact
enables us to give a geometric description of all possible circular transformations of
the hyperbolic plane.!®

We saw that the points of the Euclidean, Galilean, and Minkowskian planes can
be represented by various “numbers”: complex numbers z=x+iy with i?=—1,
dual numbers z=x+ ¢y with ¢€2=0 and double numbers z=x+¢y with e?=+1.
On the other hand, the (oriented) points of the hyperbolic plane can also be
represented by complex numbers. This way of looking at plane Cayley-Klein
geometries is very fruitful: The (directed) points of the elliptic plane can be
represented by the complex numbers; the (directed) points of the co-Euclidean and
co-Minkowskian plane can be represented by the dual numbers z=x +¢y; and the
(directed) points of the doubly hyperbolic and cohyperbolic plane can be repre-
sented by the double numbers z = x + ey. Thus, the points of the three Cayley—Klein
planes with elliptic metric of angles—i.e., those of the elliptic, Euclidean, and
hyperbolic planes—can be represented by the complex numbers; the points of the
three planes with parabolic metric of angles—i.e., those of the co-Euclidean,
Galilean, and co-Minkowskian planes—can be represented by the dual numbers;
and the points of the three planes with hyperbolic metric of angles—i.e., those of the
cohyperbolic, Minkowskian, and doubly hyperbolic plane—can be represented by
the double numbers. Also, the distance d, , between points z and z, of a plane with
elliptic metric of distance (i.e., the elliptic, co-Euclidean, and cohyperbolic planes) is
defined by the formula

tan? 4. (2—z)(z-17) |

7 " Urm)(Fzy ©3)

in a plane with parabolic metric of distance (Euclidean, Galilean, and Minkowskian
planes) it is defined by the formula

dz2,z,=(z—zl)(z__z—l); (36)
and in a plane with hyperbolic metric of distance (hyperbolic, co-Minkowskian and
doubly hyperbolic planes) it is defined by the (familiar) formula

4,2, _ (z1—2)(2,—-2)

2 =1 0 7
tanh” == = ) =2z (63)
In Cayley—Klein planes with distance (63'), the motions are given by
,_pz+gq ,_pZ+q _ ,
ZZ=—2=L or z'= + qg| #0); 64
Py - (|pp + 93| +0) (64)
in planes with distance (36), the motions are given by
Z=pz+q or z'=pZ+gq (pp=1); (46)

10gee, for example, [80].
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and in planes with distance (63), the motions are given by

7=2 o =BL (p-ga20). (642)
The equations
AzZ+ Bz—Bz+A=0, Red=0, (66a)
B:—Bz+C=0, ReC=0, (40)
and
Azz+ Bz— Bz—-A=0, ReA =0, (66b)

describe the lines in planes with distance (63), (36), and (63"), respectively.!! In all
three cases, however, the equation of a cycle is given by

Azz+ Bz— Bz+ C=0, Red=ReC=0 (42a)

(see footnote 11). It follows that, corresponding to the distance formulas (63), (36),
and (63"), the conditions for a cycle (42a) to reduce to a line are, respectively,

A—-C=0, (67a)
A=0, (43a)
and
A+C=0 (67b)
(cf. Sec. 13).
Using the equation (42a) of a cycle or the condition
Im(z),25; 23,24) =0 (45)

for four points to lie on a cycle, we can show that in all nine Cayley—Klein planes
the circular (i.e., cycle-preserving) transformations are given by

,_az+b ,_az+b
cz+d cz+d’

Our findings are summarized in Tables V—VII.

We shall not apply our machinery to prove specific theorems, but we wish to
point out one example which hints at the wide range of its applicability. Specifi-
cally, the computations on pp. 280281 used to prove the result stated on p. 278 for
three plane Cayley—Klein geometries prove it for all nine of these geometries.

z

(|lad— bc| 0). (49)

Table V' Numbers representing the points
of Cayley-Klein planes

Metric
of angles Type of numbers
E z=x+iy, i’=-1
P z=x+gy, =0
H z=x+ey, e*=+1

1If the numbers in the formulas (66b), (40), (66a), and (42a) are complex or dual, then these
formulas can be replaced by (42) and by suitable variants of (66b), (40), and (66a) [see, for
example, (66)}. However, if the coefficients 4, B, and C and the variable z stand for dual
numbers, then (42) and (42a) are no longer equivalent.
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Table VI The distance d,, between points z
and z; of a Cayley—Klein plane

Metric of
distances
d (z—z))(z—1z))
E tanz L2152 . 1 1
2 (I+zz)(1+22)
d2, =(z—z(z~-1z)
H g2 %n (2= 2)(2=1)

2 (-a)(-zz)

Table VII The motions of Cayley—Klein

planes

Metric of
distances Motions

E s=PEYq , +qq]0

p lpp+ 44
P Z'= 1;;-!; 42 pr=1
H '= -
=ip’ |pP—qq)+0

Table VIl The equations of lines in Cayley—Klein planes

Metric of

distances Equation of line
E Azz+ Bz— Bz—A=0, ReA=0
P Bz—-Bz+C=0, ReC=0
H Azz+ Bz— Bz+A=0, ReA=0

We leave it to the reader to find other relevant examples.

We note that many of the constructions developed in this Supplement can be
carried over to algebraic systems other than our three systems of complex numbers.
Examples of such systems are the quaternions (five systems; cf. [80], pp. 24~25) and
octaves (seven systems; cf. [80], pp. 21 and 221-223), as well as numbers of the
form

Z=ay+a,E+aE*+--- +a,_E""},

where EPE?=EP*9 and E"=—1, 1, or 0 (cocyclic, ¢yclic, or plural numbers). The
associated geometries are sometimes of the Cayley—Klein type, but more often are
not. We refer the interested reader to [83].



Bibliography

A Textbooks on Euclidean Geometry'

1-3 Heath, T. L., The Thirteen Books of Euclid’s Elements, Vols. I-II1. Dover,
New York, 1956.

4 Hilbert, D., The Foundations of Geometry, 10th ed. Open Court, LaSalle, IL,
1971.

5 Moise, E. E. and Downs, F. L., Geometry . Addison Wesley, Reading, MA,
1971.

5a Moise, E. E., Elementary Geometry From an Advanced Standpoint. Addison
Wesley, Reading, MA, 1974.

5b  Boltyanski, V. G. Equivalent and Equidecomposable Figures, Heath, Boston,
1963.

6 Jacobs, H. R., Geometry. Freeman, San Francisco, 1974.

7 Brumfiel, C. E., Eicholz, R. E., and Shanks, M. E., Geometry, 3rd ed. Addison
Wesley, Reading, MA, 1975.

8 Dieudonné, J., Linear Algebra and Geometry. Houghton Mifflin, Boston, 1969.
8 Section 1 of the Introduction?

9 Klein, F., Vergleichende Betrachtungen iiber neure geometrische Forschungen.
Gesammelte mathematische Abhandlungen, Vol. I, 1921, pp. 460-497. (En-
glish version is found in Sommerville, D. M. Y., Bibliography of Non-Euclidean
Geometry, 2nd ed., Chelsea, New York, 1970.)

10-13 Yaglom, I. M. The items [10]-[12] are Geometric Transformations I-III.
New Mathematics Library; Volumes 8 (1962), 21 (1968), and 24 (1973),
Random House, New York. (The NML Series is now published and distrib-
uted by the Mathematical Association of America.) Item [13] is the untrans-
lated part of Yaglom’s two-volume Russian work Geometric Transformations.
GITTL, Moscow, 1955-1956 (Chap. I1, Vol. II, pp. 169-354, 483-605).

1See also Yaglom [10]-[13], Coxeter [19], and Wylie [20].
2See also Coxeter [19], Pedoe [31], Ewald [32], and Yaglom-Ashkinuze [57].



290 Bibliography

14 Jaglom (Yaglom), I. M. and Atanasjan, L. S., Geometrische Transformationen,
Enzyklopddie der Elementarmathematik (EEM), Vol. IV (Geometrie). De-
utscher Verlag der Wissenschaften, Berlin (DDR), 1969, pp. 43—151 [German]

C Section 2 of the Introduction®

15 Galilei Galileo, Dialogue Concerning the Two Chief World Systems. University
of California Press, Berkeley, 1970.

16 Newton, L., Principia. University of California Press, Berkeley , 1970.

17 Haber-Schaim, U., Cross, J. B., Dodge, J. H., Walter, J. A., PSSC Physics, D.
C. Heath, Lexington, MA, 1971.

18 Haikin, S. E., The Physical Foundations of Mechanics. Fizmatgiz, Moscow, 1962
[Russian].

D What Is 4-dimensional Space?

19 Coxeter, H. S. M., Introduction to Geometry, 2nd ed. Wiley, New York, 1969.
20 Wylie, C. R., Foundations of Geometry. McGraw-Hill, New York, 1964.
20a Manning, H. P., Geometry of Four Dimensions. Dover, New York, 1955.

21 Rosenfeld, B. A., Jaglom, 1. M., Mehrdimensionale Rédume, EEM, Vol. V
(Geometrie). Deutscher Verlag der Wissenschaften, Berlin, 1971, pp. 337-383
[German].

E Systems of Forces in Statics and Sliding Vectors

22 de la Vallée-Poussin, Ch., Lecons de mécanique analytique, Vol. 1. Paris, 1932
[French].

23 Synge, J. L. and Griffith, B. A., Principles of Mechanics, 2nd ed. McGraw-Hill,
New York, 1949.

24 Boltjanski, W. G. and Jaglom, I. M., Vektoren und ihre Anwendungen in der
Geometrie. EEM, Vol. 1V, pp. 295-390 [German].

F Galilean Geometry*

25 Rosenfeld, B. A. Jaglom, I. M., Nichteuklidische Geometrie. EEM, Vol. V,
1971, pp. 385-469.

26 Kuiper, N., On a certain plane geometry. Simon Stevin 30, 1954, pp. 94-105
[Dutch].

27 Strubecker, K., “Geometrie in einer isotropen Ebene I-III,” Der mathema-
tischer und naturwissenschaftlicher Unterricht 15: 297-306, 343-351, 385-
394, 1962-1963 [German]

28 Makarova, N. M., Two-dimensional Noneuclidean Geometry with Parabolic
Angle and Distance Metric. Dissertation, Leningrad, 1962 [Russian].

3See also Schwartz [45).
4See also Klein [56].



Bibliography 291

G

29
30
31

32
33
34
35

36

37

1
38

39
40
41

42

43
4
45

46
47

48

49

Chapter II°

Jaglom, 1. M., Geometrie der Kreise. EEM, Vol. IV, pp. 457-526 [German].
Coolidge, J. L., A Treatise on the Circle and the Sphere. Oxford, 1916.

Pedoe, D., A Course of Geometry for Colleges and Universities. Cambridge
University Press, Cambridge, 1970.

Ewald, G., Geometry: An Introduction. Wadsworth, Belmont, CA, 1971.
Johnson, R. A., Advanced Euclidean Geometry. Dover, New York, 1960.
Pedoe, D. Circles. Pergamon, New York, 1957.

Makarova, N. M., On the theory of cycles in plane parabolic geometry,
Siberian Journal of Mathematics 2 (1): 68-81, 1961 [Russian].

Properties of Plane Curves®

Struik, D. J., Lectures on Classical Differential Geometry. Addison Wesley,
Reading, MA, 1961.

Boltjanski, W. G. and Jaglom, I. M., Geometrische Extremwertaufgaben. EEM,
Vol. V, pp. 259-335 [German].

Section 11 of the Conclusion

Einstein, A. (translated by R. W. Lawson), Relativity, the Special and General
Theory. Crown, New York, 1961.

Weyl, H., Space, Time, Matter, Dover, New York, 1950.
Born, M., Einstein’s Theory of Relativity. Dover, New York, 1962.

Taylor, E. F. and Wheeler, J. A., Spacetime Physics. Freeman, San Francisco,
1966. ‘

Bergmann, P. G. Introduction to the Theory of Relativity. Prentice—Hall, En-
glewood Cliffs, NJ, 1942.

Bohm, D., The Special Theory of Relativity. Benjamin, New York, 1965.
Durell, C. V., Readable Relativity. Harper & Row, New York, 1960.

Schwartz, J., Relativity in Hlustrations. New York University Press, New York,
1965.

Gardner, M., Relativity for the Millions. Macmillan, New York, 1962.

Eddington, A. S., Space, Time and Gravitation. Harper and Row, New York,
1959.

Landau, L. D. and Rumer, Yu. B., What is Relativity? Fawcett World Library,
1972.

Nevanlinna, R., Raum, Zeit und Relativitit, Birkhduser, Basel, 1964 [German].

5See also Dieudonné [8], Yaglom [13], Yaglom-Atanasjan [14], Coxeter [19], Kuiper [25],
Strubecker [27], Makarova [28], Yaglom [80], Schwerdfeger [81], and Deaux [82].
$See also Coxeter [19].



292

50

51
52

53
54

35

Bibliography

Lanczos, C., Albert Einstein and the Cosmic World Order. Interscience, New
York, 1965.

Bergmann, P. G., The Riddle of Gravitation. Scribners, New York, 1968.

Kourganoff, V., Initiation G la Théorie de la Relativité, Presses Universitaires de
France, Paris, 1964 [French].

Bondi, H., Relativity and Common Sense. Doubleday, Garden City NY, 1964.

Melcher, H., Relativititstheorie in elementarer Darstellung. Deutscher Verlag
der Wissenschaften, Berlin, 1971 [German].

Synge, J. L., Talking about Relativity. North-Holland, Amsterdam—London,
1970.

55a Rindler, W., Essential Relativity. Springer-Verlag, New York, 1977.

J Section 12 of the Conclusion’

56

57

58

K

Klein, F., Vorlesungen iiber nicht-Euklidische Geometrie. Springer, Berlin, 1928
[German)].

Yaglom, I. M. and Ashkinuze, V. G., The Ideas and Methods of Affine and
Projective Geometry, Part I. Ucpedgiz, Moscow, 1963 [Russian].

Shervatov, V. G., Hyperbolic Functions. Heath, Boston, 1963.

Hyperbolic Geometry®

59-61 Bonola, R., Non-Euclidean Geometry. Dover, New York, 1955. Single

62

63

65

66

67

68
69

70

Volume containing three separate works: [59] Bonola, R., Non-Euclidean
Geometry; A Critical and Historical Study of its Development; [60] Lobachevski,
N., The Theory of Parallels; [61] Bolyai, J., The Science of Absolute Space.

Gauss, C. F., Werke, Vol. VIII. 1900, pp. 157-268; see also, Stickel, P., Gauss
als Geometer, in Gauss C. F., Werke, Vol. X, Part I1. 1923, pp. 3—46 [German].

Kagan, V. F., Lobatshevski, Mir, Moscow, 1974 [French].

Coxeter, H. S. M., Non-Euclidean Geometry. University of Toronto Press,
Toronto, 1968.

Norden, A. P., Elementare Einfithrung in die Lobatschewskische Geometrie.
Deutscher Verlag der Wissenschaften, Berlin, 1958 [German).

Sommerville, D. M. Y., The Elements of Non-Euclidean Geometry. Dover, New
York, 1958.

Busemann, H. and Kelly, P. J., Projective Geometry and Projective Metrics.
Academic, New York, 1953.

Liebmann, H., Nichteuklidische Geometrie. Berlin, 3d ed., 1923 [German].
Baldus, R. and Lobell, F., Nichteuklidische Geometrie, 4th ed. Sammlung
Goschen, Berlin, 1964 [German)].

Carslaw, H. S., The Elements of Non-Euclidean Plane Geometry and Trigonome-
try. Longmans, London, 1916.

"See also Born {40}, Norden [65), and Rosenfeld/Yaglom [25].

8See also Moise [Sa], Yaglom [12], [13], Coxeter [19], Wylie [20], Rosenfeld/Yaglom [25],
Pedoe [31], Ewald [32], Klein [56], Klein [73], Yaglom [80], Schwerdtfeger [81], Rosenfeld [78].



Bibliography 293

71

72

Karzel, H. and Ellers, E., Die klassische euklidische und hyperbolische Geome-
trie. Grundziige der Mathematik, Vol. II, Part A (Grundlagen der Geometrie,
Elementargeometrie, herausgegeben von H. Behnke, F. Bachmann, K. Fladt),
Vandenhoeck und Ruprecht, Gottingen, 1967, pp. 187-213 [German].

Kagan, V. F., Foundations of Geometry, Vol. I. GITTL, Moscow, 1949 [Rus-
sian}.

72a Nobeling, G. Einfiihrung in die nichteuklidischen Geometrien der Ebene. Walter

de Gruyter, Berlin—New York, 1976 [German).

72b Caratheodory, C. Theory of Functions of a Complex Variable, Vol. 1. Chelsea,

New York, 1954, Part 1, pp. 1-86.

L Supplements®

73

74

75

76

77

78
79

80
81

82

83

Klein, F., “Uber die sogenannte Nicht-Euklidische Geometrie,” Gesammelte
Math Abh Y. 254-305, 311-343, 344-350, 353-383, 1921 [German].

Riemann, B., Uber die Hypothesen, welche der Geometrie zu Grunde liegen.
Springer, Berlin, 1923 {German].

Sommerville, D. M. Y., “Classification of geometries with projective metrics,”
Proc Edinburgh Math Soc., 28: 25-41, 1910-1911.

Rosenfeld, B. A., Die Grundbergriffe der sphirischen Geometrie und Trigonome-
trie. EEM, Vol. IV, pp. 527-567 [German}.

Yaglom, I. M., Rosenfeld, B. A., and Yasinkaya, E. U., Projective Metrics.
Russian Mathematical Surveys, Vol. 19, No. 5, 1964, pp. 49-107.

Rozenfeld, B. A., Noneuclidean Spaces. Nauka, Moscow, 1969 [Russian].

Klein, F., Vorlesungen iiber die Entwicklung der Mathematikim 19. Jahrhundert.
Springer, Berlin, 1926 [German].

Yaglom, 1. M., Complex Numbers in Geometry. Academic, New York, 1968.

Schwerdtfeger, H., Geometry of Complex Numbers. University of Toronto
Press, Toronto, 1962.

Deaux, R., Introduction to the Geometry of Complex Numbers. Ungar, New
York, 1956.

Rozenfeld, B. A. and Yaglom, I. M., “On the geometries of the simplest
algebras,” Mat. Sb. 28: 205-216, 1951 [Russian].

9See also Klein [56], Rosenfeld /Jaglom [25].



Answers and Hints to Problems and
Exercises

Introduction

2

I

(a) For opposite motions formulas (6) are replaced by
x'=xcosa+ysina+a, y'=z*xsinat-ycosa+b 6)

(a) It suffices to prove that it is always possible to map one of the two
congruent segments to the other by means of a rotation or a translation
(direct motions), or a glide reflection (in particular, a reflection in a line).
For more details see [10] or [19].

Every direct motion in three-dimensional space is a screw displacement
(i.e., the product of a rotation and a translation along the axis of the
rotation; special cases of screw displacements are rotations and translations).
Every opposite motion is a glide reflection (i.e., the product of a reflection in
a plane and a translation along a line in that plane; a special case of a glide
reflection is a reflection in a plane) or a rotatory reflection (i.e., the product
of a rotation and a reflection in a plane perpendicular to the axis of the
rotation; a special case of a rotatory reflection is a half turn about a point).

(a) The concepts of triangle, quadrilateral, trapezoid, parallelism, median,
area. (b) The theorems about the midline of a triangle and a trapezoid; the
theorem about the concurrence of the medians of a triangle (including the
assertion that the point of intersection of the medians divides each of them
in the ratio 2:1); the theorem which asserts that triangles with equal and
parallel bases and equal altitudes have equal areas (in our geometry, the
condition of equality of the altitudes of the triangles can be stated in terms
of congruence of the “strips” containing the triangles, where each strip is
formed by a base and a line parallel to that base and passing through the
vertex opposite it). The theorem which asserts that triangles polygons with
equal areas are equidecomposable does not hold in our geometry; for
conditions of equidecomposability of polygons with equal areas, see, for
example, [5b).

(b) The theorem about the equidecomposability of polygons with equal areas
holds in our geometry (compare, e.g., the book by Boltyanski cited above).
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VI

VHI

(b) “Opposite motions” are defined in our geometry by the formulas
xX'=xx+N+pz+a,
y= £ y+vz+b,

Z'= +vyz+c,
where at least one of the equations contains a minus sign, while similitudes
are defined by the formulas

x'=ax+N+pz+a,
y'= By +vz+b,

’

2= yz+c,
where aBy+0.

Since every system of forces f}, f,,- - - ,f, applied at points 4,,4,,---,4, in
space can be reduced to a single vector F=f,+f,+ - - - +{, [the principal
vector of total moment U= 04, Xf;+ 04, Xf,+ - -+ + 04, Xf, (a sum of cross
products) of the system, which is also characterized by its three coordinates
(u,0,w)), it follows that the domain of definition of three-dimensional
Poinceau geometry is a six-dimensional space with coordinates (x,y,z,
4, v, w). Investigate the effect on the vectors F and U of a translation of the
origin and of a rotation of the axes [thus, for example, translation of the
origin by a vector ¢ has no effect on F and changes U to U'=U—(¢cXF)].

If a plane in three-dimensional central Galilean geometry does not pass
through the origin, then it can be described by an equation of the form
Ax+ By + Cz=1. Explain how the coefficients 4, B,C (the “coordinates” of
the plane) change under a “central Galilean motion” (12’a).

(a) A direct similitude of the plane which is not a motion is a spiral similarity
(i.e., the product of a dilatation with center O and a rotation about Q). An
opposite similitude of the plane which is not a motion is a dilatative reflection
(i.e., the product of a dilatation with center O and a reflection in a line
through O). (b) A similitude of three-space which is not a motion is a spiral
similarity (i.e., the product of a dilatation with center O and a rotation with
axis through O). The coefficient of the dilatation is positive or negative
according as the similitude is direct or opposite.

(a) A proper motion (13a) of the Galilean plane is either a translation (14b)
or a shear (14a) (where the role of the y-axis is played by an appropriately
selected special line, the axis of the shear), or a cyclic rotation [see Sec. 8,
Chap. II; in particular, see formulas (12) of Sec. 8]. (b) An “opposite motion
of the first kind” (characterized by the choice of —x and +y in (13'a) in
Sec. 1; such motions reverse the signs of distances but preserve the signs of
angles] is a glide reflection (in particular, a reflection) relative to a special line.
An “opposite motion of the second kind” (characterized by the choice of
+x and —y in (13’a); such motions reverse the signs of angles but preserve
the signs of distances) is a glide reflection (in particular, a reflection) relative
to an (ordinary) line. An “opposite motion of the third kind” (characterized
by the choice of —x and —y in (13’a); such motions reverse the signs of
angles and distances) is a glide reflection relative to a point (a particular case
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of which is a half-turn), i.e., a half-turn about a point O followed by a shear
whose axis passes through O. (¢) In classifying the similitudes (13”a) in
Section 2 it is convenient to distinguish “similitudes of the first kind” which
alter distances and preserve the magnitude of angles [these are transforma-
tions (13”a) with “second similitude coefficient” k=|8/a|=1; cf. p. 53 and
Fig. 47a]; “similitudes of the second kind” [transformations (13”a) with
“first similitude coefficient” k=|a|=1; cf. p. 53 and Fig. 47b); and “gen-
eral” similitudes (with k51 and k5=1). Also, depending on the signs of «
and B in (13”a), there is one variety of “direct similitudes” and there are
three varieties of “opposite similitudes.”

Chapter |

I

1

11|

VI

It is natural to define the distance d,,, between points A(x,y,z) and
Ay(x1,51,2)) by means of the formula d,, =z,—z; if d,, =0, then we

introduce the “special distance” 8, =\/(x1 - x)2+(y, - y)2 between these
points. It is also helpful to bear in mind that a plane of our space not
parallel to the z-axis may be regarded as a Euclidean plane, and a plane
parallel to that axis may be regarded as a Galilean plane. This suggests
reasonable definitions of angles between lines and analogues of circles.

If A(x,y,z) and A,(x,,y,,2,) are two points of our geometry, then the (first
or “basic”) distance between them is defined as d,,, =z,—z. If dy,,=0,
then we introduce “the second distance” §,, =y,—y. Finally, if §,,,=0,
then we introduce “the third distance” A,, = x;—x. There are analogous
definitions of angles between lines and angles between planes. These angles
may also be of different types. It must be remembered that the lines of our
geometry are of three different (noncongruent) kinds: (7) “general lines,”
(i) lines parallel to the yz-plane but not parallel to the z-axis, and (iii) lines
parallel to the z-axis. All the planes have the structure of Galilean planes
(which suggests reasonable definitions of angles between lines, as well as
analogues of circles). Nevertheless there are three types of planes. In
particular, each coordinate plane is of a different type [provided that the
coordinate system is chosen in such a way that the motions are given by
(12’), Sec. 2].

(a) If A(x,y,u) and A,(x,,y;,u;) are two points in Poinceau space, then it is

natural to take as their distance the quantity d,, =V/(x, —x)2+( »1— y)2 ;
if ds,,=0, then we introduce the “special distance™ §,,,=u,—u.(b) See
Problem VI in the Introduction. In particular, it is clear that the length of a
vector F and the scalar product of vectors F and F, corresponding to two
systems of forces are invariants of the Poinceau geometry of three-dimen-
sional statics.

Note that all “affine” properties of a tetrahedron, such as the theorem which
asserts that its four medians (i.e., segments joining each vertex to the centroid
of the opposite face) intersect in a point which divides each median (beginning
with the vertex) in the ratio 3:1, remain valid in three-dimensional semi-
Galilean geometry (as well as in three-dimensional Galilean geometry!).
Application of the principle of duality (see Problem VIII, Chap. I) to these
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12

18

»e

results yields new results. Also, note that the properties of trihedral angles in
our geometry are closely related to the properties of triangles in a Galilean
plane. To relate the two concepts, it suffices to cut the trihedral angle by
means of a plane parallel to the yz-plane and at a distance 1 from the vertex
of the angle. Another example: if O4BC is a (“general”) tetrahedron in our
space with volume V¥ (volume is a valid concept in our geometry), and if
OA=a, OB=b, OC=¢, L(0OA,0B)=a, and Z(OC, plane O4B)= ¢ (with
distances and angles measured in terms of our geometry), then V=
(1/6) abcagp.

The angle bisectors of AABC form a triangle whose sides are equal to the
corresponding sides of A ABC and whose angles are half of the correspond-
ing angles of A ABC. This triangle is obtained from A A4BC by the compres-
sion with axis m, Figure 57b, and coefficient —3 (cf. Fig. 47b).

(b) If the lines u, v, w pass through the vertices 4, B,C of AABC, then u,v,w
are concurrent if and only if

(illustrate with diagram).

If BD is a special line, then the diagonal AC of the cotrapezoid ABCD, the
line p joining the points of intersection of its opposite sides AB and DC, AD
and BC, and the bisectors m and n of the angles B and D are concurrent.

(a) The set of points M is a cycle (see Chap. IT) and the set of lines m is the
set of tangents to a cycle.

Compare, e.g., Sec. 4 of [12], or [14].

In axiomatic terms, three-dimensional semi-Galilean geometry can be de-
scribed as a three-dimensional point-vector space (cf. Supplement B) with
three “scalar products.” Specifically, we have the “basic” scalar product ab,
the “special” scalar product (pq), defined on the set of vectors p,q,... such
that |p|=|q|="--- =0, and the “second special” scalar product (uv), defined
on the set of (special) vectors u,v,... for which (u?); =(v%),=-- - =0 (cf. hint
to Problem II, Chap. II).

Chapter i

1

The relation ¥ =dr/ds=t, where =1, |t|=1 (cf. p. 251, Supplement B),
implies that if r=(x,y), then s = x. Hence, in the present case, a curve r=r(s)
can be given as r=(x,f(x)) or y = f(x). The “moving bihedron” of the curve C
at a point M of C consists of vectors t and n, where n.Lt in the sense of
Galilean geometry, i.e., n is the special vector (0, 1) of special length 1 (cf. pp.
251 and 252, Supplement B). Further, ' =pn, where it is natural to call
p=p(x) the curvature of the curve. (Note that n’=0.) It is again clear that
p=f"(x). This immediately implies the theorem on the natural equation of a
curve and the fact that all curves of constant curvature are cycles.

Here the role of the “natural parameter” (or “arc length™) is played by the
variable angle formed by the line m and the fixed “angle origin” (the fixed
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line 0), and the role of the curvature p is played by the radius of curvature
r=1/p.

In this case, these concepts are not of great significance. Thus, for example,
the involutes of a curve are the special lines.

In Galilean three-dimensional space, it is natural to define the scalar product
ab of vectors a(x,y,z) and b(x;,y,,2,) by the formula ab= zz, [assuming that
the coordinate system is chosen so that the motions of the geometry are given
by the formulas (12') of Sec. 2J; here the condition ap=0 or a_Lp (in the sense
of Galilean geometry) implies, for a>540, that p=p(x,y,0) is a special vector
[ie, [p|=0, where the length [a| of a vector is defined (up to sign) by the
equality |aj?=a%]. In the set of special vectors p,q,... there is defined a
“special” scalar product (pq),. Specifically, if p=p(x,y,0) and q=q(x,,y,,0),
then (pq), = xx, +yy,. The special scalar product enables us to define in the
set of special vectors the length |p|, of a vector p [by means of the equality
(pl1)*=(®?)] and the orthogonality of vectors [pLq means that (pq),=0].

Now let r=r(u)=(x(u),y(u),z(1)) be the radius vector of a curve in our
space. Then the condition r'=t, |t|=1, is equivalent to the condition u=z.
Thus the natural equation of our curve is r=r(f(z),g(z), z). It follows that it is
reasonable to give a curve in Galilean space by means of a pair of equations
x=f(z), y=g(z). The moving trihedron at a point M of the curve consists of
three vectors t,n,b, where t is the unit tangent vector, n_Lt is the unit special
vector in the osculating plane (i.e., |n|=0, [n|,=1), and b is the special unit
vector perpendicular to m [ie., (nb), =0]. The Frenet formulas for the curve
take the form t'=pn, n’=7b, b’= —n, where the scalar functions p=p(z),
T=1(z) play the role of curvature and torsion, respectively. These formulas
enable us to compute the curvature p and torsion r; they imply the theorem
on the natural equations of the curve [the functions p=p(z) and 7=1(z)
determine the curve up to position in space]; and they give the structure of
curves of constant curvature and torsion.

In semi-Galilean space, it is natural to define the scalar product ab of vectors
a(x,y,z) and b(x,,y,,z;) by the formula ab= zz, [assuming that the coordinate
system is chosen so that the motions of the geometry are given by the
formulas (12”) of Sec. 2]. Now we can define the length |a} (=2z) of a vector a
(so that |a]>=2a?), as well as the relation of orthogonality a_Lp, of vectors: for
[a|#40, a_Lp means that p(x,y,0) is a special vector (jp|=0). In the set of
special vectors p(x,y,0),q(x;,y;,0),... we can introduce a special scalar
product (pq),=yy,. This scalar product enables us to define a (“special™)
length |p|, =y, as well as a relation of orthogonality p_L ,u which means that
(pu); =0. If p,#0, then (pu), =0 means that u=u(x,0,0). Finally, in the set of
vectors u(x,0,0),v(x,,0,0),... we define a new scalar product by means of the
formula (uv),=xx,; and a new length |u|,=x.

i r=r(u)=(x(u),y(u),z(u)) is a curve in our space, then r'=t, |t|=1,
implies that ¥ = z, and the natural equation of the curve is r=r(f(z),g(z),z) or
x=f(z), y =g(z). The moving trihedron at a point M of the curve is formed
by vectors t,n,b, where t is a unit tangent vector; n is-a vector in the
osculating plane with |n|=0, |n|,=1; and |b|=|b|,=0, |b|,=1. The Frenet
formulas take the form t'=pn, n'=1b, b’=0, where the scalar functions
p=p(z), r=17(z) play the role of curvature and torsion, respectively. These
formulas permit us to compute the curvature and torsion [namely, p(z)=
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g"(2), 7(z2)=(f"(z)/g"(2))); they imply the theorem on the natural equa-
tions; and they give the structure of curves of constant curvature and torsxon
[namely, p=a and 7=b imply y=(a/2)z*+cz+d, x= =(ab/6)z>+ez*+fz +
gl, as well as the structure of curves of constant curvature and arbitrary
torsion.

IV-V If the coordinate systems are chosen so that the motions in the two spaces

11

13
16

are given by formulas (12) and (12”) (of Sec. 2), respectively, then the
surfaces in question are given by equations of the form

az?+2bx+2cy +2dz+e=0

(for b=c=0 they reduce to spheres in the sense of loci of points at a given
distance from a given point), and so are, from an affine or Euclidean point of
view, parabolic cylinders. These “cyclic surfaces” are the only ones which to
some extent share with Euclidean spheres the property of being able to “glide
along themselves” (cf. Sec. 8, in particular, Problems VII and VIII).

Let AB and CD be two parallel chords of a cycle Z, and let PA and PB, QC
and QD be tangents to Z at the endpoints of the chords. To prove that the
midpoints of the chords are on the same special line (which implies the
desired result), use the equality

0= dCQ - dQD =(dCA + dAP + dpQ) - (de+ de + dBD) =2dpQ.
Justify the latter.

The bisectors of the angles formed by the pairs of tangents to a given cycle Z
from the points of a given line m are tangent to a cycle Z,.

(a) Let AB be tangent to z at F and let ¢ be tangent to Z at F”. If @ is a point
of FF’ such that QF =4QF’, then the dilatation with center Q and coefficient
4 maps Z to z. If C, is the midpoint of 4B, then the fact that F’C, is a special
line implies that QM is also a special line (use the fact that FQ=(4/3)FF’,
FF'=FC,, FC;=C,C, and C,M=1C,C). (b) The dilatation v, is the product
of the dilatations y and y,. (c) To show that L is a point of the cycle Z,
(a dilatation with center at a point of a cycle maps it to a cycle tangent to the
original cycle at the point in question), it suffices to show that, say, 8¢, 1z =
8s,c, 8,8, Where B, is the midpoint of the side 4B and R is the projection of
C to AB (i.e., R is the point of AB such that the line CR is special). Now
8s,c, 8, =B—A. It remains to compute 8., ;g- Note that if H=4§.c, and
h=38cg are altitudes of AABF’ and AABC, and N is the projection of Q
(and M) to AB, then QN=(4/3)H and MN=1h. It follows that QM=
(4/3)H—1H and NL=ML-— MN =(4/9)(H — h). But then, with H=(c/2)-
(C/2) and h=bA=aB (here it suffices to remember the definition of a
Galilean angle), we conclude that NL=(b—a)}(B—A4)/9. Now it follows
readlly that 8C|N,C|L = %(B _A) and SRN,RL = %(B - A), so that 8LC.,LR =B—
4 (=8B,C,,R,R)‘

Apply an inversion (of the first kind) with center 4. Answer: A circle (cycle).
The theorem (of Galilean geometry) in Exercise 14 goes over into the
following theorem: Let a, and b,, a, and b,, a3 and bs, a, and by be common

tangents of the pairs of cycles Z, and Z,, Z, and Z,, Zy and Z4, Z4 and Z,. If
a,,a,,as3,a4 are tangent to a cycle, then by, b,,bs,b, are also tangent to a cycle.
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17 (b) Compare the proofs of the fundamental theorem of the theory of circular
transformations of the Euclidean plane presented, for example, in the books
[13] and [19]; use the fact that al/ (point) transformations of the Galilean plane

which map lines to lines and cycles to cycles are similitudes (cf. Exercise 4 in
the Introduction).

XII (b) The “general” equation of a cycle (which includes lines and circles) is of
the form ax?+2bx +2cy + d=0. The equation of the “dual cycle” (the set of
tangents of a cycle; cf. pp. 100-103) in “rectangular line coordinates” (X))
(see pp. 73-74 and, in particular, footnote 23 in Sec. 6 and Fig. 65) can be
written in the form A£2+2B£+2Cn+ D=0 (this equation includes points,
pencils of parallel lines, and “dual circles”—pairs of pencils of parallel lines).
If the coordinate systems {x,y} and {£,7) are adjusted in a natural way, then
the coefficients of the equations of a cycle Z and of its set of tangents are
related as follows:

b*—ad B2— 4D

p and d= C

Consequently, the homogeneous coordinates ug:u;:u,:us:us=a:b:c:d:
(b*~ad)/c=C:B:A:[(B*~AD)/C):D, where u?— ugu;—uyuy=0, de-
scribe the most general cycles, including points and lines. In _these coordi-
nates, the condition of contact of cycles takes a particularly simple form,
which makes it very easy to give an analytical description of a transformation
of the set of general cycles which preserves contact of cycles. These con-
structs can be interpreted geometrically, with the concept of the power of a
cycle with respect to a cycle playing an important role (cf. pp. 238-239 of
[80].

XIV-XV  Let M be a point and Z a “cyclic surface” in our space (cf. Problems
IV-V and the hints for their solution). If 4 and B are the points at which a
line / passing through M intersects Z, then the product dy,,-dyp (d is the
distance between points in each geometry; cf. Problems I-1I of Chap. I and
the corresponding hints) is independent of the choice of /. It is natural to call
this product the power of M with respect to Z. The set of points which have
the same power with respect to two (three; four) cyclic surfaces Z, and Z,
(Z,, Z,and Z3; Z,, Z,, Z, and Z,) is a plane (line; point) called the radical
plane of Z, and Z, (the radical axis of Z,, Z, and Zs; the radical center of Z,,
Z,, Z3, and Z,). These results suggest the way in which one could develop in
our geometries the study of pencils and bundles of circles, and define an
inversion of the first kind (reflection in a sphere) which maps cyclic surfaces to
cyclic surfaces. The concept of a reflection in a cyclic surface (an inversion of
the second kind) is defined differently in our two geometries (since it involves
the special distances in our geometries; cf. the hint relating to Problems I-II
of Chap. I).

XVI In the Euclidean plane, in addition to degenerate quadrics (i.e., quadrics that
are “empty,” consist of single points, or of one or two lines), there are just
three types of nondegenerate quadrics: an ellipse x2/a*+y%/b*—1=0, a
hyperbola x2/a*—y%/b?>~1=0, and a parabola y —ax?>=0. In the Galilean
plane, in addition to 10 types of degenerate quadrics, there are six types of
nondegenerate quadrics: an ellipse x2/a?+y%/b*—1=0, hyperbolas of the
first and second kind x%/a*—y2/b*+1=0, a special hyperbola xy=k, a

A=c and a=C, B=b, D=
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parabola x — by?=0, and a cycle y — ax?=0. Give a geometric description of
these quadrics. Find the Galilean invariants of a general quadratic equation
in two variables as well as the algebraic characteristics of the equations
associated with each of the 16 types of curves.

Conclusion
1 48°
2 Its volume contracts by the same factor by which a rod, moving in the

13

direction of the solid, contracts. For proof, think of the solid as a collection
of small cubes one of whose edges coincides with the direction of the
motion.

See Exercise 5.
59 years.

(b) Try to carry over to Minkowskian geometry the proofs of the correspond-
ing theorem of Euclidean and Galilean geometry, presented on pp. 110-116
and 138—141.
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Essential Relativity has been completely revised and updated, largely
rewritten, and expanded by more than a third for this new edition. It
contains new sections on Kruskal space, gravitational waves and the linear
approximation, new appendices on curvature components and Maxwell’s
theory, as well as many new problems.



The New Cosmos

Second Revised and Enlarged Edition

By Albrecht Unsold

Translated from the German by R.C. Smith
1977. xii, 451p. 166 illus. paper
(Heidelberg Science Library)

This revised and enlarged second edition of The New Cosmos provides a
comprehensive and straightforward introduction to present day astronomy
and astrophysics. The text thoroughly covers the subject, from apparent
motions on the celestial sphere to studies of the solar system, stellar
atmospheres and evolution, radio astronomy, high energy astrophysics and
cosmology, and concluding with considerations regarding the origin of life
on earth.

From Reviews of the First Edition

“With the excellent photographs and diagrams . .. the book can be read with
more excitement and pleasure than one would think possible for such a
concise and comprehensive handbook. This is due to the fact that the author
not only knows which developments are really significant, but never
fumbles for words to make his meaning clear.” The Ohio Journal of Science

“...penetrates particularly in the later chapters to the basic, more
philosophical questions which are the fundamental stimulus for the rest of
the book.” Physics in Canada




A Simple Non-Euclidean Geometry
and Its Physical Basis
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